题目士兵考军校数学模拟试题
题目士兵考军校数学模拟试题

数学一 选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把该选项的代号写在题后的括号内。
)1设集合{}(){}R x x y y x N R x x y y M ∈+==∈+==,1,,,12,则N M ( ) A ∅ B {}0 C {}1,0 D {}12已知不等式()()012422<-+--x a x a 对R x ∈恒成立,则a 的取值范围是 ( ) A a ≤2- B 2-≤a 56< C 2-56<<a D 2-≤a 2< 3若则,8.0log ,6log ,log 273===c b a π ( )A. c b a >>B. c a b >>C. b a c >>D. a c b >>4设0>ω,函数2)3sin(++=πωx y 的图像向右平移34π个单位后与原图像重合,则ω的最小值是 ( ) A 32 B 34 C 23 D 3 5设)(x f 为定义在R 上的奇偶数,当x ≥0时,b x x f x ++=22)((b 为常数),则()=-1f( )A 3B 2C -1D -36 ()()3411x x --的展开式2x 的系数是 ( )A -6B -3C 0D 37 设向量a ,b 满足:,4,3==b a a ·b = 0 ,以a ,b ,b a - 的模为边长构成三角形,则它的边长与半径为1的圆的公共点的个数最多为 ( )A 3B 4C 5D 68 设n m ,是平面α内的两条不同直线,21,l l 是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( )A m ∥β且1l ∥αB m ∥1l 且n ∥2lC m ∥β且n ∥βD m ∥β且n ∥2l二 填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上。
军校数学考试题库及答案

军校数学考试题库及答案1. 题目:求函数f(x) = 2x^3 - 3x^2 + 4x - 5在x=1处的导数值。
答案:首先求出函数f(x)的导数f'(x) = 6x^2 - 6x + 4。
然后将x=1代入f'(x)中,得到f'(1) = 6(1)^2 - 6(1) + 4 = 4。
2. 题目:解方程3x^2 - 5x + 2 = 0。
答案:使用求根公式,首先计算判别式Δ = b^2 - 4ac = (-5)^2 - 4(3)(2) = 25 - 24 = 1。
然后求解x = (-b ± √Δ) / 2a,得到x = (5 ± 1) / 6,即x1 = 1,x2 = 2/3。
3. 题目:计算定积分∫(0到1) (x^2 + 3x) dx。
答案:首先求出被积函数的原函数F(x) = (1/3)x^3 + (3/2)x^2 + C。
然后计算F(1) - F(0) = [(1/3)(1)^3 + (3/2)(1)^2] -[(1/3)(0)^3 + (3/2)(0)^2] = (1/3) + (3/2) = 11/6。
4. 题目:证明函数f(x) = x^2在区间(-∞, +∞)上是偶函数。
答案:根据偶函数的定义,若对于任意x∈(-∞, +∞),都有f(-x) = f(x),则f(x)是偶函数。
对于f(x) = x^2,我们有f(-x) = (-x)^2 = x^2 = f(x),因此f(x)是偶函数。
5. 题目:求极限lim(x→0) (sin(x) / x)。
答案:根据极限的性质,我们知道lim(x→0) (sin(x) / x) = 1。
这是因为当x趋近于0时,sin(x)与x的比值趋近于1。
6. 题目:计算二重积分∬(D) xy dA,其中D是由x^2 + y^2 ≤ 1定义的圆盘。
答案:首先将二重积分转换为极坐标形式,即∬(D) xy dA = ∫(0到2π) ∫(0到1) (r*cos(θ) * r*sin(θ)) * r dr dθ。
军考数学高中士兵考军校综合测试卷及答案

2021年军考-高中学历士兵考军校-数学综合测试卷一.选择题(共9小题)1.设集合2{|}M x x x ==,{|0}N x lgx =,则(M N =)A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]2.函数221(2x y -=的单调递减区间为()A .(-∞,0]B.[0,)+∞C .(-∞D .,)+∞3.设02x π<<,则“2cos x x <”是“cos x x <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知1t >,2log x t =,3log y t =,5log z t =,则()A .235x y z<<B .523z x y<<C .352y z x <<D .325y x z<<5.若关于x 的不等式3410x ax +-对任意[1x ∈-,1]都成立,则实数a 的取值范围是()A .[4-,3]-B .{3}-C .{3}D .[3,4]6.已知数列{}n a 为等差数列,n S 为其前n 项和,312S =,且1a ,2a ,6a 成等比数列,则10(a =)A .33B .28C .4D .4或287.一段1米长的绳子,将其截为3段,问这三段可以组成三角形的概率是()A .14B .12C .18D .138.2251lim 25n n n n →∞--+的值为()A .15-B .52-C .15D .529.已知圆22:(1)1M x y -+=,圆22:(1)1N x y ++=,直线1l ,2l 分别过圆心M ,N ,且1l 与圆M 相交于A ,B 两点,2l 与圆N 相交于C ,D 两点,点P 是椭圆22149x y +=上任意一点,则PA PB PC PD +的最小值为()A .7B .8C .9D .10二.填空题(共8小题)10.49log 43log 2547lg lg ++=.11.已知22sin 3α=,1cos()3αβ+=-,且α,(0,)2πβ∈,则sin β=.12.若函数3()2()f x x ax a R =--∈在(,0)-∞内有且只有一个零点,则()f x 在[1-,2]上的最小值为.13.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.14.73(1)(1)x x -+的展开式中x 的系数是.15.设数列{}n a 的前n 项和n S 满足11(*)n n n n S S S S n N ++-=∈,且11a =,则n a =.16.已知函数()f x 对任意的x R ∈,都有11()()22f x f x +=-,函数(1)f x +是奇函数,当1122x-时,()2f x x =,则方程1()2f x =-在区间[3-,5]内的所有零点之和为.17.已知点O 为坐标原点,圆22:(1)1M x y -+=,圆22:(2)4N x y ++=,A ,B 分别为圆M 和圆N 上的动点,OAB ∆面积的最大值为.参考答案与解析一.选择题(共9小题)1.【解答】解:由2{|}{0M x x x ===,1},{|0}(0N x lgx ==,1],得{0MN =,1}(0⋃,1][0=,1].故选:A .2.【解答】解:令22t x =-,则1()2t y =,即有y 在t R ∈上递减,由于t 在[0x ∈,)+∞上递增,则由复合函数的单调性,可知,函数y 的单调减区间为:[0,)+∞.故选:B .3.【解答】解:由2x x =得0x =或1x =,作出函数cos y x =和2y x =和y x =的图象如图,则由图象可知当2cos x x <时,2B x x π<<,当cos x x <时,2A x x π<<,AB x x <,∴“2cos x x <”是“cos x x <”的充分不必要条件,故选:A .4.【解答】解:1t >,0lgt ∴>.又0235lg lg lg <<<,2202lgt x lg ∴=>,3303lgt y lg =>,505lgtz lg =>,∴5321225z lg x lg =>,可得52z x >.29138x lg y lg =>.可得23x y >.综上可得:325y x z <<.故选:D .5.【解答】解:令3()41f x x ax =+-,[1x ∈-,1].不等式3410x ax +-对任意[1x ∈-,1]都成立,即()0f x 对任意[1x ∈-,1]都成立,取4a =-,则3()441f x x x =--,此时11()022f -=>,排除A .取3a =,则3()431f x x x =+-,此时1()102f =>,排除CD .故选:B .6.【解答】解:设数列{}n a 为公差为d 的等差数列,当0d =时,312S =,即1312a =,即有1014a a ==;当0d ≠时,1a ,2a ,6a 成等比数列,可得2216a a a =,即2111()(5)a d a a d +=+,化为13d a =,311331212S a d a ∴=+==,11a ∴=,3d =,1019328a ∴=+⨯=.综上可得104a =或28.故选:D .7.【解答】解:设三段长分别为x ,y ,1x y --,则总样本空间为010101x y x y <<⎧⎪<<⎨⎪<+<⎩.其面积为12,能构成三角形的事件的空间为111x y x y x x y y y x y x +>--⎧⎪+-->⎨⎪+-->⎩,其面积为18,则这三段可以组成三角形的概率是118142p ==.故选:A.8.【解答】解:222215515limlim 152522n n n n n n n n→∞→∞--==-+-+.9.【解答】解:圆22:(1)1M x y -+=的圆心(1,0)M ,半径为1M r =;圆22:(1)1N x y ++=的圆心为(1,0)N -,半径为1N r =;所以22()()()1PA PB PM MA PM MB PM PM MA MB MA MB PM =++=+++=-,22()()()1PC PD PN NC PN ND PN PN NC ND NC ND PN =++=+++=-,P 为椭圆22149x y +=上的点,∴222221022()89y PA PB PC PD PM PN x y +=+-=+=+;由题意可知,33y -,21088189y ∴+,即PA PB PC PD +的最小值为8.故选:B .二.填空题(共8小题)10.【解答】解:原式71243115310072244log log lg -=++=-++=.故答案为:154.11.【解答】解:22sin 3α=,(0,2πα∈,1cos 3α∴==,α∴,(0,2πβ∈,(0,)αβπ∴+∈,又1cos()3αβ+=-,sin()3αβ∴+=.则11sin sin[()]sin()cos cos()sin ()33βαβααβααβα=+-=+-+=--⨯.故答案为:429.12.【解答】解:3()2()f x x ax a R =--∈,2()3(0)f x x a x ∴'=-<,①当0a 时,2()30f x x a '=->,函数()f x 在(,0)-∞上单调递增,又(0)20f =-<,()f x ∴在(,0)-∞上没有零点;②当0a >时,由2()30f x x a '=->,解得33x <或33x >(舍).()f x ∴在(,)3-∞上单调递增,在(3,0)上单调递减,而(0)20f =-<,要使()f x 在(,0)-∞内有且只有一个零点,3(()()20333f a ∴-=--⨯--=,解得3a =,3()32f x x x =--,2()333(1)(1)f x x x x '=-=+-,[1x ∈-,2],当(1,1)x ∈-时,()0f x '<,()f x 单调递减,当(1,2)x ∈时,()0f x '>,()f x 单调递增.又(1)0f -=,f (1)4=-,f (2)0=,()min f x f ∴=(1)4=-.故答案为:4-.13.【解答】解:根据题意,可得排法共有112654180C C C =种.故答案为:180.14.【解答】解:73(1)(1)x x -+的展开式中x 的系数可这样求得:第一个括号7(1)x -中提供x 时,第二个括号3(1)x +只能提供常数,此时展开式中x 的系数是:1637(1)17C -=;同理可求,第一个括号7(1)x -中提供常数时,第二个括号3(1)x +只能提供x ,此时展开式中x 的系数是7123(1)13C -=-,所以展开式中x 的系数是16371273(1)1(1)14C C -+-=.故答案为:4.15.【解答】解:数列{}n a 的前n 项和n S 满足11(*)n n n n S S S S n N ++-=∈,可得1111n n S S +-=,所以1{}n S 是等差数列,首项为1,公差为1,所以11(1)1nn n S =+-=,1n S n =,1111(1)n a n n n n -=-=--,2n ,(*)n N ∈,所以1,11,2(1)n n a n n n =⎧⎪=-⎨⎪-⎩,故答案为:1,11,2(1)n n n n =⎧⎪-⎨⎪-⎩.16.【解答】解:根据题意,因为函数(1)f x +是奇函数,所以函数(1)f x +的图象关于点(0,0)对称,把函数(1)f x +的图象向右平移1个单位可得函数()f x 的图象,即函数()f x 的图象关于点(1,0))对称,则(2)()f x f x -=-,又因为11()()22f x f x +=-,所以(1)()f x f x -=,从而(2)(1)f x f x -=--,再用x 替换1x -可得(1)()f x f x +=-,所以(2)(1)()f x f x f x +=-+=,即函数()f x 的周期为2,且图象关于直线12x =对称,如图所示,函数()f x 在区间[3-,5]内有8个零点,所有零点之和为12442⨯⨯=.故答案为:4.17.【解答】解:如图以OM 为直径画圆,延长BO 交新圆于E ,AO 交新圆于F 点,连接FE ,NF ,MF ,则MF 与OA 垂直,又MA MO =,F 为AO 的中点,由对称性可得OF OB =,由1sin 2ABO S OA OB AOB ∆=∠,1sin()2EAO S OE OB AOB π∆=-∠1sin 2OE OB AOB =∠,可得2ABO EAO EFO S S S ∆∆∆==,当EFO S ∆最大时,ABO S ∆最大,故转化为在半径为1的圆内接三角形OEF 的面积的最大值,由圆内接三角形A B C '''的面积1sin 2S a b C '''=,2sin a A ''=,2sin b B ''=,3sin sin sin 2sin sin sin 2()3A B C S A B C '+'+''''=,由()sin f x x =,[0x ∈,]π,为凸函数,可得sin sin sin 3sinsin 3332A B C A B C π'+'+''+'+'==,当且仅当3A B C π'''===时,取得等号,可得3sin sin sin 2()23A B C '+'+'=.即三角形OEF 的面积的最大值为.进而得到ABO S ∆最大值为3333242⨯=,故答案为:332。
征兵智力测试题目数学(3篇)

一、选择题1. 下列哪个数不是素数?A. 7B. 14C. 17D. 202. 下列哪个数是3的倍数?A. 8B. 15C. 20D. 253. 一个长方形的长是10cm,宽是5cm,它的面积是多少平方厘米?A. 25B. 50C. 100D. 1504. 一个班级有40名学生,其中有男生25名,女生15名,男生和女生的人数比是多少?A. 5:3B. 3:5C. 2:3D. 3:25. 一个正方形的边长是8cm,它的周长是多少厘米?B. 32C. 40D. 486. 下列哪个数是5的倍数?A. 7B. 15C. 22D. 257. 一个梯形的上底是6cm,下底是12cm,高是8cm,它的面积是多少平方厘米?A. 48B. 64C. 96D. 1288. 下列哪个数是9的倍数?A. 16B. 18C. 21D. 249. 一个圆的半径是3cm,它的面积是多少平方厘米?A. 9B. 18C. 2710. 一个长方体的长、宽、高分别是6cm、4cm、3cm,它的体积是多少立方厘米?A. 72B. 96C. 108D. 120二、填空题1. 2的平方加3的平方等于______。
2. 下列数列中,下一个数是______。
2,4,6,8,______。
3. 下列数列中,下一个数是______。
1,3,5,7,______。
4. 下列数列中,下一个数是______。
2,4,8,16,______。
5. 一个正方形的边长是12cm,它的面积是______平方厘米。
6. 一个圆的半径是5cm,它的面积是______平方厘米。
7. 一个长方体的长、宽、高分别是8cm、6cm、4cm,它的体积是______立方厘米。
8. 下列数列中,下一个数是______。
9,27,81,243,______。
9. 下列数列中,下一个数是______。
1,1,2,3,5,______。
10. 下列数列中,下一个数是______。
4,9,16,25,______。
军校数学考试题库及答案

军校数学考试题库及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次方程的解?A. x = 2B. x = -2C. x = 1D. x = 3答案:A2. 函数f(x) = 2x + 3的反函数是?A. f^(-1)(x) = (x - 3) / 2B. f^(-1)(x) = (x + 3) / 2C. f^(-1)(x) = 2x - 3D. f^(-1)(x) = x / 2 + 3答案:A3. 圆的面积公式是什么?A. A = πr^2B. A = 2πrC. A = πrD. A = 4πr^2答案:A4. 以下哪个选项是向量(3, -4)和向量(2, 6)的点积?A. 6B. -6C. 12D. -12答案:B5. 以下哪个选项是矩阵的行列式?A. det(A) = 3B. det(A) = -3C. det(A) = 5D. det(A) = -5答案:C6. 以下哪个选项是函数y = sin(x)的导数?A. dy/dx = cos(x)B. dy/dx = sin(x)C. dy/dx = -sin(x)D. dy/dx = -cos(x)答案:A7. 以下哪个选项是等差数列的通项公式?A. a_n = a_1 + (n - 1)dB. a_n = a_1 - (n - 1)dC. a_n = a_1 + ndD. a_n = a_1 - nd答案:A8. 以下哪个选项是复数z = 3 + 4i的模?A. |z| = 5B. |z| = √(3^2 + 4^2)C. |z| = √(3^2 - 4^2)D. |z| = √(4^2 - 3^2)答案:B9. 以下哪个选项是二项式定理的展开式?A. (x + y)^n = Σ C_n^k * x^(n-k) * y^kB. (x + y)^n = Σ C_n^k * x^k * y^(n-k)C. (x + y)^n = Σ C_n^k * x^(n-k) * y^(n-k)D. (x + y)^n = Σ C_n^k * x^(n-k) * y^k答案:B10. 以下哪个选项是曲线y = x^2在点(1, 1)处的切线方程?A. y = 2x - 1B. y = 2x + 1C. y = -2x + 3D. y = -2x - 1答案:A二、填空题(每题4分,共20分)11. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = ______。
部队军校考试数学真题

军考真题数学完整版大学生士兵考军校,军考数学,军考资料一、单项选择 ( 每小题 4 分,共 36 分) .1. 设集合 A = { y | y=2 x ,x ∈R } , B = { x | x 2 ﹣ 1 < 0 } ,则A ∪B = ( )A .(﹣ 1 , 1 )B .( 0 , 1 )C .(﹣ 1 ,+∞ ) D.( 0 ,+∞ )2. 已知函数 f ( x ) =a x + log a x ( a > 0 且 a ≠1 ) 在 [ 1 , 2 ] 上的最大值与最小值之和为( log a 2 ) + 6 ,则 a 的值为( )A .B .C . 2D . 43. 设是向量,则是的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4 .已知,则( )A . b<a<cB . a<b<cC . b<c<aD . c<a<b5. 设 F 为抛物线 C : y 2 =3x 的焦点,过 F 且倾斜角为 30° 的直线交 C 于 A , B 两点, O 为坐标原点,则 △ OAB 的面积为( )6. 设数列 { a n} 是首项为 a 1 、公差为 -1 的等差数列, S n 为其前 n 项和,若 S 1 , S 2 , S 4 成等比数列,则 a 1 = ( )7. 袋中共有 15 个除了颜色外完全相同的球,其中有 10 个白球, 5 个红球.从袋中 任取 2 个球,所取的 2 个球中恰有 1 个白球, 1 个红球的概率为( )A .B .C .D . 18. 已知 A , B , C 点在球 O 的球面上, ∠ BAC=90° , 平面 ABC 的距离为 1 ,则球 O 的表面积为( )A . 12πB . 16πC . 36πD . 20πAB=AC=2 .球心 O 到 ,则 = ( )A. B.1 C.C .﹣ 2 A . 2D .﹣B . A . D .C . B . .D 9. 已知,二、 填空题 ( 每 小题 4 分 , 共 32 分)11 . 设 tan α , tan β 是方程 x 2 ﹣ 3x +2=0 的两个根,则 tan ( α + β )的值 为 .12 . 已知 A 、 B 为双曲线 E 的左右顶点,点 M 在 E 上, △ ABM 为等腰三角形, 且顶角为 120° ,则 E 的离心率为 .15 . 我国第一艘航母 “辽宁舰 ” 在某次舰载机起降飞行训练中,有 5 架 “歼 ﹣ 15” 飞机准备着舰,如果甲、 乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么 不同的着舰方法数是 _______ 。
部队士兵考军校数学综合练习测试卷及答案

每题仅 1 人作答,则不同的题目分配方案种数为( )
A.24
B.30
C.36
D.42
第 1页(共 5页)
8.记 Sn 为等差数列{an} 的前 n 项和,已知 a2 0 , a6 8 ,则 S10 (
)
A.66
B.68
C.70
D.80
9.设奇函数
f
(x) 对任意的 x1 ,x2
( ,0)(x1
第 3页(共 5页)
所以 a2 b2 的最小值为 5. 故选: C . 7.【解答】解:根据题意,分 2 步进行分析:
①将 4 道题分为 3 组,有 C42=6 种分组方法,
②将三组题目安排给 3 人作答,有 A33=6 种情况,
则有 6×6=36 种分配方案, 故选:C.
8.【解答】解:等差数列{an} 中, a2 0 , a6 8 ,
)
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
4.已知 a=20.3,b=0.60.3,c=log0.60.3,则( )
A.a>b函数 y x2 x 6 1 的定义域为 (
)
x 1
A.[2 , 3]
B.[2 ,1) (1 , 3]
f (x) f (x) 0 2 f (x) 0 x f (x) 0 ,
x
x
则有 x (2021 , 0) (0 , 2021) ,
故选: D . 10.【解答】解:将函数 f (x) cos x 图象上所有点的横坐标都缩短到原来的 1 ,可
2
得 y cos 2x 的图象,
再向左平移
x2 ) ,有
f (x2 ) f (x1) x2 x1
军考真题数学【完整版】

2017年军考真题士兵高中数学试题关键词:军考真题,德方军考,大学生士兵考军校,军考数学,军考资料 一、单项选择(每小题4分,共36分).1. 设集合A={y|y=2x ,x ∈R},B={x|x 2﹣1<0},则A ∪B=( )A .(﹣1,1)B .(0,1)C .(﹣1,+∞)D .(0,+∞)2. 已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为(log a 2)+6,则a 的值为( )A .B .C .2D .43. 设a b 、是向量,则||=||a b 是|+|=|-|a b a b 的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.已知421353=2,4,25a b c ==,则( )A .b<a<cB .a<b<cC .b<c<aD . c<a<b 5. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A .B .C .D .6. 设数列{a n }是首项为a 1、公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .C .﹣2D .﹣7. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .B .C .D .18. 已知A ,B ,C 点在球O 的球面上,∠BAC=90°,AB=AC=2.球心O 到平面ABC 的距离为1,则球O 的表面积为( )A .12πB .16πC .36πD .20π9. 已知2017ln f x x x =+()(),0'2018f x =(),则0x =( ) A. 2e B.1 C. ln 2 D. e二、填空题(每小题4分,共32分)10. 设向量,,且,则m=.12. 已知A、B为双曲线E的左右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为.13. 已知函数f(x)=,则f(f())= .14. 在的展开式中x7的项的系数是.15. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学
一 选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把该选项的代号写在题后的括号内。
)
1设集合{}(){}R x x y y x N R x x y y M ∈+==∈+==,1,,,12,则N M ( )
A ∅
B {}0
C {}1,0
D {}1
2已知不等式()
()012422<-+--x a x a 对R x ∈恒成立,则a 的取值范围是 ( ) A a ≤2- B 2-≤a 56< C 2-5
6<<a D 2-≤a 2< 3若则,8.0log ,6log ,log 273===c b a π ( )
A. c b a >>
B. c a b >>
C. b a c >>
D. a c b >>
4设0>ω,函数2)3sin(++
=πωx y 的图像向右平移34π个单位后与原图像重合,则ω的最小值是 ( ) A 32 B 34 C 2
3 D 3 5设)(x f 为定义在R 上的奇偶数,当x ≥0时,b x x f x ++=22)((b 为常数),则()=-1f
( )
A 3
B 2
C -1
D -3
6 ()()3
411x x --的展开式2x 的系数是 ( ) A -6 B -3 C 0 D 3
7 设向量a ,b 满足:,4,3==b a a ·b = 0 ,以a ,b ,b a - 的模为边长构成三角形,则它的边长与半径为1的圆的公共点的个数最多为 ( )
A 3
B 4
C 5
D 6
8 设n m ,是平面α内的两条不同直线,21,l l 是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( )
A m ∥β且1l ∥α
B m ∥1l 且n ∥2l
C m ∥β且n ∥β
D m ∥β且n ∥2l
二 填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上。
)
9 函数x x y sin 162
+-=的定义域 。
10 设n S 为等差数列{}n a 的前n 项和,若,24,363==S S 则9a = 。
11 =++++∞→)3
131311(lim 2n x 。
12 在120°的两面角内放置一个半径为5的小球,它与二面角的两个面相切于A 、B 两点,则这两个点在球面上的距离为 。
13 的值域为2cos 4sin 2+-=x x y 。
14 设=⎪⎭
⎫ ⎝⎛'=21
cos )(πf x x f ,则 。
15 已知抛物线x y 42=,过点()0,4P 的直线与抛物线相交于()()2211,,,y x B y x A 两点,则2221y y +的
最小值是 。
三 解答题(本大题共7小题,共75分。
解答应写出文子说明、证明过程或演算步骤)
16 (本小题共10分)
求函数x x x x y 42cos 4cos 4cos sin 47-+-=的最大值与最小值。
17 (本小题共10分)
求解方程:()2313
log 13log 133=⎪⎭⎫ ⎝⎛---x x 18 (本小题共10分)
设数列{}n a 的前n 项和为n S ,已知24,111+==+n n a S a 。
(1) 设n n n a a b 21-=+,证明数列{}n b 是等比数列;
(2) 求数列{}n a 的通项公式。
19 (本小题共10分)
设向量()()()ββββααsin 4,cos ,cos 4,sin ,sin ,cos 4-===c b a 。
(1) 若a 与c b 2-,求()βα+tan 得值;
(2) 求c b +得最大值。
20 (本小题共10分)
已知a 是实数,函数()a x x x f -=)(。
(1) 求函数)(x f 的单调区间,说明)(x f 在定义域上有最小值
(2) 设()a m 为)(x f 的定义域上的最小值,写出()a m 的表达式;
(3) 当a = 10 时,求出()10)(-=
x x x f 在区间[]3,0上的最小值。
21 (本小题共10分)
如图所示,已知ABC C B A -111是正棱柱,AC D 是的中点,11BC AB ⊥。
求二面角C
BC D --1的度数。
22 (本小题共15分) 已知椭圆12
22
=+y x 的左焦点为F ,坐标原点为O 。
(1) 求过点F O 、,并且与椭圆的左准线l 相切的圆的方程;
(2) 设过点F 的直线交椭圆于B A 、两点,并且线段AB 的中点在直线0=+y x 上,求直线
AB 的方程。