全等三角形与角平分线经典题型资料讲解

合集下载

全等三角形中角平分线问题的处理方法

全等三角形中角平分线问题的处理方法

全等三角形中角平分线问题的处理方法【全等三角形中角平分线问题的处理方法】1. 引言全等三角形中角平分线问题是几何学中的一个经典问题,旨在探讨如何将一个三角形的角平分线构造出来并求解相关问题。

这个问题在几何学中具有重要的应用价值和理论意义。

本文将从简单到复杂、由浅入深地介绍全等三角形中角平分线的处理方法,以帮助读者更全面、深刻和灵活地理解这一问题。

2. 基本定义与性质我们来回顾一下全等三角形的基本定义与性质。

全等三角形是指具有完全相同的大小和形状的三角形。

根据全等三角形的定义,对于两个全等三角形来说,它们的对应边长相等,对应角度相等。

这一性质是我们处理全等三角形中角平分线问题的基础。

3. 三角形角平分线的构造下面,我们开始介绍全等三角形中角平分线的构造方法。

考虑一个任意三角形ABC,我们的目标是构造出三角形ABC的角B的平分线。

(1)方法一:直接角平分线法我们可以借助直尺和圆规,以及平行线的性质来构造角平分线。

具体的步骤如下:a. 以顶点B为圆心,做一个与边AC相交于点D的圆;b. 以点D为圆心,与圆交于点E,连接BE;c. 连接线段BC和BA;根据圆周角的性质,角EBD是角ABC的一条平分线。

(2)方法二:割取角平分线法除了直接角平分线法之外,我们还可以使用割取角平分线的方法构造角平分线。

具体步骤如下:a. 过顶点B做一条与边AC相交于点F的直线;b. 以BF为半径,顶点B为圆心画一个圆;c. 连接圆与边BC、BA的交点分别为点D和点E,连接线段ED;根据圆内接四边形对角相等的性质,角BED是角ABC的一条平分线。

4. 角平分线的性质与应用了解了全等三角形中角平分线的构造方法之后,我们来探讨一些与角平分线相关的性质与应用。

(1)性质一:角平分线相交于三角形内心不仅在全等三角形中,对于任意三角形来说,角平分线的三条线段的交点恰好是三角形的内心。

这个性质是由角平分线与三角形内接圆的性质相关联的。

(2)性质二:角平分线的长度关系若一个角的平分线将另外两个角的平分线相交于点P,那么点P到三角形各边的距离满足以下关系:AP:BP:CP=AB:BC:CA。

(完整版)利用角平分线构造全等三角形

(完整版)利用角平分线构造全等三角形

善于构造 活用性质安徽 张雷几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题.1.显“距离”, 用性质很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段)例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点.已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点.【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,•故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证.【证明】过P 作PE ⊥AC 于E .∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上,D C A EHI F G2DCBA35EF14即BP是∠MBN的平分线.2.构距离,造全等有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题.例3.△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB•上确定一点E使△BDE的周长等于AB的长.请说明理由.解:过D作DE⊥AB,交AB于E点,则E点即可满足要求.因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB.∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE.由“HL”可证Rt△ACD≌Rt△AED.∴AC=AE.∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB.例4.如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB.求证:AD=CD+AB.证明:过M作ME⊥AD,交AD于E.∵DM平分∠ADC,∠C=90°.MC=ME.根据“HL”可以证得Rt△MCD≌Rt△MED,∴CD=ED.同理可得AB=AE.∴CD+AB=ED+AE=AD.即AD=CD+AB.3.巧翻折, 造全等以角平分线为对称轴,构造两三角形全等.即在角两边截取相等的线段,构造全等三角形.例5.如图,已知△ABC中∠BAC=90°,AB=AC,CD•垂直于∠ABC•的平分线BD 于D,BD交AC于E,求证:BE=2CD.分析:要证BE=2CD,想到要构造等于2CD的线段,结合角平分线,•利用翻折的方法把△CBD沿BD翻折,使BC重叠到BA所在的直线上,即构造全等三角形(△BCD ≌△BFD),然后证明BE和CF(2CD)所在的三角形全等.证明:延长BA、CD交于点F∵BD ⊥CF (已知) ∴∠BDC=∠BDF=90° ∵BD 平分∠ABC (已知) ∴∠1=∠2 在△BCD 和△BFD 中21()()()BD BD BDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩已知公共边已证∴△BCD ≌△BFD (ASA ) ∴CD=FD , 即CF=2CD∵∠5=∠4=90°,∠BDF=90° ∴∠3+∠F=90°,∠1+∠F=90°。

人版八年级数学[上册]第十二章《全等三角形的综合、角平分线》讲义(有答案解析)

人版八年级数学[上册]第十二章《全等三角形的综合、角平分线》讲义(有答案解析)

第7讲 全等三角形的综合、角平分线⑴平移全等型⑵ 对称全等型⑶ 旋转全等型⑴、角平分线上的点到角的两边的距离相等; ⑵、到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB ,这种对称的图形应用得也较为普遍,ABOPPOBAABOP角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.考点1、三角形全等综合1、如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L 上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,ED=AB这时,测ED的长就得AB得长,判定△ACB≌△ECD的理由是()A. SASB. ASAC. SSS D .AAS2、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( B )A.PO B.PQ C.MO D.MQ(1)(2)3、如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚是35cm,点B与点O的垂直距离AB长是20cm,在点O处作一直线平行于地面,在直线上截取OC=35cm,过C作OC的垂线,在垂线上截取CD=20cm,连接OD,然后,沿着D0的方向打孔,结果钻头正好从点B处打出.这是什么道理?4、1805年,法军在拿破仑的率领下与德军在莱茵河畔激战.德军在莱茵河北岸Q处,如图所示,因不知河宽,法军大炮很难瞄准敌营.聪明的拿破仑站在南岸的点O处,调整好自己的帽子,使视线恰好擦着帽舌边缘看到对面德国军营Q 处,然后他一步一步后退,一直退到自己的视线恰好落在他刚刚站立的点0处,让士兵丈量他所站立位置B与0点的距离,并下令按照这个距离炮轰德军.试问:法军能命中目标吗?请说明理由.用帽舌边缘视线法还可以怎样测量,也能测出河岸两边的距离吗?5、某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上三位同学所设计的方案,可行的有______;(2)请你选择一可行的方案,说说它可行的理由.1、已知: 如图,AB=AE,BC=ED, ∠B= ∠E,AF ⊥CD,F 为垂足, 求证:CF=DF.2、已知:如图,AB=CD,BC=DA,AE=CF.求证:BF=DE.3、如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?1、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC. 求证:(1)EC=BF;(2)EC⊥BF.2、已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。

全等三角形+第7讲+角平分线的处理方法+专项训练++2024-2025学年人教版数学八年级上册

全等三角形+第7讲+角平分线的处理方法+专项训练++2024-2025学年人教版数学八年级上册

第7讲角平分线的处理方法板块一角平分线的性质条件:OC 平分∠AOB. PD⊥OA 于点D,PE⊥OB 于点E.结论:PD=PE.典例精讲题型一知两垂【例1】如图,AD 是△ABC 的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,BD=CD.求证:BE=CF.题型二作一垂【例2】如图,在四边形 ABCD 中,∠B=∠C=90°,E 为 BC 上一点,且 AE 平分∠BAD,D E 平分∠ADC.求证:BE=CE.题型三作两垂【例3】如图,在四边形 ABCD 中,∠ABC=90°,BD 平分∠ABC,AD=CD.求证:AD⊥CD.实战演练如图,在四边形ABCD中,∠BAC=∠BDC=36°,∠ADB=72°.求证:AB=AC.类型判定旁心图隐角平分线图形条件PD⊥OA,PE⊥OB,PD=PE.OP 平分∠AOB,AP 平分∠BAD,PD⊥OA,PE⊥OB,PF⊥AB.OP 平分∠AOB,∠OAP+∠BAP=180°.结论OC 平分∠AOB.PB平分∠ABE.①PA 平分∠BAD;②PB平分∠ABE.典例精讲题型一直接用判定【例1】如图,在△ABC 中,AC=BC,E 为△ABC 外一点,且∠CAE=∠CBE.求证:CE 平分△ABE 的外角.题型二旁心【例2】如图,在△ABC中,AP 平分∠BAC,BP 平分∠CBD.(1)求证:CP 平分∠BCE;(2)设∠BAC=α,则∠BPC= (用含α的式子表示).实战演练题型三隐角平分线如图,在四边形 AEDC 中,∠EAC+∠EAD=180°,且 CE 平分∠ACD.若∠EAD=α,求∠DEC 的度数.板块三角平分线与面积法类型1 内心向三边作垂类型2 面积比与边长比条件:I 是△ABC 三条角平分线的交点.方法:过点 I 分别向三边作垂线段.结论:①ID=IE=IF;②S△IBC+S△IAC+S△IAB=S△ABC;③ID=2S△ABC÷(AB+BC+AC).条件:AD 是△ABC的角平分线.方法:过点 D 分别作DE⊥AB,DF⊥AC.结论:①DE=DF;②S△ABD:S△ACD=AB:AC=BD:CD.典例精讲题型一面积法求线段长【例1】如图,在△ABC 中,∠ABC=90°,I 为△ABC 各内角平分线的交点,过点I 作AC 的垂线,垂足为H.若BC=3,AB=4,AC=5,求IH 的长.题型二面积法证线段比【例2】如图,AD 是△ABC 的角平分线.求证:BDCD =ABAC.题型三构全等转化面积【例3】如图,△ABC的角平分线BD,CE 交于点P,∠A=60°,△ABC的面积为 16,四边形AEPD 的面积为5,求△BPC 的面积.实战演练1.如图,在△ABC 中,∠C=90°,O是∠CAB,∠ABC 平分线的交点,且E BC=8cm,AC=6cm6 cm,AB=10cm,求S△AOB.2.如图,在△ABC中,.S ABC=21,∠BAC的角平分线AD 交 BC 于点D,E 为AD 的中点.连接BE,的值.F 为BE 上一点,且 BF=2EF.若S△DEF=2,求ABAC3.如图,在△ABC中,AB=3,AC=4,BC=5,∠BAC=90°,AD平分∠BAC.BAC.求 DC 的长.4.如图,在△ABC中,∠BAC=90°,AB=AC,BD 是△ABC的角平分线,若BD=8,求△BDC1的面积.类型梯形图互补图内心图图形典 例 精 讲题型一 直角梯形遇角平分线【例】如图,在四边形ABCD 中,∠A=∠B=90°,E 为AB 上一点,ED 平分∠ADC,EC 平分∠BCD.(1)求证:DE⊥CE; (2)求证:AE=BE; (3)求证:AD+BC=CD;(4)若AB=12,CD=13,求 S△CDE.实 战 演 练题型二 对角互补遇角平分线1.如图,在四边形ABCD 中,∠ABC+∠D=180°,AC 平分∠BAD,求证:CB=CD.D题型三 内心作垂构对称型全等2.如图,在△ABC 中,AB>AC,AK,BK,CK 分别平分∠BAC,∠ABC,∠ACB,KD⊥BC 于点D.求证:AB-AC=BD-CD.。

角平分线知识点+经典例题

角平分线知识点+经典例题

第四讲 角平分线【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD 平分∠ADB ,点P 是CD 上一点,且PE ⊥AD 于点E ,PF ⊥BD于点F ,则PE =PF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE ⊥AD 于点E ,PF ⊥BD 于点F ,PE =PF ,则PD 平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于E.(2)分别以D 、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内部交于点C.(3)画射线OC.射线OC 即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC三边所在直线距离相等.【典型例题】类型一、角的平分线的性质例1.如图,已知BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,PN ⊥CD 于N ,求证:PM=PN .【思路点拨】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【答案与解析】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【总结升华】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.例2、如图在△ABC中∠C=90°,AC=BC,AD平分∠CAB,DE⊥AB于E,若AB=6cm,求△DEB的周长.【思路点拨】利用角平分线的性质求得CD=DE,然后利用线段中的等长来计算△DEB的周长.【答案与解析】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∴△CAD≌△EAD(HL)∴AC=AE,∵AC=BC,∴∠B=45°,∴BE=DE,∴△DEB的周长=BE+DE+BD= BE+CD+BD = BE+BC =BE+AC=BE+AE =AB=6cm.【总结升华】将△DEB的周长用相等的线段代换是关键.【变式】已知:如图,AD是△ABC的角平分线,且:3:2AB AC=,则△ABD与△ACD的面积之比为()A.3:2 B.3:2C.2:3 D.2:3【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵:3:2AB AC=,则△ABD与△ACD的面积之比为3:2.例3、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC 上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.【思路点拨】利用角平分线的性质证明PD=PE,再根据“HL”定理证明△OPD≌△OPE,从而得到∠OPD =∠OPE,∠DPF=∠EPF.再证明△DPF≌△EPF,得到结论.【答案与解析】解:DF=EF.理由如下:∵OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,∴PD=PE,由HL 定理易证△OPD ≌△OPE , ∴∠OPD =∠OPE ,∴∠DPF =∠EPF .在△DPF 与△EPF 中,PD PE DPF EPF PF PF =⎧⎪∠=∠⎨⎪=⎩,∴△DPF ≌△EPF ,∴DF =EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定例4、已知,如图,CE ⊥AB,BD ⊥AC,∠B =∠C ,BF =CF.求证:AF 为∠BAC 的平分线.【答案与解析】证明: ∵CE ⊥AB,BD ⊥AC (已知)∴∠CDF =∠BEF =90°∵∠DFC =∠BFE(对顶角相等)∵ BF =CF(已知)∴△DFC ≌△EFB(AAS)∴DF =EF(全等三角形对应边相等)∵FE ⊥AB ,FD ⊥AC (已知)∴点F 在∠BAC 的平分线上(到一个角的两边距离相等的点在这个角的平分线上)即AF 为∠BAC 的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”的条件.如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性.【变式】已知:如图,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 、G 分别是OA 、OB 上的点,且PF=PG ,DF=EG .求证:OC 是∠AOB 的平分线.【答案】证明:在Rt △PFD 和Rt △PGE 中,,∴Rt △PFD ≌Rt △PGE (HL ),∴PD=PE ,∵P 是OC 上一点,PD ⊥OA ,PE ⊥OB ,∴OC 是∠AOB 的平分线.。

全等三角形题型归类及解析

全等三角形题型归类及解析

全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。

另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。

1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。

2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。

(1) 求证:∠ABE=∠C ;(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。

.AB C DE PD A CBM N5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )21PFMDBA CE6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。

8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .二、中点型由中点应产生以下联想:ED C BA1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;(2)求证:12CE BF =D AE FCHGB3、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关 系,并证明你的结论。

【微专题】2023学年八年级数学上册常考点提分精练(人教版) 角平分线与全等三角形结合(解析版)

【微专题】2023学年八年级数学上册常考点提分精练(人教版) 角平分线与全等三角形结合(解析版)

角平分线与全等三角形结合1.如图 A B 两点分别在射线OM ON 上 点C 在MON ∠的内部且CA CB = CD OM ⊥ CE ON ⊥ 垂足分别为D E 且AD BE =.(1)求证:OC 平分MON ∠;(2)如果10AO = 4BO = 求OD 的长.【答案】(1)见解析(2)7【解析】【分析】(1)证明Rt △ACD ≌Rt △BCE (HL ) 得CD =CE .再由角平分线的判定即可得出结论;OC 平分∠MON ;(2)证Rt △ODC ≌Rt △OEC (HL ) 得OD =OE 设BE =AD =x .则OE =OD =4+x 再由AO =OD +AD =4+2x =10 得x =3.即可得出答案.(1)证明:∵CD OM ⊥ CE ON ⊥∴90CDA CEB ∠=∠=︒.在Rt ACD △与Rt BCE 中 CA CB AD BE =⎧⎨=⎩∴Rt ACD △≌Rt BCE (HL )∴CD CE =.又∵CD OM ⊥ CE ON ⊥∴OC 平分MON ∠.(2)解:在Rt ODC △与Rt OEC △中 CD CE OC OC =⎧⎨=⎩∴Rt ODC △≌Rt OEC △(HL )∴OD OE =设BE AD x ==.∵4BO = ∴4OE OD x ==+∵AD BE x == ∴4210AO OD AD x =+=+=∴3x = ∴437OD =+=.【点睛】本题考查了全等三角形的判定与性质、角平分线的判定等知识 证明Rt △ACD ≌Rt △BCE 和Rt △ODC ≌Rt △OEC 是解题的关键.2.已知∠MAN AC 平分∠MAN D 为AM 上一点 B 为AN 上一点.(1)如图①所示 若∠MAN =120° ∠ABC =∠ADC =90° 求证:AB +AD =AC ;(2)如图②所示 若∠MAN =120° ∠ABC +∠ADC =180° 则(1)中的结论是否仍然成立?请说明理由.【答案】(1)见解析;(2)成立 见解析【解析】【分析】(1)根据AC 平分∠MAN 可得CB =CD ∠CAB =60° 即可证明RT △ACD ≌RT △ACB 可得AD =AB 再根据AC =2AB 即可解题;(2)根据AC 平分∠MAN 可得CB =CD ∠CAB =60° 易证∠FCD =∠BCE 即可证明△CDF ≌△CBE 可得BE =DF 再根据(1)中证明AC =AE +AF 即可解题.【详解】解:(1)证明:∵AC 平分∠MAN∴CB =CD ∠CAB =60°在Rt △ACD 和Rt △AC B 中AC AC CD CB =⎧⎨=⎩∴Rt △ACD ≌Rt △ACB (HL )∴AD =AB∵∠ACB =90°﹣∠CAB =30°∴AC =2AB∴AD +AB =AC ;(2)成立 过C 作CE ⊥AN 于E CF ⊥AM 于F∵AC 平分∠MAN∴CB =CD ∠CAB =60°∵∠ABC +∠ADC =180°∴∠DCB =60°∵∠FCE =180°﹣∠BAD =60°∴∠FCE =∠BCD∵∠FCD +∠DCE =∠FCE ∠BCE +∠DCE =∠BCD∴∠FCD =∠BCE在△CDF 和△CBE 中90FCD BCE CF CE CFD CEB ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△CDF ≌△CBE (ASA )∴BE =DF∴AD +AB =AD +AE +BE =AD +DF +AE =AE +AF∵AC =AE +AF∴AD +AB =A C .【点睛】本题考查了全等三角形的判定和性质 考查了全等三角形对应边相等的性质 本题中求证△CDF ≌△CBE 是解题的关键.3.如图:在直角△AB C 中 ∠ABC =90° 点D 在AB 边上 连接C D .(1)如图1 若CD 是∠ACB 的角平分线 且AD =CD 探究BC 与AC 的数量关系 说明理由; (2)如图2 若BC =BD BF ⊥AC 于点F 交CD 于点G 点E 在AB 的延长线上且AD =BE 连接GE 求证:BG +EG =A C .【答案】(1)12BC AC =理由见解析;(2)见解析 【解析】【分析】 (1)如图1 过点D 作DM AC ⊥于点M 证明()Rt CDM Rt CDB HL ≌ 由全等三角形的性质得出CM CB = 则可得出结论;(2)作DK AB ⊥交BF 的延长线于点K 证明()Rt CAB Rt BKD AAS ≌ 得出BK AC = DK AB = 证明()DKG DEG SAS ∆≅∆ 得出KG EG = 则结论可得出.【详解】解:(1)12BC AC =. 理由如下:如图1 过点D 作DM AC ⊥于点MAD CD =M ∴为AC 的中点12CM AM AC ∴== CD 平分ACB ∠DM DB ∴=在Rt CDM 和Rt CDB 中CD CD DM DB=⎧⎨=⎩ ()Rt CDM Rt CDB HL ∴≌CM CB ∴=12BC AC ∴=; (2)证明:如图2 作DK AB ⊥交BF 的延长线于点KBF AC ⊥90AFK ∴∠=︒A K ∴∠=∠又90BDK ABC ∠=∠=︒ BC BD =()Rt CAB Rt BKD AAS ∴≌BK AC ∴= DK AB =AD BE =AD BD BE BD ∴+=+即AB DE =DK DE ∴=又DB BC = 90ABC ∠=︒45CDB ∴∠=︒45KDG EDG ∴∠=∠=︒又DG DG =()DKG DEG SAS ∴∆≅∆KG EG ∴=AC BK KG BG EG BG ∴==+=+.【点睛】本题考查了全等三角形的判定与性质 角平分线的性质 等腰三角形的性质 等腰直角三角形的性质等知识 解题的关键是熟练掌握全等三角形的判定与性质.4.观察、猜想、探究:在△AB C 中 ∠ACB =2∠B .(1)如图① 当∠C =90° AD 为∠BAC 的角平分线时 过D 作AB 的垂线DE,垂足为E 可以发现AB 、AC 、CD 存在的数量关系是 ;(2)如图② 当∠C ≠90° AD 为∠BAC 的角平分线时 线段AB 、AC 、CD 是否还存(1)中的数量关系?如果存在 请给出证明.如果不存在 请说明理由;(3)如图③ 当AD 为△ABC 的外角平分线时 线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想 并对你的猜想给予证明.【答案】(1)AB =AC +CD ;(2)存在 理由见解析;(3)AB =CD ﹣AC 理由见解析【解析】【分析】(1)根据∠ACB =90° ∠ACB =2∠B 得到∠B =45° CD ⊥AC 由线段垂直平分线的性质可得DE =CD 再证明∠B =∠EDB 得到BE =ED =CD 最后证明Rt △AED ≌Rt △ACD 得到AE =AC 即可得到结论;(2)在AB 上截取AG =AC 证明△ADG ≌△ADC 得到CD =DG ∠AGD =∠ACB 再由∠ACB =2∠B 得到∠B =∠GDB 则BG =DG =DC 即可得到AB =BG +AG =CD +AC ;(3)在AF 上截取AG =AC 由AD 为∠F AC 的平分线 得到∠GAD =∠CAD 可证△ADG ≌△ACD 得到CD =GD ∠AGD =∠ACD 即可推出∠ACB =∠FGD 再由∠ACB =2∠B 推出∠B =∠GDB 得到BG =DG =DC 则AB =BG ﹣AG =CD ﹣A C .【详解】解:(1)AB =AC +CD 理由如下:∵∠ACB =90° ∠ACB =2∠B∴∠B =45° CD ⊥AC∵DE ⊥AB AD 平分∠BAC∴DE =CD ∠DEB =∠DEA =90°∴∠EDB =180°-∠B -∠DEB =45°∴∠B =∠EDB∴BE =ED =CD在Rt △AED 和Rt △AD C 中DE DC AD AD =⎧⎨=⎩∴Rt △AED ≌Rt △ACD (HL )∴AE =AC∴AB +AE +BE =AC +CD ;(2)还存在AB =CD +AC 理由如下:在AB 上截取AG =AC 如图2所示∵AD 为∠BAC 的平分线∴∠GAD =∠CAD∵在△ADG 和△AD C 中AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS )∴CD =DG ∠AGD =∠ACB∵∠ACB =2∠B∴∠AGD =2∠B又∵∠AGD =∠B +∠GDB∴∠B =∠GDB∴BG =DG =DC则AB =BG +AG =CD +AC ;(3)AB =CD ﹣AC 理由如下:在AF 上截取AG =AC 如图3所示∵AD 为∠F AC 的平分线∴∠GAD =∠CAD∵在△ADG 和△AC D 中AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ACD (SAS )∴CD =GD ∠AGD =∠ACD∵∠FGD =180°-∠AGD ∠ACB =180°-∠ACD∴∠ACB =∠FGD∵∠ACB =2∠B∴∠FGD =2∠B又∵∠FGD =∠B +∠GDB∴∠B =∠GDB∴BG =DG =DC则AB =BG ﹣AG =CD ﹣A C .【点睛】本题主要考查了全等三角形的性质与判定 角平分线的性质与定义 三角形外角的性质 三角形内角和定理 解题的关键在于能够熟练掌握全等三角形的性质与判定条件.5.已知:如图1 在ABC 中 AD 是BAC ∠的平分线.E 是线段AD 上一点(点E 不与点A 点D 重合) 满足2∠=∠ABE ACE .(1)如图2 若18∠=︒ACE 且EA EC = 则DEC ∠=________︒ AEB ∠=_______︒. (2)求证:AB BE AC +=.(3)如图3 若BD BE = 请直接写出ABE ∠和BAC ∠的数量关系.【答案】(1)36 126;(2)见解析;(3)3180∠+∠=︒ABE BAC【解析】【分析】(1)18∠=︒ACE 且EA EC = 再结合三角形的外角定理即可求DEC ∠ 18∠=︒ACE 且EA EC = AD 是BAC ∠的平分线 2∠=∠ABE ACE 再结合三角形内角和定理即可求解AEB ∠; (2)在AC 上截取AF AB = 连接FE 可证()≌AEF AEB SAS 故EF EB = AFE ABE 从而可得FEC FCE ∠=∠ 所以EF FC =进而可证得:=+=+AC AF FC AB BE (3)由BD BE = 可得BED BDE ∠=∠ BED ABE BAE ∠=∠+∠ ∠=∠+∠BDE DAC ACD 又AD 是BAC ∠的平分线 可得ABE ACD ∠=∠ 故CE 是ACD ∠的平分线 所以BE 是ABD ∠的平分线 故∠=∠=∠ABE ACD DBE 又180ACB ABC BAC ∠+∠+∠=︒ 所以ABE ∠和BAC ∠的数量关系即可求解.【详解】(1)∵18∠=︒ACE 且EA EC =∴∠EAC =∠ACE =18°∴∠DEC =∠EAC +∠ACE =36°又∵AD 是BAC ∠的平分线∴∠BAD =∠CAD =18°∵2∠=∠ABE ACE∴∠ABE =36°∴1801836126∠=︒-︒-︒=︒AEB ;故答案为:36 126(2)在AC 上截取AF AB = 连接FE又∵AE =AE EAF EAB ∠=∠∴()≌AEF AEB SAS∴EF EB = AFE ABE∵∠AFE =∠ACE +∠FEC ∠ABE =2∠ACE∴FEC FCE ∠=∠∴EF FC =∴=+=+AC AF FC AB BE ;(3)∵BD BE =∴BED BDE ∠=∠∵BED ABE BAE ∠=∠+∠ ∠=∠+∠BDE DAC ACD∠CAD =∠BAE∴∠ACD =∠ABE∵∠ABE =2∠ACE∴∠ACD =2∠ACE∴CE 平分∠ACB∴点E 到CA 、CB 的距离相等又∵AD 是BAC ∠的平分线∴点E 到AC 、AB 的距离相等∴点E 到BA 、BC 的距离相等∴BE 是ABD ∠的平分线∴∠ABE =∠CBE∴∠=∠=∠ABE ACD DBE又∵180ACB ABC BAC ∠+∠+∠=︒∴2180∠+∠+∠=︒ABE ABE BAC即3180∠+∠=︒ABE BAC .【点睛】本题考查了三角形外角的性质、三角形的内角和定理、角平分线的性质、三角形全等的判定和性质 解题的关键是熟练掌握各知识点 准确作出辅助线 熟练运用数形结合的思想.6.已知:如图 D 为△ABC 外角∠ACP 平分线上一点 且DA =DB DM ⊥BP 于点M .(1)若AC =6 DM =2 求△ACD 的面积;(2)求证:AC =BM +CM .【答案】(1)6;(2)见解析【解析】【分析】(1)如图作DN ⊥AC 于N .根据角平分线的性质定理可得DM =DN =2 由此即可解决问题; (2)由Rt △CDM ≌Rt △CDN 推出CN =CM 由Rt △ADN ≌Rt △BDM 推出AN =BM 由此即可解决问题.【详解】(1)解:如图作DN ⊥AC 于N .∵DC 平分∠ACP DM ⊥CP DN ⊥CA∴DM =DN =2∴S △ADC =12•AC •DN =12×6×2=6.(2)∵CD =CD DM =DN∴Rt △CDM ≌Rt △CDN∴CN =CM∵AD =BD DN =DM∴Rt △ADN ≌Rt △BDM∴AN =BM∴AC =AN +CN =BM +CM .【点睛】本题考查全等三角形的判定和性质、角平分线的性质定理等知识 解题的关键是学会添加常用辅助线 构造全等三角形解决问题 属于中考常考题型.7.如图 在∠EAF 的平分线上取点B 作BC ⊥AF 于点C 在直线AC 上取一动点P .在直线AE 上取点Q 使得BQ=BP .(1)如图1 当点P 在点线段AC 上时 ∠BQA +∠BP A = °;(2)如图2 当点P 在CA 延长线上时 探究AQ 、AP 、AC 三条线段之间的数量关系 说明理由; (3)在满足(1)的结论条件下 当点P 运动到在射线AC 上时 直接写出AQ 、AP 、PC 三条线段之间的数量关系为: .【答案】(1)180;(2)2AQ AP AC -=;理由见解析;(3)2AQ AP PC -=或2AP AQ PC -=.【解析】【分析】(1)作BM ⊥AE 于点M 根据角平分线的性质得到BM =BC 证明Rt BMQ ∆Rt ()BPC HL ∆≌,继而证明BQA BPC ∠=∠解题即可;(2)作BM AE ⊥于M 先证明Rt Rt ABM ABC ∆∆≌(HL ) 继而得到ABM ABC ∠=∠ AM AC = BM BC = 再证明Rt Rt BMQ BCP ∆∆≌(HL ) 从而得到PC QM = 据此解题即可;(3)分两种情况讨论 当点P 在线段AC 上时 或当点P 在线段AC 的延长线上时 分别画出适合的图 再由QBM PBC ∆∆≌(AAS )可得QBM PBC ∠=∠ QM PC = BM BC = 再由Rt Rt ABM ABC ∆∆≌(HL )可得AM AC = 利用线段和差计算即可.【详解】(1)证明:过点B 作BM AE ⊥于M∵BA 平分EAF ∠ BC AF ⊥∴BM BC =在Rt BMQ ∆和Rt BPC ∆中BQ BP BM BC =⎧⎨=⎩∴Rt Rt BMQ BPC ∆∆≌(HL )∴BQA BPC ∠=∠又∵180BPC BPA ∠+∠=︒∴180BQA BPA ∠+∠=︒故答案为180;(2)解:2AQ AP AC -=理由如下:如图2 作BM AE ⊥于M∵AB 平分∠EAF BC AF ⊥∴BM =BC 90BMA BCA ∠=∠=︒在Rt ABM ∆和Rt ABC ∆中BM BC AB AB=⎧⎨=⎩ ∴Rt Rt ABM ABC ∆∆≌(HL )∴ABM ABC ∠=∠ AM AC =在Rt BMQ ∆和Rt BCP ∆中BQ BP BM BC =⎧⎨=⎩∴Rt Rt BMQ BCP ∆∆≌(HL )∴PC QM =∴()()2AQ AP AM QM PC AC AM AC AC -=+--=+=(3)当点P 在线段AC 上时 如图 2AQ AP PC -=理由如下:作BM AE ⊥于M∵BC ⊥AF∴90BMA BCA ∠=∠=︒∵180BQA BPA ∠+∠=︒ ∠BPC +∠BP A =180°∴∠BPC =∠BQM在QBM ∆和PBC ∆中BMQ BCP BQM BPC QB PB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴QBM PBC ∆∆≌(AAS )∴QBM PBC ∠=∠ QM PC = BM BC =在Rt ABM ∆和Rt ABC ∆中BM BC AB AB =⎧⎨=⎩∴Rt Rt ABM ABC ∆∆≌(HL )∴AM AC =∴()2AQ AP AM QM AC PC QM PC PC -=+--=+=当点P 在线段AC 的延长线上时 如图 2AP AQ PC -=理由如下:作BM AE ⊥于M∵BC ⊥AF∴90BMA BCA ∠=∠=︒∵180BQA BPA ∠+∠=︒ ∠BQM +∠BQA =180°∴∠BPC =∠BQM在QBM ∆和PBC ∆中BMQ BCPBQM BPCQB PB∠=∠⎧⎪∠=∠⎨⎪=⎩∴QBM PBC ∆∆≌(AAS )∴QBM PBC ∠=∠ QM PC = BM BC =在Rt ABM ∆和Rt ABC ∆中BM BCAB AB =⎧⎨=⎩∴Rt Rt ABM ABC ∆∆≌(HL )∴AM AC =∴()2AP AQ AC CP AM QM MQ PC PC -=+--=+=故答案为:2AQ AP PC -=或2AP AQ PC -=.【点睛】本题考查全等三角形的判定与性质 角平分线性质 分类讨论思想等知识 掌握相关知识利用辅助线画出准确图形是解题关键.8.如图 在ABC 中 BAD DAC ∠=∠ DF AB ⊥ DM AC ⊥ 10AF cm = 14AC cm = 动点E 以2/cm s 的速度从A 点向F 点运动 动点G 以1/cm s 的速度从C 点向A 点运动 当一个点到达终点时 另一个点随之停止运动 设运动时间为t .(1)CM = :AE CG = ;(2)当t 取何值时 DFE △和DMG △全等;(3)在(2)的前提下 若:119:126BD DC = 228cm AED S =△ 求BFD S .【答案】(1)4 2;(2)143;(3)293cm 2.【解析】【分析】(1)根据角平分线的性质可证Rt △AFD ≌Rt △AMD 得AF =AM 从而求出即可;(2)分两种情况进行讨论:①当0<t <4时 ②当4≤t <5时 分别根据△DFE ≌△DMG 得出EF =GM 据此列出关于t 的方程 进行求解即可.(3)利用等高三角形的面积比等于对应底的比 即可求得答案.【详解】(1)∵∠BAD =∠DAC DF ⊥AB DM ⊥AC ∴DF =DM在Rt △AFD 和Rt △AM D 中DF DMAD AD =⎧⎨=⎩∴Rt △AFD ≌Rt △AMD (HL );∴10AF AM cm ==14104CM AC AM cm ∴=-=-=2AE t = CG t = :2AE CG ∴=(2)①当0<t <4时 点G 在线段CM 上 点E 在线段AF 上.EF =10﹣2t MG =4﹣t∴10﹣2t=4﹣t∴t=6(不合题意舍去);②当4<t<5时点G在线段AM上点E在线段AF上.EF=10﹣2t MG=t﹣4∴10﹣2t=t﹣4∴t=143;综上所述当t=143时△DFE与△DMG全等;(3)∵t=14 3∴AE=2t=28 3∵DF=DM∴S△ABD:S△ACD=AB:AC=BD:CD=119:126 ∵AC=14∴AB=119 9∴BF=AB﹣AF=1199﹣10=299∵S△ADE:S△BDF=AE:BF=283:299S△AED=28cm2∴S△BDF=293cm2.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、三角形的面积公式以及动点问题解题的难点在于第二问中求运动的时间此题容易漏解和错解.9.在平面直角坐标系中A(﹣3 0)、B(0 7)、C(7 0)∠ABC+∠ADC=180° BC⊥C D.(1)如图1①求证:∠ABO=∠CAD;②AB与AD是否相等?请说明理由;(2)如图2 E为∠BCO的邻补角的平分线上的一点且∠BEO=45° OE交BC于点F求BF 的长.【答案】(1)①见解析;②AB=AD见解析;(2)7【解析】【分析】(1)根据四边形的内角和定理、直角三角形的性质证明;(2)过点A作AF⊥BC于点F作AE⊥CD的延长线于点E△ABF≌△ADE得到AB=AD(3)过点E作EH⊥BC于点H作EG⊥x轴于点G根据角平分线的性质得到EH=EG证明△ABF ≌△ADE得到EB=EO根据等腰三角形的判定定理解答.【详解】证明:①在四边形ABC D中∵∠ABC+∠ADC=180°∴∠BAD+∠BCD=180°∵BC⊥CD∴∠BCD=90°∴∠BAD=90°∴∠BAC+∠CAD=90°∵∠BAC+∠ABO=90°∴∠ABO=∠CAD;解:②AB=AD如图:过点A 作AF ⊥BC 于点F 作AE ⊥CD 的延长线于点E ∵B (0 7) C (7 0)∴OB =OC∴∠BCO =45°∵BC ⊥CD∴∠BCO =∠DCO =45°∵AF ⊥BC AE ⊥CD∴AF =AE ∠F AE =90°∴∠BAF =∠DAE在△ABF 和△ADE 中BAF DAE AF AEAFB AED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF ≌△ADE (ASA )∴AB =AD(3)过点E 作EH ⊥BC 于点H 作EG ⊥x 轴于点G∵E 点在∠BCO 的邻补角的平分线上∴EH =EG∵∠BCO =∠BEO =45°∴∠EBC =∠EOC在△EBH 和△EOG 中EBH EOG EHB EGO EH EG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EBH ≌△EOG (AAS )∴EB =EO∵∠BEO =45°∴∠EBO =∠EOB =67.5° 又∠OBC =45°∴∠BOE =∠BFO =67.5°∴BF =BO =7.【点睛】本题考查的是全等三角形的判定和性质、角平分线的性质 掌握全等三角形的判定定理和性质定理是解题的关键.10.如图所示 直线AB 交x 轴于点A (a 0) 交y 轴于点B (0 b )且a 、b2(4)0a -= C 的坐标为(﹣1 0) 且AH ⊥BC 于点H AH 交OB 于点P .(1)如图1 写出a 、b 的值 证明△AOP ≌△BOC ;(2)如图2 连接OH 求证:∠OHP =45°;(3)如图3 若点D 为AB 的中点 点M 为y 轴正半轴上一动点 连接MD 过D 作DN ⊥DM 交x 轴于N 点 当M 点在y 轴正半轴上运动的过程中 求证:S △BDM ﹣S △ADN =4.【答案】(1)a =4 b =﹣4 见解析;(2)见解析;(3)见解析【解析】【分析】(1)先依据非负数的性质求得a 、b 的值从而可得到OA OB = 然后再90COB POA ∠=∠=︒OAP OBC ∠=∠ 最后 依据ASA 可证明OAP OBC ∆∆≌;(2)要证45OHP ∠=︒ 只需证明HO 平分CHA ∠ 过O 分别作OM CB ⊥于M 点 作ON HA ⊥于N 点 只需证到OM ON = 只需证明COM PON ∆∆≌即可;(3)连接OD 易证ODM ADN ∆∆≌ 从而有ODM ADN S S ∆∆= 由此可得12BDM ADN BDM ODM BOD AOB S S S S S S ∆∆∆∆∆∆-=-==. 【详解】(1)解:2(4)0a -=0a b ∴+= 40a -=4a ∴= 4b =-则4OA OB ==.AH BC ⊥即90AHC ∠=︒ 90COB ∠=︒90HAC ACH OBC OCB ∴∠+∠=∠+∠=︒HAC OBC ∴∠=∠.在OAP ∆与OBC ∆中90COB POA OA OBOAP OBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()OAP OBC ASA ∴∆∆≌;(2)证明:过O 分别作OM CB ⊥于M 点 作ON HA ⊥于N 点.在四边形OMHN 中 36039090MON ∠=︒-⨯︒=︒90COM PON MOP ∴∠=∠=︒-∠.OAP OBC ∆∆≌OC OP ∴=在COM ∆与PON ∆中90COM PON OMC ONP OC OP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()COM PON AAS ∴∆∆≌OM ON ∴=.OM CB ⊥ ON HA ⊥HO ∴平分CHA ∠1452OHP CHA ∴∠=∠=︒; (3)证明:如图:连接OD .90AOB ∠=︒ OA OB = D 为AB 的中点OD AB ∴⊥ 45BOD AOD ∠=∠=︒ OD DA BD ==45OAD ∴∠=︒ 9045135MOD ∠=︒+︒=︒135DAN MOD ∴∠=︒=∠.MD ND ⊥即90MDN ∠=︒90MDO NDA MDA ∴∠=∠=︒-∠.在ODM ∆与ADN ∆中MDO NDA DOM DAN OD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ODM ADN ASA ∴∆∆≌ODM ADN S S ∆∆∴=.11114442222BDM ADN BDM ODM BOD AOB S S S S S S AO BO ∆∆∆∆∆∆∴-=-===⨯⋅=⨯⨯⨯=. 【点睛】本题是一次函数综合题 考查了全等三角形的判定与性质、等腰直角三角形的性质、角平分线的判定、二次根式及完全平方式的非负性等知识 在解决第(3)小题的过程中还用到了等积变换而运用全等三角形的性质则是解决本题的关键.11.在△AB C 中 ∠BAC =90° AB =A C .(1)如图1 若A 、B 两点的坐标分别是A (0 4) B (﹣2 0) 求C 点的坐标;(2)如图2 作∠ABC 的角平分线BD 交AC 于点D 过C 点作CE ⊥BD 于点E 求证: BD =2CE【答案】(1)(4 2);(2)证明过程见解析【解析】【分析】(1)作CM ⊥OA 垂足为M 证明△ABO ≌△CAM 即可得解;(2)延长CE 、BA 相交于点F 证明△ABD ≌△ACF (ASA ) 得到BD =CF 证明△BCE ≌△BFE (ASA ) 即可得解;【详解】(1)作CM ⊥OA 垂足为M∵∠AOB =∠BAC =90°∴∠BAO +∠CAM =90° ∠BAO +∠ABO =90°∴∠ABO =∠CAM在ABO 和CAM 中AOB CMA ABO CAM AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△CAM∴MC =AO =4 AM =BO =2 MO =AO -AM =2∴点C 坐标(4 2);(2)如图2 延长CE 、BA 相交于点F∵∠EBF+∠F =90° ∠ACF+∠F =90°∴∠EBF =∠ACF在ABD △和ACF 中ABD ACF AB ACBAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD ≌△ACF (ASA )∴BD=CF在BCE 和BFE △中CBE FBE BE BEBEF BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BCE ≌△BFE (ASA )∴CE =EF∴BD =CF =2 CE .【点睛】本题主要考查了全等三角形的判定与性质 角平分线的性质 准确分析证明是解题的关键. 12.如图1 点A 、D 在y 轴正半轴上 点B 、C 分别在x 轴上 CD 平分∠ACB 与y 轴交于D 点 ∠CAO +∠BDO =90°.(1)求证:AC =BC ;(2)如图2 点C 的坐标为(6 0) 点E 为AC 上一点 且∠DEA =∠DBO 求BC +EC 的值;(3)如图3 过D 作DF ⊥AC 于F 点 点H 为FC 上一动点 点G 为OC 上一动点 当H 在FC 上移动、点G 在OC 上移动时 始终满足∠GDH =∠GDO +∠FDH .试判断FH 、GH 、OG 这三者之间的数量关系 写出你的结论并加以证明.【答案】(1)证明见解析;(2)BC +EC =12;(3)GH =FH +OG 证明见解析.【解析】【分析】(1)由题意∠CAO +∠BDO =90° 可知∠CAO =∠CBD 再结合CD 平分∠ACB 所以可由AAS 定理证明△ACD ≌△BCD 由全等三角形的性质可得AC =BC ;(2)过D 作DN ⊥AC 于N 点 可证明Rt △BDO ≌Rt △EDN 、△DOC ≌△DNC 因此 BO =EN 、OC =NC 所以 BC +EC =BO +OC +NC -NE =2OC 即可得BC +EC 的长;(3)在x 轴的负半轴上取OM =FH 可证明△DFH ≌△DOM 、△HDG ≌△MDG 因此 MG =GH 所以 GH =OM +OG =FH +OG 即可证明所得结论.【详解】(1)证明:∵x 轴⊥y 轴∴∠CBD +∠BDO =90°∵∠CAO +∠BDO =90°∴∠CAO =∠CB D .∵CD 平分∠ACB∴ACD BCD ∠=∠在△ACD 和△BC D 中ACD BCD CAO CBD CD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCD (AAS ).∴AC =BC AD =DE ;(2)解:由(1)知∠CAD =∠DEA =∠DBO∴BD =AD =DE过D 作DN ⊥AC 于N 点 如右图所示:∵∠ACD =∠BCD∴DO =DN在Rt △BDO 和Rt △EDN 中BD DE DO DN=⎧⎨=⎩ ∴Rt △BDO ≌Rt △EDN (HL )∴BO =EN .在△DOC 和△DN C 中90DOC DNC OCD NCD DC DC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△DOC ≌△DNC (AAS )可知:OC =NC ;∴BC +EC =BO +OC +NC -NE =2OC =12;(3)GH =FH +OG .证明:由(1)知:DF =DO在x 轴的负半轴上取OM =FH 连接DM 如图所示: 在△DFH 和△DOM 中90DF DO DFH DOM OM FH ︒=⎧⎪∠=∠=⎨⎪=⎩∴△DFH ≌△DOM (SAS ).∴DH =DM ∠1=∠ODM .∴∠GDH =∠1+∠2=∠ODM +∠2=∠GDM . 在△HDG 和△MDG 中DH DMGDH GDM DG DG=⎧⎪∠=∠⎨⎪=⎩ ∴△HDG ≌△MDG (SAS ).∴MG =GH∴GH =OM +OG =FH +OG .【点睛】本题考查坐标与图形 全等三角形的性质和判定 角平分线的性质.能正确作出辅助线构造全等三角形是解题关键.。

三角形角平分线专题讲解(精选.)

三角形角平分线专题讲解(精选.)

由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线一)、截取构全等几何的证明在于猜想与尝试,种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律, 在解决几何问题中大 胆地去猜想, 按一定的规律去尝试。

下面就几何中常见的定理所 涉及到的辅助线作以介绍。

如图 1-1 ,∠∠,如取,并连接、 ,则有△≌△,从而为我们 证明线段、角相等创造了条件。

例1. 如图 1-2 ,,平分∠,平分∠, 点 E 在上,求证:。

分析:此题中就涉及到角平分线, 可以利用角平分线来构造全等三角形, 对称图形, 同时此题也是证明线段的和差倍分问题, 在证明线段 的和差倍分问题中常用到的方法是延长法或截取法来证明, 延长 短的线段或在长的线段长截取一部分使之等于短的线段。

但无论 延长还是截取都要证明线段的相等, 延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等, 进而达到所证明的目的。

简证:在此题中可在长线段上截取,再证明,从而达到证明 的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全 等自已证明。

此题的证明也可以延长与的延长线交于一点来证 明。

自已试一试。

例2. 已知:如图 1-3 ,2,∠∠,,求证⊥即利用解平分线来构造轴 图1-2分析:此题还是利用角平分线来构造全等三角形。

构造的方法还是截取线段相等。

其它问题自已证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形与角平分线
一、知识概述
1、角的平分线的作法
(1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE.
(2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C.
(3)作射线OC,则OC为∠AOB的平分线(如图)
指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”.
(2)角的平分线是一条射线,不能简单地叙述为连接.
2、角平分线的性质
在角的平分线上的点到角的两边的距离相等.
指出:(1)这里的距离是指点到角两边垂线段的长.
(2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形.
(3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”.
3、角平分线的判定
到角的两边的距离相等的点在角的平分线上.
指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的.
(2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么
过角的顶点和该点的射线必平分这个角.
4、三角形的角平分线的性质
三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等.
指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上.
(2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析
例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF.
例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC.
例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()
A.大于EF B.小于EF
C.等于EF D.与EF的大小无法比较
例4、(12分)如图四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠D+∠B=180°,求证:AD+AB=2AE.
例5、已知:如图,在四边形ABCD中,AB>BC,BD平分
.求证:AD=CD.
例6、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于O 点,求证:AE+CD=AC.
三、中考解析
1、在△ABC,∠C=90°,BC=16cm,∠A的平分线AD交BC于D,且CD︰DB=3︰5,则D到AB的距离等于()
A.6cm B.7cm
C.8cm D.9cm
2、如图,D是△ABC的一个外角的平分线上一点,求证:AB+AC<DB+DC.
3、如图,在△ABC中,D为BC的中点,DE⊥BC,交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC的延长线于G,求证:BF=CG.
4、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且
BE⊥AC于E,与CD相交于点F.H是BC边的中点,连结DH与BE相交于点G.
(1)求证:BF=AC;
(2)求证:CE=BF;
(3)CE与BG的大小关系如何?试证明你的结论.
5、如图,已知∠1=∠2,P为BN上一点,且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180°
6、如图,△ABC中,AM是BC边上的中线,求证:
7、已知:如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长线于E.
求证:BD=2CE.。

相关文档
最新文档