特殊四边形精选练习题
特殊四边形难题整理(附答案)

解答:(1)如图①,过A. D分别作AK⊥BC于K,DH⊥BC于H,则四边
形ADHK是矩形。
∴KH=AD=3. 在Rt△ABK中,AK=AB⋅sin45∘=42√⋅2√2=4BK=AB⋅cos45∘=42√⋅2√2=4, 在Rt△CDH中,由勾股定理得,HC=52−42−−−−−−−√=3. ∴BC=BK+KH+HC=4+3+3=10. (2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边 形。 ∵MN∥AB, ∴MN∥DG. ∴BG=AD=3. ∴GC=10−3=7. 由题意知,当M、N运动到t秒时,CN=t,CM=10−2t. ∵DG∥MN,∴∠NMC=∠DGC. 又∵∠C=∠C,∴△MNC∽△GDC.∴CNCD=CMCG,即t5=10−2t7.解 得,t=5017.
6.已知,如图,矩形ABCD中,BC=2,AE⊥BD于E,∠BAE=30°,那么 △ECD的面积是( )
7、如图,正方形ABCD的周长为4a,四边形EFGH的四个顶点E、F、G、 H分别在AB、BC、CD、DA上滑动,在滑动过程中,始终有 EH∥BD∥FG,且EH=FG,问:是否可求出四边形EFGH的周长?若能求 出,它的周长是多少?若不能求出,请说明理由.
(3)分三种情况讨论: ①当NC=MC时,如图③,即t=10−2t,∴t=103.
②当MN=NC时,如图④,过N作NE⊥MC于E. 解法一:由等腰三角形三线合一性质得EC=12MC=12(10−2t)=5−t. 在Rt△CEN中,cosC=ECNC=5−tt, 又在Rt△DHC中,cosC=CHCD=35, ∴5−tt=35.解得t=258. 解法二:∵∠C=∠C,∠DHC=∠NEC=90∘,∴△NEC∽△DHC. ∴NCDC=ECHC,即t5=5−t3.∴t=258. ③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=12NC=12t. 解法一:(方法同②中解法一)cosC=FCMC=12t10−2t=35,
特殊的四边形培优

特殊的四边形培优1.如图,已知在菱形ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,且AE=BE,则∠EDF=______度.1.如图,四边形ABCD是正方形,△BDE是等边三角形,EF⊥DF,则∠BEF=________3.如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,则BE 的长为_______FB CA DE4. 如图,在菱形ABCD 中,AB=4a ,E 在BC 上,BE=2a ,∠BAD=120°,P 点在BD 上,则PE+PC 的最小值为( )5.如图,矩形AEFG 与矩形APQK 的周长都等于120cm,求△ABC 的周长6.如图,在矩形ABCD 中,M ,N 分别是AD ,DC 边的中点,AN 与MC 交于P 点,若∠MCB=∠NBC+33°,那么∠MPA 的大小是( )1. 边长为25cm 的正方形纸片,AD 上有一点P ,且AP=66cm,将这纸片折叠使B 落在P 上,则折痕的长是________2. 已知直角三角形ABCD 中,∠C=90°,AC=3,BC=5,以AB 为边向外作正方形ABEF 求此正方形KGP E BC中心O到C点的距离OC的长________3.如图,已知在矩形ABCD中,E为CB延长线上一点,CE=AC,F是AE的中点.(1)求证BF⊥DF(2)若AB=8,AD=6,求DF的长10.如图,已知三角形ABC中,AB=AC,点M为BC 的中点,MG⊥BA于G,MD⊥AC于D,GF⊥AC于点E,GF与DF相交于点F,(1)求证:四边形HGMD是菱形(2)若∠GMD=120°,求证:从M点向所对的HG 和HD边引出的两条垂线MK和MQ分别平分这两条线段.E FQKDG11.如图,将一矩形的每一内角三等分,连接靠近同一边上的两三等分线所交成4交点组成四边形EFGH,试判断四边形EFGH形状12.在正方形ABCD中,AK和AN是∠A内的两射线,BK⊥AK,BL⊥AN,DM⊥AK,DN⊥AN,试求KL=MN1.在锐角△ABC中,BE是高,CF是中线,若∠ACF=30°则BE:CF=________2.如图,D、E、F分别是△ABC三边的中点,G是AE的中点,BE与DF、DG分别交于P、Q两点,则PQ:BE=______.3.如图,△ABC中,∠BAC=120°,以AB,AC为边分别向形外作正三角形ABD和正三角形ACE,M为AD中点,N为AE中点,P为BC中点,求∠MPN的度数.4.凸五边形ABCDE中,∠ABC=∠AED=90°,∠CAD=30°,∠BAE=70°,F是CD中点,且FB=FE,则∠BAC=_________.5.已知:如图所示,在△ABC中,D、G分别为AB、AC上的点,且BD=CG,M、N分别是BG、CD的中点,过MN的直线交AB于点P,交AC于点Q,求证:AP=AQ。
初二数学特殊四边形练习题

初二数学特殊四边形练习题四边形是初中数学的重要内容之一,其中特殊四边形更是一个关键知识点。
通过练习题的形式,我们可以加深对特殊四边形的理解和应用。
本文将为大家提供一些初二数学特殊四边形练习题,并解析答案,希望对你的学习有所帮助。
练习一:平行四边形性质1. 什么是平行四边形?2. 平行四边形有哪些性质?练习二:矩形和正方形1. 什么是矩形和正方形?2. 矩形和正方形有什么相同点和不同点?3. 在矩形和正方形中,对角线的长度是否相等?为什么?练习三:菱形的性质1. 什么是菱形?2. 菱形有哪些性质?3. 菱形的对角线有什么特点?练习四:平行四边形和菱形的关系1. 平行四边形和菱形有什么关系?2. 如果一个平行四边形的对角线相等,它一定是什么形状?练习五:梯形和等腰梯形1. 什么是梯形和等腰梯形?2. 梯形和等腰梯形有哪些性质?练习六:总结请你总结一下初二数学特殊四边形的性质和关系。
解析:练习一:1. 平行四边形是指两边两边之间互相平行的四边形。
2. 平行四边形的性质有:对边平行,对角线互相平分,相邻角互补,对角线等分。
练习二:1. 矩形是四个角都是直角的四边形,而正方形是四个边都相等且四个角都是直角的特殊矩形。
2. 矩形和正方形的相同点是都拥有对边平行和对角线等分的性质,不同点是正方形的四条边相等。
3. 在矩形和正方形中,对角线的长度相等,因为它们都是菱形的对角线,而菱形的对角线相等。
练习三:1. 菱形是四个边都相等的四边形。
2. 菱形的性质有:对边平行,对角线互相垂直,对角线等分,相邻角互补。
3. 菱形的对角线相等且互相垂直。
练习四:1. 平行四边形是菱形的特殊情况,即四个边都相等的菱形为正方形。
2. 如果一个平行四边形的对角线相等,它一定是正方形。
练习五:1. 梯形是有两条平行边的四边形,其中一对相邻边不平行的梯形叫做等腰梯形。
2. 梯形的性质有:两条底边平行,上底角和下底角互补,两对对角线互相平分。
(完整版)特殊平行四边形练习题(答案已做)

特殊平行四边形专题练习1、练习:①矩形ABCD 的两条对角线相交于O ,∠AOD=120°,AB=4cm ,则矩形对角线AC 长为______cm .②.四边形ABCD 的对角线AC ,BD 相交于点O ,能判断它为矩形的题设是( )A .AO=CO ,BO=DOB .AO=BO=CO=DOC .AB=BC ,AO=COD .AO=CO ,BO=DO ,AC ⊥BD③.四边形ABCD 中,AD //BC ,则四边形ABCD 是 ___________,又对角线AC ,BD 交于点O , 若∠1=∠2,则四边形ABCD 是_______________.2、练习:①.如图,BD 是菱形ABCD 的一条对角线,若∠ABD=65°,则∠A=_____.②. 一个菱形的两条对角线分别是6cm ,8cm ,则这个菱形的周长等于 cm,面积= cm 2③.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为(三)正方形:3.练习:①正方形的面积为4,则它的边长为____,对角线长为_____.②已知正方形的对角线长是4,则它的边长是 ,面积是 。
③如图所示,在△ABC 中,AB=AC ,点D ,E ,F 分别是边AB ,BC ,AC 的中点,连接DE ,EF ,要使四边形ADEF 是正方形,还需增加条件:_______.二、复习练习: (一)、选择题:1、矩形ABCD 的长AD=15cm ,宽AB=10cm ,∠ABC 的平分线分AD 边为AE 、ED两部分,这AE 、ED 的长分别为( )A .11cm 和4cmB .10cm 和5cmC .9cm 和6cmD .8cm 和7cm2、四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD B .AD=BC C .AB=BC D .AC=BD3、如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠AEBO ( ) A. 10° B .15° C .20° D .12.5°4、如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,如果EF=2,那么菱形ABCD 的周长是( ) A. 4 B .8 C .12 D .16ABDECABCDEEF(二)、填空题5、已知正方形ABCD 对角线AC ,BD 相交于点O ,•且AC=•16cm ,•则DO=•_____cm , •BO=____cm ,∠OCD=____度.6、在平面直角坐标系中,四边形ABCD 是菱形,∠ABC=60°, 且点A 的坐标为(0,2),则点B 坐标( ), 点C 坐标为( ),点D 坐标为( )。
特殊四边形练习题

特殊四边形练习题一、选择题1. 下列四边形中,哪一个是平行四边形?A. 两组对边分别平行的四边形B. 两组对边分别相等的四边形C. 对角线互相平分的四边形D. 一组对边相等且平行的四边形2. 菱形的对角线具有以下哪个性质?A. 垂直平分B. 互相垂直C. 互相平行D. 相等3. 矩形的四个角都是:A. 锐角B. 直角C. 钝角D. 平角4. 梯形中,上底和下底平行,且两腰相等的梯形是:A. 等腰梯形B. 直角梯形C. 等腰直角梯形D. 普通梯形5. 正方形的对角线具有以下哪个性质?A. 垂直平分B. 互相垂直C. 互相平行D. 相等且垂直二、填空题6. 平行四边形的对角线______,矩形的对角线______。
7. 菱形的四条边都______,且对角线______。
8. 等腰梯形的两腰相等,且上底和下底______。
9. 正方形的四条边都______,且四个角都是______。
10. 如果一个四边形的两组对边分别相等,那么这个四边形可能是______或______。
三、判断题11. 所有平行四边形都是矩形。
()12. 所有菱形都是平行四边形。
()13. 所有矩形都是正方形。
()14. 所有正方形都是菱形。
()15. 所有等腰梯形都是平行四边形。
()四、简答题16. 请简述平行四边形、矩形、菱形、正方形和梯形的定义。
17. 请说明为什么矩形的对角线相等,而菱形的对角线垂直。
18. 请解释等腰梯形的判定方法。
五、计算题19. 若一个平行四边形的两组对边分别是10cm和8cm,求其对角线的长度范围。
20. 已知一个矩形的长为15cm,宽为10cm,求其对角线的长度。
21. 如果一个菱形的边长为6cm,求其对角线的长度。
22. 已知一个正方形的边长为8cm,求其对角线的长度。
23. 若一个等腰梯形的上底为4cm,下底为10cm,高为3cm,求其两腰的长度。
六、证明题24. 证明:平行四边形的对角线互相平分。
特殊的四边形练习题

F C D E O 第3题图 第4题图B C O AD特殊的四边形练习题1.如图,已知O 是四边形ABCD 内一点,OA OB OC ==, 70ABC ADC ∠=∠=°,则DAO DCO ∠+∠的大小是( ) A .70° B .110° C .140° D .150°2.如图,Y ABCD 中,AC 、BD 为对角线,BC=6,BC 边上的高为4,则阴影部分的面积为( ). A .3 B .6 C .12 D .243.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( ).A π- C .π D .π1-4.如图,正方形ABCD 中,E 为AB 的中点,AF⊥DE 于点O , 则DOAO等于( )A .352 B .31 C .32D .215.在矩形ABCD 中,1AB AD AF ==,平分DAB ∠,过C 点作CE BD ⊥于E ,延长AF EC 、交于点H ,下列结论中:AF FH =①;BO BF =②;CA CH =③;④3BE ED =,正确的是( )A .②③B .③④C .①②④D .②③④ 6.如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分别在边AB 、CD 、AD 、BC 上,小明认为:若MN EF =,则MN EF ⊥.小亮认为:若MN EF ⊥,则MN EF =.你认为( )A .仅小明对B .仅小亮对C .两人都对D .两人都不对B DA BCOE F HM A 'D E A B NC7.如图,梯形ABCD 中,AD∥BC,DC⊥BC,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A '处,若20A BC '∠=°,则A BD '∠的度数为( ). A .15° B.20° C . 25° D .30°8.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A..C .3 D9.矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),则着色部分的面积为( )A . 8B .112C . 4D .5210.如图,正方形纸片ABCD 的边长为1,M N ,分别是AD BC 、边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ',折痕交AD 于点E ,若M N ,分别是AD BC ,边的中点,则A N '= ;若M N ,分别是AD BC ,边上距DC 最近的n 等分点(2n ≥,且n 为整数),则A N '= (用含有n 式子表示).11.如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.A B D CEF MND A C B A ' A DE PBCED FC 1D 1 D 2C 2 DA B12.如图,边长为1的菱形ABCD 中,60DAB ∠=°.连结对角线AC ,以AC 为边作第二个菱形11ACC D ,使160D AC ∠=°;连结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°;……,按此规律所作的第n 个菱形的边长为___________. 13.如图,在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝14.如图,在等腰梯形ABCD 中,AD BC ∥,BC =4AD =42B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若ABE △为等腰三角形,则CF 的长等于 .15.如图,在梯形ABCD 中,AB CD ∥, 90A B ∠+∠=°, 511CD AB ==,,点M N 、分别为AB CD、的中点,则线段MN = . 16.已知:如图在ABCD Y中,过对角线BD 的中点O 作直线EF 分别交DA 的延长线、AB DC BC 、、的延长线于点E M N F 、、、.(1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明; (2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?17.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG=CG ;D BCA FA B C D N ME B MO DNF C A(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1) 中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)18.如图,ABC △中,AB AC =,P 为底边BC 上任意一点,点P到两腰的距离分别为12r r ,,腰上的高为h ,连接AP ,则ABP ACP ABC S S S +=△△△.即:12111222AB r AC r AB h +=g g g 12r r h ∴+=(定值).(1)理解与应用如图,在边长为3的正方形ABCD 中,点E 为对角线BD 上的一点,且BE BC =,F 为CE 上一点,FM BC ⊥于M ,FN BD ⊥于N ,试利用上述结论求出FM FN +的长. (2)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P 的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即: 已知等边ABC △内任意一点P 到各边的距离分别为123r r r ,,,等边ABC △的高为h ,试证明123r r r h ++=(定值). (3)拓展与延伸若正n 边形12n A A A L 内部任意一点P 到各边的距离为12n r r r L ,请问是12n r r r +++L 是否为定值,如果是,请合理猜测出这个定值.F BD 图①B D E 图②B 图③ AC B P r 1 r 2hDCBAE NF MCAB P r 1r 3 r 2h。
特殊四边形测试题

特殊四边形测试题一、选择题1. 下列哪个选项不是特殊四边形的特点?A. 对角线互相平分B. 四边形的对角线垂直C. 四边形的对角线相等D. 四边形的对边相等2. 菱形的对角线具有以下哪个特点?A. 平行B. 垂直C. 相等D. 互相平分3. 矩形的对角线具有以下哪个特点?A. 平行B. 垂直C. 相等D. 互相垂直4. 梯形中,哪两个角相等?A. 相邻角B. 对角C. 同底角D. 没有角相等5. 以下哪个选项是平行四边形的判定条件?A. 对角线相等B. 对边相等C. 对角线互相垂直D. 对角线互相平分二、填空题6. 一个四边形的对角线互相垂直且平分,那么这个四边形是________。
7. 如果一个四边形的对边相等,且对角线互相平分,那么这个四边形是________。
8. 一个四边形的对角线相等,且对边平行,那么这个四边形是________。
9. 梯形中,如果有一个角是直角,那么这个梯形是________。
10. 如果一个四边形的一组对边平行,且另一组对边不平行,那么这个四边形是________。
三、简答题11. 描述矩形和正方形的相似之处和不同之处。
12. 解释为什么菱形的对角线互相垂直。
13. 根据题目给出的条件,如果一个四边形的对角线互相平分,且一边上的两个角都是直角,那么这个四边形是什么形状?四、计算题14. 已知一个平行四边形的两组对边长度分别为6cm和8cm,对角线长度分别为10cm和2x cm。
求x的值。
15. 如果一个梯形的上底长为5cm,下底长为10cm,且两底平行,求这个梯形的高,假设这个梯形是等腰梯形。
五、证明题16. 证明:如果一个四边形的对角线互相垂直且相等,那么这个四边形是正方形。
17. 证明:如果一个四边形的对角线互相平分,且一边上的两个角都是直角,那么这个四边形是矩形。
请注意,以上题目仅为示例,具体内容应根据实际教学大纲和学生水平进行调整。
特殊四边形典型题演练及答案

1、如图,在四边形ABCD中,AB=CD,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点. (1)求证:四边形EGFH是菱形;(2)若AB=1,则当时,求四边形EGFH的面积.2、在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后,•用得到的△AEF和四边形EBCF可以拼成平行四边形EBCP,剪切线与拼图如图所示1.仿照上述的方法,按要求完成下列操作设计,并在规定位置画出图示. .(1)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成矩形,剪切线与拼图画在图示2的位置上. .(2)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成菱形,剪切线与拼图画在图示3的位置上. .(3)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成正方形,剪切线与拼图画在图示4的位置上. .(4)在△ABC中(AB≠AC),一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,•其操作过程(剪切线的作法)是:___________,然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置上.(10分)3、如图,已知正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H.求证:①△BCG≌△DCE;②BH⊥DE.(2)当点G运动到什么位置时,BH垂直平分DE?请说明理由.4、如图,在△中,∠,的垂直平分线交于,交于,在上,且. .⑴求证:四边形ACEF是平行四边形;⑵当∠B满足什么条件时,四边形ACEF是菱形,并说明理由. .5、已知:如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在DE上且DF=DC,DG⊥CF于G. DH平分∠ADE交CF于点H,连接BH.(1)若DG=2,求DH的长;(2)求证:BH+DH=CH.6、如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=3,求AG、MN的长.7、如图,在正方形ABCD中,E是AB边上任意一点,BG⊥CE,垂足为点O,交AC于点F,交AD于点G。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊平行四边形专题练习
一、基础知识点复习:
(一)矩形:
1、矩形的定义:__________________________的平行四边形叫矩形.
2、矩形的性质:①.矩形的四个角都是______;矩形的对角线_________________________ ②.矩形既是对称图形,又是图形,它有条对称轴.
3、矩形的判定:①.有_____个是直角的四边形是矩形.②.对角线____________________________的平行四边形是矩形.③.对角线________________________________的四边形是矩形.
4、练习:①矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,
则矩形对角线AC长为______cm.
②.四边形ABCD的对角线AC,BD相交于点O,能判断它为矩形的题设是() A.AO=CO,BO=DO B.AO=BO=CO=DO C.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD ③.四边形ABCD中,AD//BC,则四边形ABCD是 ___________,又对角线AC,BD交于点O,若∠DAB=∠ABC,则四边形ABCD是_______________.(二)菱形:
1、菱形的定义:有一组_____________________相等的平行四边形叫菱形.
2、菱形的性质:①.菱形的四条边______;菱形的对角线_____________,且每条对角线______________.②.菱形既是对称图形,又是图形,它有条对称轴.
3、菱形的判定:①._____边都相等的四边形菱形.②.对角线______的平行四边形是菱形.③.对角线___________ 的四边形是菱形.
4、菱形的面积与两对角线的关系是________________________
5、练习:①.如图,BD是菱形ABCD的一条对角线,若∠ABD=65°,则∠A=_____.②.一个菱形的两条对角线分别是6cm,8cm,则这个菱形的周长等于cm,面积= cm2③.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为
(三)正方形:
1、正方形的定义:的平行四边形叫正方形。
2、正方形的性质:①.正方形的四个角是_____角,四条边_____,对角线_______________________.②.正方形是______对称图形,又是对称图形,它有______条对称轴.
3.正方形的判定:先判定这个四边形是矩形,•再判定这个矩形还是_____形;或者先判定四边形是菱形,再判定这个菱形也是_____形.
4.练习:①正方形的面积为4,则它的边长为____,对角线长为_____.
②已知正方形的对角线长是4,则它的边长是,面积是。
③如图所示,在△ABC中,AB=AC,点D,E,F分别是边AB,BC,AC的中
点,连接DE,EF,要使四边形ADEF是正方形,还需增加条件:_______.
一、选择题
1、在下列命题中,正确的是( ) A .一组对边平行的四边形是平行四边形 B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形 D .对角线互相垂直平分的四边形是正方形
2、如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )
A .4
B .3
C .2
D .1
3、如图,在菱形ABCD 中,
对角线AC BD ,相交于点O E ,为AB 的中点,且OE a ,则菱形ABCD 的周长为( ) A .16a B .12a C .8a D .4a 4、顺次连接菱形各边中点所得的四边形一定是( ) A .等腰梯形 B .正方形 C .平行四边形 D .矩形
5、如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( ) A .53cm B .25cm C .
48
5
cm D .
245
6、如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ) A .10 B .20 C .40 D .80 二、填空题
7、如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补充
一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可).
8、如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .
9、如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为
10、如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 。
11.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm .12、菱形ABCD 的周长为36,其相邻两内角的度数比为1:5,则 此菱形的面积为_________。
13、对角线长为22的正方形的周长为
___________,面积为__________。
三、解答题
13(12分)已知:如图 ,AD 是 ∠BAC 的角平分线,
DE ∥AC ,DF ∥AB 。
求证:四边形AEDF 是菱形。
14、如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形.
15、(9分)E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,•垂足分别是F 、G ,求证:AE=FG .
A P G
F
E
D
C
B
16、如图,点E 、F 在正方形ABCD 的边BC 、CD 上,AE 、BF 相交于点G ,BE=CF
猜想AE 与BF 的关系并证明。
17、如图,四边形ABCD 是菱形 ,∠ACD=30°,BD=6,求: (1)∠BAD,∠ABC 的度数; (2)边AB 及对角线AC 的长。
18、在Rt △ABC 中,∠ACB=90°CD ⊥AB 于点D ,∠BCD=3∠ACD ,点E 是斜边AB 的中点,求∠ECD 的度数。
19、如图,E 、F 、M 、N 分别是正方形ABCD 四条边上的点,且AE=BF=CM=DN ,
求证,四边形EFMN 是正方形 。
A
B
C
D
E
G F A
B
C
D
E。