多边形的内角和3改
2023年多边形的内角和与外角和教学反思(通用3篇)

2023年多边形的内角和与外角和教学反思(通用3篇)多边形的内角和与外角和教学反思1体会及反思:1、在初一旧教材中完成三角形内外角和的教学之后,学生很自然地就会想到对于多边形的状况如何。
结合新教材中这一部分内容的编排,所以特意在教学过程中支配了这样一堂活动课,希望对于新课程标准思想有所体现。
2、为了体现课堂以学生为主,培育学生自主探究的实力,在课前的教学设计中尽量围绕学生绽开。
如:实行了小组合作学习、组与组之间沟通等形式。
虽然想法上有此意图,但在详细的实施过程中还是暴露出了许多问题,有事先没预料到的,也有想体现但没体现完整的。
经过课后反思及老老师们的指引,主要表现在:(1)较多的'着眼于课堂形式的多样化及学生实力(如:合作、探究、沟通等)的培育,而忽视了教学中最重要的学问点的落实。
学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,老师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。
(2)小组探讨可以说是新教材框架中的一个重要部分,老师事先肯定要有具体的安排。
这也是本堂课暴露缺陷较多的环节。
比如:组员的设置(七、八人一组加上发下的表格较少使得探讨未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避开某些小组成员流离于合作之外。
老师还应细心策划:探讨如何有效地开展;时间多长;实行何种探讨方法;老师在探讨过程中又该担当何种角色等。
(3)在小组沟通过程中学生的发言过分地注意于探究的结果,而忽视了学生探究过程的展示。
同时老师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的实力。
(4)老师在教学过程中对学生的评价较为单一,确定不够刚好,表扬不够热忱,比如当最终一个平常表现较为一般的学生有此创意时,老师就应大加赞扬,从而也能激发课堂气氛。
虽然整堂课下来出现了较多的漏洞,但我想作为一个新老师的一种尝试也未尝不行。
只有通过不断地尝试,不断地失败,我们才能到达成功的彼岸!多边形的内角和与外角和教学反思2《多边形的外角和》是在学习了三角形的外角和与多边形的内角和之后学习的,学生对三角形的外角有所了解,但对于多边形的外角还不太清晰,教材中给出了小明绕五边形广场按逆时针方向跑步的例子,在第一个班讲的时候,学生不太理解为什么小明转的角度就是多边形的外角,于是,我准备在其次个班让学生实际做一下。
多边形的内角和教案(优秀范文5篇)[修改版]
![多边形的内角和教案(优秀范文5篇)[修改版]](https://img.taocdn.com/s3/m/c04cb29248d7c1c709a14519.png)
第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
这(n-2)个三角形的内角和正好是这个n边形的内角和。
由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。
例2:如果一个多边形的内角和是2160度,求这个多边形的边数。
五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。
多边形内角和中常用倒角模型

第二讲三角形的倒角模型黑逗小可爱【要点梳理】知识点一、多边形内角和定理n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180nn°;(1(((证明过程:结论:∠1+∠2=180°+∠C(2)飞镖模型证明过程:结论:∠BOC=∠A+∠B+∠C(3)八字模型证明过程:结论:∠A+∠B=∠D+∠C精讲精练1.如图,四边形ABCD中,∠B=40°,沿直线MN剪去∠B,则所得五边形AEFCD中,∠1+∠2=2.如图,∠1+∠2+∠3+∠4+∠5=320°,则∠6=.3.如图,∠B+∠C+∠D+∠E﹣∠A等于()A.360°B.300°C.180°D.240°4.如图,求∠A+∠B+∠C+∠D+∠E的大小.5.如图所示,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数为()A.135°B.240°C.270°D.300°6.7.如图,∠1=∠2,∠A=60°,则∠ADC=度.模块二、三角形折叠问题解题关键:折叠前后对应角相等精讲精练1.如图把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间的数量关系保持不变,请找一找这个规律,你发现的规律是()A、∠A=∠1+∠2B、2∠A=∠1+∠2C、2∠A=2∠1+∠2D、3∠A=2(∠1+∠2)2.如图,把∠ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1-∠2B.3∠A=2(∠1-∠2)C.3∠A=2∠1-∠2D.∠A=∠1-∠23.如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置.通过计算我们知道:2∠A=∠1+∠2.请你继续探索:(1)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED外部点A′的位置,如图②所示.此时∠A与∠1、∠2之间存在什么样的关系?并说明理由。
2023年苏科版七年级数学下册第七章《多边形的内角和与外角和3》学案

新苏科版七年级数学下册第七章《多边形的内角和与外角和3》学案教学三维目标知识与技能知道多边形的外角与外角和,知道三角形外角与外角的关系并进行简单应用。
过程与方法通过操作、计算认识多边形的外角,探索出三角形外角和。
情感态度与价值观经历观察、分析、操作概括等过程,培养学生探索创新的精神。
教学重点掌握三角形外角和的特点。
教学难点三角形外角和的特点的应用。
教学设计预习作业检查1、如图∠α,∠β,∠γ都是三角形ABC的外角多边形的外角是指2、(1)画出三角形的每个顶点处的一个外角,把3个外角剪下来,然后将它们的顶点A、B、C重合在同一点O,你发现什么?为什么∠α+∠β+∠γ=结论:三角形的外角和等于360°。
(2)图中∠α+∠2= °∠1+∠2+∠3= °则∠α= ,同理可以得到∠β= ∠γ=结论:三角形的任意一个外角应等于与它不相邻的两个内角之和。
3、(1)根据三角形的外角画法画出五边形ABCDE的每个顶点处的一个外角。
(2)五边形的外角和等于多少度?仿照上面的方法试一试。
(3)你能求出六边形的外角和吗?(4)猜想:n边形的外角和等于多少度?结论:任意多边形的外角和等于360°教学环节教学活动过程思考与调整活动内容师生行为“15分钟温故、自学、群学”环节1、n边形的内角和等于,多边形的外角和.六边形的内角和是,外角和是.2、一个多边形的内角和等于它的外角和,那么这个多边形是边形.3、n边形的每个外角都是300,n=4.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.“20分钟展示、例1.(1)一个多边形,它的外角最多有几个是钝角?说说你的理由.EDCFBAγβα312CBA4321ODCBA第4题图交流、质疑、训练、点拨、提高”环节(2)一个多边形的外角和是内角和的15,它是几边形?例2.一个多边形的每一个外角都是72°,那么这个多边形的内角和为多少度?例3.一个零件的形状如图中阴影部分.按规定∠A应等于90º,∠B、∠C应分别是29º和21º,检验人员度量得∠BDC =141º,就断定这个零件不合格.例4如图,求∠A+∠B+∠C+∠D+∠E+∠F度数。
苏教版数学四年下册《多边形的内角和》说课稿及反思(共三篇)

《多边形的内角和》说课稿及反思(一)一、说教材本课是在学生学过角的度量、三角形的特征和分类等知识的基础上,借助三角形内角和等于180°推导出多边形内角和等于(n-2)×180°。
四年级学生从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。
从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白、深入浅出地分析。
二、说教学目标1.掌握多边形内角和的计算方法,并能用内角和知识解决有关多边形的计算问题;通过多边形内角和公式的推导,培养学生探索与归纳的能力。
2.经历探索多边形内角和的过程,多角度、全方位考虑问题,培养学生对简单数学结论的探究方法,进而运用掌握的理论知识解决实际问题,进一步培养学生的数学推理能力,初步形成一定的推理思维。
3.通过经历数学知识的形成过程,体验转化、类比等数学思想方法的应用,体验猜想得到证实的成就感。
三、教学重难点重点:探究多边形的内角和公式。
难点:理解多边形的内角和公式。
四、说教学过程板块一、情境导入师:同学们,一个三角形的内角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?学生思考并作答,并由教师评价。
师:那么一个多边形的内角和是多少呢?我们能不能算出来呢?这就是本节课我们要研究的问题。
【设计意图:先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想】板块二、探究新知师:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?生1:我是先量出每个角的度数,再求和,结果是360°。
生2:我是把四边形的对角线连接,分成2个三角形,算出内角和是180°×2=360°。
《多边形的内角和与外角和》说课稿

《多边形的内角和与外角和》说课稿《多边形的内角和与外角和》说课稿(精选3篇)《多边形的内角和与外角和》说课稿1一,说教材分析从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。
在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。
二,说学生情况学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。
因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
三,说教学目标及重点,难点的确定新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。
根据新课标和本节课的内容特点我确定以下教学目标及重点,难点【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和及外角和定理【教学难点】转化的数学思维方法四,说教法和学法本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。
第3讲-多边形及其内角和知识点

第3讲多边形及其内角和(11.3)一、知识点总结边形的内角和等于180°(n-2)。
360°。
边形的对角线条数等于1/2·n(n-3)3、4、6/。
拼成360度的角:3、4。
知识点一:多边形及有关概念1、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.凸多边形凹多边形图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形正方形正五边形正六边形正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。
要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
多边形的内角和外角

多边形的内角和外角多边形是几何学中常见的图形,由多个直线边构成,每个角由相邻两条边所夹。
本文将介绍多边形的内角和外角的性质和计算方法。
1. 多边形的内角和外角性质内角:指多边形内部两条边所夹的角度。
一般来说,n 边形(n边形是指有n条边的多边形)的内角和为 (n-2) * 180度。
例如,三角形的内角和为 (3-2) * 180 = 180度,四边形的内角和为 (4-2) * 180 = 360度。
外角:指多边形内部一条边的延长线与相邻边所夹的角度。
多边形的外角和等于360度,即各个外角的和等于360度。
这意味着每个外角都相等。
例如,三角形的外角和为360度,四边形的外角和也为360度。
2. 多边形内角和计算方法当已知多边形的边数 n 时,内角和可以通过以下公式计算:内角和= (n-2) * 180度。
举例:- 三角形的内角和 = (3-2) * 180度 = 180度- 四边形的内角和 = (4-2) * 180度 = 360度3. 多边形外角的计算方法多边形的外角和始终等于360度,即每个外角的度数相等。
当已知多边形的边数n 时,每个外角的度数可以通过以下公式计算:外角度数 = 360度 / n。
举例:- 三角形的外角度数 = 360度 / 3 = 120度- 四边形的外角度数 = 360度 / 4 = 90度4. 多边形内角和外角的应用多边形的内角和外角的性质在许多几何问题中有重要的应用。
- 在计算多边形的内角和时,我们可以通过已知内角和求解未知内角的方法来确定多边形内部的角度分布,从而帮助计算各种几何问题。
- 外角和的知识可以帮助我们计算多边形中某个顶点的外角度数,从而在解决几何问题时提供有效的信息。
5. 总结多边形的内角和是 (n-2) * 180度,每个内角的度数与多边形的边数n 有关。
多边形的外角和为360度,每个外角的度数等于 360度 / n。
多边形的内角和外角的性质和计算方法是解决几何问题中重要的基础知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
A
5
B
2 C
E
4 D 3
你是怎样得到的?
L/O/G/O
合作学习:(探索任意多边形的外角和)
1 3
2
1
2
4
3
1
2
5
34
3×180o-(3-2)×180o=360o 4×180o-(4-2)×180o=360o 5×180o-(5-2)×180o=360o
n×180o-(n-2)×180o=360o
L热/O/G身/O 训练
1.如图,x= 95 °
80°
120°
75°
X°
2 .九边形的内角和为 1260 °.
3.一个多边形的内角和为1800°,则它的边数为 12 .
4.如果一个四边形的一组对角互补,那么另一组对 角 互补.(填“相等”或“互补”)
5.一个多边形的每一个内角都等于150 °,则这个多 边形为 十二 边形.
D
方法总结:
A
(1)可以用度量法,量出四个角的度数。
(2)将四个内角剪下来进行拼接。
B
C (3) 借助辅助线把四边形分割成几个三角形,用
C
B
如图1,在四边形内任取一点P,连接PA、PB、
PC、PD将四边形分割成有一个公共顶点的四
其
P
图1
个三角形
A
四边形内角和等于180°×4 - 360°= 360°
L/O/G/O
合作学习: (探索多边形的内角和)
1
2
3
n-3
2
3
4
n-2
2×180° 3×180° 4×180° (n-2)·180°
L/O/G/O 大家清晨跑步吗?小明就有每天坚持 跑步的好习惯,他沿一个五边形广场周围 小跑,按逆时针方向跑步. 请你观察并思 考如下几个问题:
他每跑完一圈,身体转过的角度之和是多少?
多边形的内角和
L/O/G/O
风
L/O/G/O
景
秀
丽
的
曼
哈
顿
L/O/G/O
美国国防部大楼——五角大楼
L/O/G/O
L/O/G/O
你还记得三角形内角和是多少度?
(三角形内角和 180°)
你知道长方形和正方形的内角和是多少? (都是360°)
其它四边形的内角和是多少?
任意四边形的内角和又是多少度呢?如何验 L/O/G/O 证你的猜想?你能找到几种方法?
你还有什么困惑吗?
D
A
他
图2 B
如图2,在四边形的一边上任取一点P,连接PB、
P
PC,将四边形分割成有一个公共顶点的三个 三角形
方
C
D 四边形内角和等于180° ×3- 180° = 360°
A
法
B
图3
C
P
如图3,在四边形外任取一点P,连接PA、PB、 PC、PD将四边形变成有一个公共顶点的四个
三角形 D
四边形内角和等于180° ×3- 180° = 360°
例1、若两个多边形的边数比为1:2,内角和的度数比为1:3, L求/O/这G/O两个多边形的边数.
例2 、(1)一个四边形截去一个角后内角和为
°.
三角形
四边形
五边形
L/O/G/O
(2)一个多边形截去一个角后,形成的多边形内角和是
1800°,则原多边形的边数是多少?
通过这节课的学习活动你 有哪些收获?