(题目)士兵考军校数学模拟试题

合集下载

武警士兵考军校军考模拟题:数学部分(四)

武警士兵考军校军考模拟题:数学部分(四)

武警士兵考军校军考模拟题:数学部分(四)关键词:武警考军校 军考模拟题 京忠教育 军考数学 武警考试资料1(2010-11)已知向量(3,2),(1,0)a b =-=- ,向量ka b + 与2a b - 垂直,则k=2(2012-16)(10分)在平面直角坐标系xOy 中,已知点(1,2),(2,3),(2,1)A B C ----.(1)求已线段AB ,AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足()0AB tOC OC -⋅= ,求t 的值.3(2013-17)(7分)已知12,e e 是夹角为23π的两个单位向量,122a e e =-,12b ke e =+,若a b ⊥,求实数k 的值.4(2014-19)(10分)已知a 、b 、c 是同一平面内的三个向量,其中a=(1,2).(1)若c =c//a ,求向量c 的坐标;(2)若2b =,且a+2b 与2a-b 垂直,求向量a 与b 的夹角. 5.(2007-13)若复数Z 满足(1)Z i +=2,则Z 的实部是6.(2009-9)若复数1a i z i-=+是纯虚数,则a= 7.(2010-10)复数3(1)(2)i i i --+的共轭复数是 8.(2012-1)若复数2(1)a i -是纯虚数,则实数a 的值 ( ) A.1± B.-1 C.0 D.19.(2014-2)在复平面内,复数52i i-的对应点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限10.(2008-9)已知复数1121,1z i z z i =-=+ ,则复数2z =11.(2010-2)复数z 满足1(1)z z i -=+,则z 的值是 ( )A.1i +B.1i -C.iD.i -12(2011-2)设复数122z =-+,则2z z +的值为 ( )A.iB.i -C.1D.-113(2013-4)复数23201...i i i i +++++的值等于 ( )A.1B.-1C.iD.-i14(2014-8)两个圆锥有等长的母线,而他们的侧面展开图恰好拼成一个圆,若它们的侧面积之比为1:2,则它们的高之比为 ( )A .2:1B C.1:215(2007-15)球O 的截面把垂直于截面的直径分为1:3球O 的表面积为16.(2009-13)在北纬60︒圈上有A 、B 两地,它们在此纬度圈上的弧长为2R π(R 是地球的半径),则AB 两地的球面距离是17(2010-15)用平面α截半径R 的球,如果球心到平面α的距离是2R ,那么截得的小圆的面积与球的表面积的比值是18(2011-9)已知球与正方体的表面积相等,则球与正方体的体积之比为 ( )π D.π19.(2013-12)如果球的直径,圆锥的底面直径和圆锥的高三者相等,那么球与圆锥的体积之比是=20(2009-6)设,,m n l 是三条不同的直线,,,αβγ是三阿哥不同平面,则下列命题是真命题的是( )A.若m,n 与l 所成的角相等,则m//nB.若γ与,αβ所成的角相等,则//αβC.若//αβ,m α⊂,则//m βD.若m,n 与α所成的角相等,则m//n21.(2010-7)设,,l m n 是互不相同的空间直线,,αβ是不重合的平面,则下列命题中真命题是( )A.若//,,l n αβαβ⊂⊂,则//l nB.若,,l αβα⊥⊂则l β⊥C.若,l n m n ⊥⊥,则//l mD.若//,l l βα⊥,则αβ⊥22(2011-8)设有不同的直线a ,b 和不同的平面,,αβγ,给出下列三个命题: ( ) ①若//,,l n αβαβ⊂⊂,则//l n②若,,l αβα⊥⊂则l β⊥③若,l n m n ⊥⊥,则//l m④若//,l l βα⊥,则αβ⊥A.0个B.1个C.2个D.3个23.(2012-15)已知,l m 是两条不同的直线,,αβ是两个不同的平面,下列命题: ①若,,//,l m l ααβ⊂⊂则//αβ②若,//,l l m αβαβ⊂⋂=,则//l m③若,//,l l m αβαβ⊂⋂=,则//l m④若,//,//l m l ααβ⊥,则m β⊥其中真命题是24.(2013-5)设有不同的直线a 、b 和不同的平面,,αβγ,给出下列三个命题: ①若//a α,//b α,则//a b ②若//a α,//a β,则//αβ③若若a γ⊥,βγ⊥,则//αβ其中正确的个数是 () A.0 B.1 C.2 D.325.(2014-9)平面α//β的一个充分条件是( )A.存在一条直线a ,a//α,a//βB.存在一条直线a,a α⊂,//a βC.存在两条平行直线a,b ,,,//,//a b a b αββα⊂⊂D.存在两条异面直线a,b ,,.//,//a b a b αββα⊂⊂26.(2007-19)(14分)在正方体中,M ,N 分别是正方体1111ABCD A B C D -的面对角线1CD 与AB 的中点.(1)求证:MN//平面11ADD A ;(2)求异面直线MN 和AC 所成角的余弦值.27.(2009-22)(13分)如图,在三棱锥P-ABC 中,,,30PA PB PA PB AB BC BAC ==⊥⊥∠=︒,平面PAB ABC ⊥.(1)求证:PA ⊥平面PBC ;(2)求二面角P-AC-B 的平面角的正切值.28(2010-21)(12分)如图,PA ⊥平面ABC ,底面ABC 是以AB 为斜边的直角三角形.(1)求证:平面PBC ⊥平面PAC ;(2)若22PA PB BC ===,求A 点到平面PBC 的距离.29(2011-20)(14分)三棱锥P ABC -中,ABC ∆是正三角形,90PCA ∠=︒,D 为PA的中点,二面角P-AC-B 为120︒,PC=2,AB =(1)求证:AC BD ⊥;(2)求BD 与底面ABC 所成角的正弦值. 30(2012-21)(13分)如图,在三棱锥A-BCD 中,AB ⊥平面BCD ,BC=DC=1,90BCD ∠=︒,E ,F 分别为AC ,AD 上的动点,且EF//平面BCD ,二面角B-CD-A 为60︒.(1)求证:EF ⊥平面ABC ;(2)若BE ⊥AC ,求直线BF 和平面ACD 所成角的余弦值.31(2013-21)(12分)如图,在三棱柱111ABC A B C -中,AC=3,BC=4,AB=5, 点D 是AB 的中点.求证:(1)1AC BC ⊥;(2)1AC ⊥平面1CDB .32.(2014-21)(12分)如图,在三棱锥S-ABC 中,平面SAB SBC ⊥,,AB BC AS AB ⊥=,过A 作AF SB ⊥,垂足为F ,点E 、G 分别为棱SA 、SC 的中点.求证:(1)平面EFG ABC ⊥;(2)BC SA ⊥.。

军校数学考试题库及答案

军校数学考试题库及答案

军校数学考试题库及答案1. 题目:求函数f(x) = 2x^3 - 3x^2 + 4x - 5在x=1处的导数值。

答案:首先求出函数f(x)的导数f'(x) = 6x^2 - 6x + 4。

然后将x=1代入f'(x)中,得到f'(1) = 6(1)^2 - 6(1) + 4 = 4。

2. 题目:解方程3x^2 - 5x + 2 = 0。

答案:使用求根公式,首先计算判别式Δ = b^2 - 4ac = (-5)^2 - 4(3)(2) = 25 - 24 = 1。

然后求解x = (-b ± √Δ) / 2a,得到x = (5 ± 1) / 6,即x1 = 1,x2 = 2/3。

3. 题目:计算定积分∫(0到1) (x^2 + 3x) dx。

答案:首先求出被积函数的原函数F(x) = (1/3)x^3 + (3/2)x^2 + C。

然后计算F(1) - F(0) = [(1/3)(1)^3 + (3/2)(1)^2] -[(1/3)(0)^3 + (3/2)(0)^2] = (1/3) + (3/2) = 11/6。

4. 题目:证明函数f(x) = x^2在区间(-∞, +∞)上是偶函数。

答案:根据偶函数的定义,若对于任意x∈(-∞, +∞),都有f(-x) = f(x),则f(x)是偶函数。

对于f(x) = x^2,我们有f(-x) = (-x)^2 = x^2 = f(x),因此f(x)是偶函数。

5. 题目:求极限lim(x→0) (sin(x) / x)。

答案:根据极限的性质,我们知道lim(x→0) (sin(x) / x) = 1。

这是因为当x趋近于0时,sin(x)与x的比值趋近于1。

6. 题目:计算二重积分∬(D) xy dA,其中D是由x^2 + y^2 ≤ 1定义的圆盘。

答案:首先将二重积分转换为极坐标形式,即∬(D) xy dA = ∫(0到2π) ∫(0到1) (r*cos(θ) * r*sin(θ)) * r dr dθ。

武警士兵考军校军考模拟题:数学部分(六)

武警士兵考军校军考模拟题:数学部分(六)

武警士兵考军校军考模拟题:数学部分(六)关键词:武警考军校 军考模拟题 京忠教育 军考数学 武警考试资料1(2009-21)(12分)已知椭圆2222:1(0)x y C a b a b +=>>直线:2l y x =+与原点为圆心,以椭圆C 的短半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左焦点为1F ,右焦点2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于1l 于点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹方程.2(2007-14)过椭圆22143x y +=一个焦点的最短弦长为 3(2009-7)已知椭圆E 的方程为221259x y +=,左焦点为1F ,如果椭圆E 上的一点P 到1F 的距离为2,M 是线段1PF 的中点,O 为坐标原点,则OM = ( ) A.4 B.2 C.32 D.8 4(2010-12)以双曲线2244x y -=的中心为顶点,右焦点为焦点的抛物线方程是5(2012-14)抛物线的顶点坐标在坐标原点,焦点是椭圆2228x y +=的一个焦点,则此抛物线的焦点到准线的距离为6(2013-13)顶点在原点,准线方程是x=2的抛物线的方程是7(2007-20)(11分)已知双曲线22169144x y -=,12,F F 是两个焦点,点P 在双曲线上,且满足1232PF PF ⋅=,求12F PF ∠的值.8(2008-15)若双曲线22214x y a -=过点(-,则该双曲线的焦点为9(2010-22)(13分)双曲线C 的中心在坐标原点,顶点为A ,A 点关于一条渐近线的对称点为B ,斜率为2且过点B 的直线L 交双曲线C 与M ,N 两点.(1)求双曲线C 的方程;(2)计算MN 的值.10(2011-10)已知以原点为中心的双曲线的一条准线方程为x =e =该曲线的标准方程为 ( )A.2241x y -= B.2214x y -= C.2241x y -= D.2214y x -=11(2012-8)已知双曲线22221(0)x y a b a b -=>>22221x y a b +=的离心率是 ( )A.1212(2014-15)已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点,且双曲线的离心率为2,则该双曲线的方程为13(2007-22)(12分)抛物线与直线24y x =与直线2y x k =+相交,截得的弦长为,求k 的值.14(2009-21)(12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率是3,直线:2l y x =+与原点为圆心,以椭圆C 的短半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左焦点为1F ,右焦点2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于1l 于点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹方程.15(2010-22)(13分)双曲线C 的中心在坐标原点,顶点为A ,A 点关于一条渐近线的对称点为B ,斜率为2且过点B 的直线L 交双曲线C 与M ,N 两点.(1)求双曲线C 的方程;(2)计算MN 的值.16(2011-21)14分)已知椭圆C 经过点3(1,)2A ,两焦点坐标分别为(1,0),(1,0)-.(1)求椭圆C 的方程;(2)E ,F 是椭圆上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.17(2013-22)(13分)已知椭圆22221(0)x y a b a b +=>>点(,)52P a a 在椭圆上. (1)求椭圆的离心率;(2)设点A 为椭圆的左顶点,O 为坐标原点,若点Q 在椭圆上且满足AQ AO =,求直线OQ 的斜率.18(2008-5)百米决赛有6 名运动员A 、B 、C 、D 、E 、F 参赛,每个运动员的速度都不同,则远动员A 比运动员F 先到终点的比赛结果共 ( )A.360种B.240种C.120种D.48种19(2009-4)用数字1,2,3,4,5组成没有重复数字的数,则可以组成的六位数的个数为 ( )A.720B.240C.120D.60020(2011-6)甲、乙、丙三位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则这三位同学不同的选修方案共有 ( )A.48种B.36种C.96种D.192种21(2013-8)名士兵拍成一排,其中甲乙两个必须排在一起的不同排法有 ( )A.720种B.360种C.240种D.120种22(2007-6)如果把4名干部分配到3个中队,每个中队至少要分配一名干部,那么不同的分配方法有 ( )A.45种B.36种C.27种D.9种23(2010-6)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生的选派方法有 ( )A.108种B.186种C.216种D.270种24(2012-7)在50件产品中有4件次品,从中任意抽取5件,至少有3件事次品的抽法共有( )A.5种B.4140种C.96种D.4186种25(2014-7)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备看舰,如果甲,乙二机必须相邻,丙,丁不能相邻,那么不同的着舰方法有 ( )A.24种B.18种C.12种D.48种26(2007-11)过20()a b +的展开式中第4r 项与第r+2项的系数相等,则r=27(2008-12)在821()x x+的展开式中,5x 的系数为 28(2009-12)在8(2x +的展开式中,常数项为 29(2010-13)已知(12)n n -的展开式中,二项式系数和为64,则它的二项展开式的中间项是30(2011-13)31021(2)2x x -的展开式中,常数项是 31(2012-13)18(x 的展开式中含15x 的项的系数为32(2013-14)在8的展开式中常数项为33(2014-14)101()2x x-的展开式中,4x 的系数为 34(2007-21)(10分)已知8支球队中有3支弱队,以抽签的方式将8支球队分为A ,B 两组,每组4支,求:(1)3支弱队分在同一组的概率;(2)A 组中至少有两支弱队的概率.35(2008-22)(13分)甲、乙、丙三位毕业生,同时应聘一个用人单位,其中甲被选中的概率是25,乙被选中的概率是34,丙被选中的概率是13,各自是否被选中相互独立. (1)求三人都被选中的概率;(2)求只有两人被选中的概率.36(2009-17)(10分)已知一个口袋中有大小、质地相同的8个球,其中有4个红球和4个黑球,现在从中任取4个球.(1)求取出的球的颜色相同的概率;(2)若取出的红球数不少于黑球数,则可获得奖品,求获得奖品的概率.37(2010-20)(10分)甲乙两人各射击一次,击中目标的概率分别是23和34,假设两人射击是否击中目标之间相互独立,每人各次射击是否击中相互独立.(1)求甲射击4次,至少有1次击中目标的概率;(2)求两人射击4次,甲恰好击中目标2次,且乙恰好击中目标3次的概率.38(2011-18)(12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,已知选手甲能正确回答第一、二、三、四轮问题的概率分别为4321,,,5555,且各轮问题能否正确回答互不影响.(1)求选手甲进入第四轮才被淘汰的概率;(2)求选手甲至多进入第三轮考核的概率.39(2012-20)(14分)已知在3支不同编号的枪中有2支已经试射校正过,1支未经试射校正,某射手若使用其中校正过的枪,每次射击击中目标的概率为45,若使用没有校正的枪,每次射击击中目标的概率为15,假设没几是否击中之间相互没有影响.(1)若该射手用这2支已经校正过的枪各射击一次,求目标被击中的概率;(2)若该射手用这3支枪各射击一次,求目标至多被射中一次的概率.40(2013-16)(10分)战士小张考政治、语文、数学、外语4门课程,各课程考试成绩之间相互独立,其各门课程合格的概率分别为4231 ,,, 5342.(1)求小张一门都不合格的概率;(2)求小张恰好有三门课程合格的概率.41(2014-20)(10分)袋中有大小相同的6个球,其中有4个红球,2个白球. (1)若任取3个球,求至少有一个白球的概率;(2)若有放回的取球3次,求恰好有1个白球的概率.。

士兵军校考试之军考数学练习题1

士兵军校考试之军考数学练习题1

士兵军校考试之军考数学练习题1关键词:士兵军考 军校考试 张为臻 军考数学 练习题1.函数)(sin R x x y ∈=π的部分图像如图所示,设O 为坐标原点,P 是图像的最高点,B 是图像与x 轴的交点,则OPB ∠tan 的值为( )A.10B.8C.8/7D.4/72.已知函数1)(cos )(2+-=m x x f 在1cos -=x 时取得最大值,在m x =cos 时取得最小值,则实数m 的取值范围是( )A.1-≤mB.1≥mC.10≤≤mD.01≤≤-m3.若集合{}1|-==x y x A ,{}2|2+==x y y B ,则=⋂B A ( )A.[1,+∞)B.(1,+∞)C.[2,+∞)D.(2,+∞)4.函数x y 2sin =是( ) A.周期为π的奇函数 B.周期为π的偶函数 C.周期为2π的奇函数D.周期为2π的偶函5.已知幂函数αx x f =)(的图像过点(4,2),若f(m)=3,则实数m 的值为( ) A.3B.±3 C.±9D.96.若31)cos(-=+απ,则αcos 的值为( ) A.31 B.-31C.322D.-322参考答案与解析1.B 。

【准维解析】过P 作OB 的垂线,垂足为D ,∵22||===ππOB T ,1||=DP ,2141||==T OD ,2343||==T BD ,OPB ∠tan =21,23tan =∠BPD ,∴OPB ∠tan =8232112321)tan(=⨯-+=∠+∠BPD OPD ,故选B. 本题考查两角和与差的三角函数。

2.C 。

【准维解析】设x t cos =,则[]1,1-∈t ,依题意知1)()()(2+-==m t x f t g 在t=-1时取得最大值,而在t=m 时取得最小值,结合二次函数的图像可知⎩⎨⎧≤≤-≥-11)1()1(m g g 即⎩⎨⎧≤≤-+-≥+--111)1(1)1(22m m m ,也就是⎩⎨⎧≤≤-≥110m m ,所以10≤≤m ,故选C. 本题考查余弦函数的值域、二次函数的图像与性质。

军校数学考试题库及答案

军校数学考试题库及答案

军校数学考试题库及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次方程的解?A. x = 2B. x = -2C. x = 1D. x = 3答案:A2. 函数f(x) = 2x + 3的反函数是?A. f^(-1)(x) = (x - 3) / 2B. f^(-1)(x) = (x + 3) / 2C. f^(-1)(x) = 2x - 3D. f^(-1)(x) = x / 2 + 3答案:A3. 圆的面积公式是什么?A. A = πr^2B. A = 2πrC. A = πrD. A = 4πr^2答案:A4. 以下哪个选项是向量(3, -4)和向量(2, 6)的点积?A. 6B. -6C. 12D. -12答案:B5. 以下哪个选项是矩阵的行列式?A. det(A) = 3B. det(A) = -3C. det(A) = 5D. det(A) = -5答案:C6. 以下哪个选项是函数y = sin(x)的导数?A. dy/dx = cos(x)B. dy/dx = sin(x)C. dy/dx = -sin(x)D. dy/dx = -cos(x)答案:A7. 以下哪个选项是等差数列的通项公式?A. a_n = a_1 + (n - 1)dB. a_n = a_1 - (n - 1)dC. a_n = a_1 + ndD. a_n = a_1 - nd答案:A8. 以下哪个选项是复数z = 3 + 4i的模?A. |z| = 5B. |z| = √(3^2 + 4^2)C. |z| = √(3^2 - 4^2)D. |z| = √(4^2 - 3^2)答案:B9. 以下哪个选项是二项式定理的展开式?A. (x + y)^n = Σ C_n^k * x^(n-k) * y^kB. (x + y)^n = Σ C_n^k * x^k * y^(n-k)C. (x + y)^n = Σ C_n^k * x^(n-k) * y^(n-k)D. (x + y)^n = Σ C_n^k * x^(n-k) * y^k答案:B10. 以下哪个选项是曲线y = x^2在点(1, 1)处的切线方程?A. y = 2x - 1B. y = 2x + 1C. y = -2x + 3D. y = -2x - 1答案:A二、填空题(每题4分,共20分)11. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = ______。

军考真题数学【完整版】

军考真题数学【完整版】

2017年军考真题士兵高中数学试题关键词:军考真题,德方军考,大学生士兵考军校,军考数学,军考资料 一、单项选择(每小题4分,共36分).1. 设集合A={y|y=2x ,x ∈R},B={x|x 2﹣1<0},则A ∪B=( )A .(﹣1,1)B .(0,1)C .(﹣1,+∞)D .(0,+∞)2. 已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为(log a 2)+6,则a 的值为( )A .B .C .2D .43. 设a b 、是向量,则||=||a b 是|+|=|-|a b a b 的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.已知421353=2,4,25a b c ==,则( )A .b<a<cB .a<b<cC .b<c<aD . c<a<b 5. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A .B .C .D .6. 设数列{a n }是首项为a 1、公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .C .﹣2D .﹣7. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .B .C .D .18. 已知A ,B ,C 点在球O 的球面上,∠BAC=90°,AB=AC=2.球心O 到平面ABC 的距离为1,则球O 的表面积为( )A .12πB .16πC .36πD .20π9. 已知2017ln f x x x =+()(),0'2018f x =(),则0x =( ) A. 2e B.1 C. ln 2 D. e二、填空题(每小题4分,共32分)10. 设向量,,且,则m=.12. 已知A、B为双曲线E的左右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为.13. 已知函数f(x)=,则f(f())= .14. 在的展开式中x7的项的系数是.15. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是_______。

军校考试数学模拟题三及答案

军校考试数学模拟题三及答案

军校考试模拟题(一)一、(36分)本题共有9小题,每个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个结论是正确的。

把正确结论代号写在题后的括号内,选对得4分,不选、错选或选出的代号超过一个(不论是否都写在括号内),一律得0分。

1.设全集=U {1,2,3,4,5,7},集合=A {1,3,5,7},集合=B {3,5},则( )A .U AB =⋃ B .B CuA U ⋃=)(C .)()(CuB CuA U ⋃=D .)(CuB A U ⋃=2.函数x y 2cos 1+=的图象( )A .关于x 轴对称B .对称关于原点对称C .关于直线2π=x 对称 D .关于直线4π=x3.若a 、b 为空间两条不同的直线,α、β为空间两个不同的平面,则a α⊥的一个充分条件是( )A .//a β且αβ⊥B .a β⊂且αβ⊥C .a b ⊥且//b αD .a β⊥且//αβ4.已知命题p :“若|sin |1α=,则2k παπ=+,k Z ∈”;命题q :“若||||1a b +>,则||1a b +>” .则( )A .p 真q 假 B .p 假q 真 C .“p 或q ”假 D .“p 且q ”真 5.有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是( )A.13B.16C.23D.126.设11, 2OM⎛⎫= ⎪⎝⎭,()0, 1ON =,则满足条件01OP OM ≤⋅≤,01OP ON ≤⋅≤的动点P 的变化范围(图中阴影部分含边界)是( )7.实数满足,sin 1log 3θ+=x 则91-+-x x 的值为( )A .8B .-8C .8或-8D .与θ无关8.在数列{}i a 中,{}20,3,2,1,1,0,1 =-∈i a i ,且820321=++++a a a a ,46)1()1()1(2202221=++++++a a a ,则)20,,2,1( =i a i 中1的个数是( )A .7B .9C .11D .12 9.已知0<a <1,m <n a log <0,则( )A. B.C.D.二、(32分)本题共有8个小题,每个小题4分。

(题目)士兵考军校数学模拟试题

(题目)士兵考军校数学模拟试题

数学一 选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,把该选项的代号写在题后的括号内。

)1设集合{}(){}R x x y y x N R x x y y M ∈+==∈+==,1,,,12,则N M ( )A ∅B {}0C {}1,0D {}12已知不等式()()012422<-+--x a x a 对R x ∈恒成立,则a 的取值范围是 ( ) A a ≤2- B 2-≤a 56< C 2-56<<a D 2-≤a 2< 3若则,8.0log ,6log ,log 273===c b a π ( )A. c b a >> B 。

c a b >> C. b a c >> D 。

a c b >> 4设0>ω,函数2)3sin(++=πωx y 的图像向右平移34π个单位后与原图像重合,则ω的最小值是 ( ) A 32 B 34 C 23 D 3 5设)(x f 为定义在R 上的奇偶数,当x ≥0时,b x x f x ++=22)((b 为常数),则()=-1f( )A 3B 2C —1D —36 ()()3411x x --的展开式2x 的系数是 ( ) A -6 B —3 C 0 D 37 设向量a ,b 满足:,4,3==b a a ·b = 0 ,以a ,b ,b a - 的模为边长构成三角形,则它的边长与半径为1的圆的公共点的个数最多为 ( )A 3B 4C 5D 68 设n m ,是平面α内的两条不同直线,21,l l 是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( )A m ∥β且1l ∥αB m ∥1l 且n ∥2lC m ∥β且n ∥βD m ∥β且n ∥2l二 填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上.)9 函数x x y sin 162+-=的定义域 .10 设n S 为等差数列{}n a 的前n 项和,若,24,363==S S 则9a = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学
一选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有 项是符合题目要求的,把该选项的代号写在题后的括号内。

)
1设集合M=Yyy= X 2
3若 a =Iog 3 二,b =Iog 7 6,c =Iog 20.8,则
A. a b C
B. b a C
C.
TC 4 设门 >0 ,函数 y = Sin (「X •—)
最小值是
A -
B 4
C 3
D 3 3 3 2
5设f(x)为定义在R 上的奇偶数,当X ≥ 0时,f(x^
2x 2x b( b 为常数),则
A 3
B 2
C -1
D -3
I -X fh-V X ^ 的展开式x 2的系数是
C m // :且 n // : m // :且 n // l 2
A ..
B
C 「01
D 2
已知不等式a 2 -4x 2 -a 2x~^. 0对X ∙ R 恒成立,则a 的取值范围是 一 2 ::: a :: 6 D -2 ≤ 5
::2 A -6 设向量 B -3 C 0 D 3 a , b 满足: a=3, b=4, a ∙ b = 0 ,以a , b , a-b 的模为边长构成三角 则它的边长与半径 ) B 4 设m,n 是平面J 内的两条不同直线, 充分而不必要条件是 A m // :且 l 1 // :■
为1的圆的公共点的个数最多为 ∣1,∣2是平面L 内的两条相交直线, 则:'/ L 的一个 m // I 1 且 n // 12 1,x R ;N - ∖χ, y y = x 1,x RR 贝 V M N
Cab D. b C a
4 二 .... . 一 ■ 2的图像向右平移 个单位后与原图像重合, 3
填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上。


9 函数 y =、.;16 —x? ∙ .. Sinx 的定义域 __________
10设S n 为等差数列Ca n ,的前n 项和,若S 3 =3,S 6 =24,则a ?= ___________________
12在120°的两面角内放置一个半径为
则这两个点在球面上的距离为
13 y =sin 2 X 一4COSX ■ 2的值域为 ___________
1
r π Λ 14 设 f (x ) =COS-,则「二 I=。

X
\.2) 2
15已知抛物线y =4x ,过点P 4,0的直线与抛物线相交于
A X 1,y 1 ,
B X 2,y 2两点,则
2 2 y 1 ■ y 2的最小值是 ______________________ 。

三 解答题(本大题共 7小题,共75分。

解答应写出文子说明、证明过程或演算步骤) 16 (本小题共10分)
求函数 y =7 - 4sinxcosx ■ 4cos 2 x-4cos 4 X 的最大值与最小值。

17 (本小题共10分)
求解方程:log 3(3X —1 Jlog 3 3心—1 = 2
11
Iim x 「:: (1 -丄 3 32
5的小球,它与二面角的两个面相切于 A 、B 两点,
3 √
设数列Ia nl的前n项和为S n ,已知31 ",S n 4θn ' 2。

(1)设b n Xni -2务,证明数列「b n ?是等比数列;
(2)求数列a 1的通项公式。

19 (本小题共10分)
设向量a = 4cos , Sin:,b = Sin : ,4cos : ,c = cos: ,-4sin :。

(1)若a与b -2c ,求tan[很亠『「得值;
(2)求 b +c 得最大值。

已知a是实数,函数f (x) = .., X X 一a。

(1)求函数f (X)的单调区间,说明f (X)在定义域上有最小值
(2)设ma为f(x)的定义域上的最小值,写出ma的表达式;
(3)当a= 10时,求出f(x)「xx-10在区间∣-0,31上的最小值。

21 (本小题共10分)
如图所示,已知A I B I C I- ABC是正棱柱,D是AC的中点,AB1_ BC1。

求二面角
D - BC I-C的度数。

B1
2
已知椭圆- y2 =1的左焦点为F ,坐标原点为O。

2
(1)求过点O、F ,并且与椭圆的左准线I相切的圆的方程;
(2)设过点F的直线交椭圆于A、B两点,并且线段AB的中点在直线x 0 上,求直线
AB的方程。

相关文档
最新文档