高等代数2002

合集下载

考研数学-2002年北大高等代数解答

考研数学-2002年北大高等代数解答

北京大学2002 数学专业研究生 高等代数部分3,用正交变换化下面二次型为标准形222123123121323(,,)444f x x x x x x x x x x x x =++---;(要求写出正交变换的矩阵和相应的标准形)。

解:二次型矩阵:122212221A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭;找其正交矩阵:4304626T ⎛--⎪ ⎪ ⎪=--⎪ ⎪ ⎪ ⎪⎝⎭; 使得1{3,3,3};T AT diag -=-于是做正交替换化为标准型:222***(,,)333f x y z x y z =+-4,对任意的非负整数n ,令221()(1)n n n f x x x ++=-+,证明:2(1,()) 1.n x x f x ++=分析:用带余除法及待定系数法不易证明,考虑采用因式定理来证明,且最大公因式不因数域的扩大而改变。

证明:已知2()10f x x x =++=的根是1211,,22w w ---==所以2121()().x x x w x w ++=--又由31i w =,知:将12,w w 代入()n f x 中得:2212221232()(1)()(1)0n n n n n n n n i i i i i i i i f w w w w w w w w ++++++=-+=--=+=≠,所以12()()|x w x w --()n f x ,即2(1,()) 1.n x x f x ++=5,设正整数n ≥2,用()n M k 表示数域k 上全体n ⨯n,矩阵关于矩阵加法和数乘所构成的k上的线性空间。

在()n M k 中定义变换σ如下:'(())(),()(),ij n n ij n n ij n n n a a a M k σ⨯⨯⨯=∀∈其中: ',;(),.ij ija i j a i tr A i j ≠⎧=⎨⋅=⎩(1)证明: σ是()n M k 上的线性变换; (2)求出: ker()σ的维数与一组基; (3)求出: σ的全部特征子空间. 证明:'()()(()()(()(());(()(()()()()(()()0ij n n ij n n n ij n n ij n n ij ij n n ij n n ij n n ij n n ij n n ij n n ij n n ij n n i ij n n ij n n ija b M K a b a b a b k a ka ka k a k a a a a a σσσσσσσσσ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯∀∈∈'+++''==∴'⇒=⇒=(1),(k ),k ,则)=(())=())=)=();线性变换。

中南大学研究生入学考试试题高等代数

中南大学研究生入学考试试题高等代数

中南大学2002年研究生入学考试试题考试科目:高等代数注:以下2R 表示n 维实列向量空间,n n R ⨯表示n 阶实矩阵的全体,T A 表示矩阵A 的转置,()Tr A 表示矩阵A 的迹。

一、(20分)设0x 是n 维欧氏空间V 中非零向量,,0k R k ∈≠,定义变换00(,),Tx x k x x x x V =+∈1.验证T 是线性变换; 2.设0x 在V 的标准正交基12,,,n e e e 下的坐标为()12,,,n ξξξ,求在该基下的矩阵;3.证明T 为对称变换,即(,)(,)Tx y x Ty =,,x y V ∀∈; 4.证明:T 为正交变换的充要条件是22k x =-。

二、(16分)设n n A R ⨯∈,记(){:,}.n n C A B AB BA B R ⨯==∈1.证明:()C A 是n n R ⨯的子空间; 2.当A I =时,求()C A ; 3.当100002000A n ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭时,求()C A 的维数和一组基。

三、(16分)设12(,,,)T n b b b b =为n 维非零列向量,求矩阵00H b A b ⎡⎤=⎢⎥⎣⎦的特征值和特征向量,其中H b 表示列向量b 的共轭转置。

四、(14分)设,,n n n A R b x R ⨯∈∈,证明线性方程组T T A Ax A b =必有解。

五、(12分)设,A B 为n 阶实矩阵,证明0.A B BA≥-六、(12分)求证:A 为幂零阵(即存在正整数m ,使得0m A =)的充要条件是:对任一自然数r ,有()0.r Tr A =七、(10分)设,A B 是n 阶实对称矩阵,0A ≠,证明:A 为正定矩阵的充要条件是,对所有正定矩阵B ,恒有()0.Tr AB >中南大学2003年研究生入学考试试题考试科目:高等代数一、填空题:(每小题6分,共30分)1、设四阶方阵1234(,,,)A αααα=,1234(,,,)B βααα=,其中1234,,,,ααααβ为4维列向量,若||1,||2A B ==,则||()A B +=。

2002考研数二真题及解析

2002考研数二真题及解析

2002年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设函数tan 21,0arcsin()2,xx e x x f x ae x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =处连续,则a = .(2) 位于曲线(0)xy xe x -=≤<+∞下方,x 轴上方的无界图形的面积是_______.(3) 微分方程20yy y '''+=满足初始条件011,2x x yy =='==的特解是_________.(4) 1limn n →∞=_____ . (5) 矩阵022222222--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦的非零特征值是_________.二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f u 可导,2()y f x =当自变量x 在1x =-处取得增量0.1x ∆=-时,相应的函数增量y ∆ 的线性主部为0.1,则(1)f '=( )(A)-1 (B)0.1 (C)1 (D)0.5 (2) 设函数()f x 连续,则下列函数中,必为偶函数的是( )(A)20()xf t dt ⎰ (B)20()xf t dt ⎰(C)[()()]xt f t f t dt --⎰(D)0[()()]xt f t f t dt +-⎰(3) 设()y x =是二阶常系数微分方程3xy py qy e '''++= 满足初始条(0)(0)0y y '==的特解,则当0x →,函数2ln(1)()x y x +的极限( )(A)不存在 (B)等于1 (C)等于2 (D)等于3 (4) 设函数()y f x =在(0,)+∞内有界且可导,则( )(A)当lim ()0x f x →+∞=时,必有lim ()0x f x →+∞'=.(B)当lim ()x f x →+∞'存在时,必有lim ()0x f x →+∞'=.(C)当0lim ()0x f x +→=时,必有0lim ()0x f x +→'=. (D)当0lim ()x f x +→'存在时,必有0lim ()0x f x +→'=. (5) 设向量组123,,ααα线性无关,向量1β 可由123,,ααα线性表示,而向量2β 不能由123,,ααα线性表示,则对于任意常数k ,必有( )(A)123,,ααα , 12k ββ+线性无关; (B)123,,ααα , 12k ββ+线性相关; (C)123,,ααα,12k ββ+线性无关; (D)123,,ααα,12k ββ+线性相关三、(本题满分6分)已知曲线的极坐标方程是1cos r θ=- ,求该曲线上对应于6πθ=处的切线与法线的直角坐标方程.四、(本题满分7分)设2232,102(),01(1)xx x x x f x xe x e ⎧+-≤<⎪⎪=⎨⎪≤≤⎪+⎩求函数1()()xF x f t dt -=⎰的表达式.五、(本题满分7分)已知函数()f x 在(0,)+∞内可导()0f x >,lim ()1x f x →+∞= , 且满足110()lim()()hx h f x hx e f x →+=,求()f x .六、(本题满分8分)求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =, 与直线1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小.七、(本题满分7分)某闸门的性状与大小如图所示,其中直线l 为对 称轴,闸门的上部为矩形ABCD ,下部由二次抛物线 与线段AB 所围成,当水面与闸门的上端相平时,欲使 闸门矩形部分承受的水压力与闸门下部承受的水压力之 比为5:4,闸门矩形部分的高h 应为多少m (米)?八、(本题满分8分)设1103,1,2,)n x x n +<<==,证明数列{}n x 的极限存在,并求此极限.九、(本题满分8分)设0a b <<,证明不等式222ln ln a b a a b b a -<<+-十、(本题满分8分)设函数 ()f x 在0x =的某邻域内具有二阶连续导数,且(0)0,(0)0,f f '≠≠(0)0.f ''≠ 证明:存在惟一的一组实数123,,λλλ,使得当0h →时,123()(2)(3)(0)f h f h f h f λλλ++-是比2h 高阶的无穷小.十一、(本题满分6分)已知,A B 为3 阶矩阵,且满足124A B B E -=-,其中E 是3阶单位矩阵. (1) 证明:矩阵2A E -可逆;(2) 若120120002B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵.A十二、(本题满6分)已知4阶方阵1234(,,,),A αααα=1234,,,αααα均为4维列向量,其中234,,ααα线性无关,1232ααα=-.如果1234βαααα=+++,求线性方程组Ax β=的通解.D1m2002年全国硕士研究生入学统一考试数学二试题解析一、填空题(1)【答案】 -2【详解】如果分段函数()f x 连续,则()f x 在0点处的左右极限相等,从而确定a 的值. 当0x →+时,tan 1tan xex x ---;arcsin22x x,所以有 tan 00001tan lim ()lim lim lim 2arcsin222x x x x x e x xf x x x x++++→→→→---==-==; 20lim ()lim (0)xx x f x ae a f --→→=== 如果()f x 在0x =处连续,必有(0)(0)(0),f f f +-== 即 2.a =-(2)【答案】 1 【详解】面积00x x x xS xe dx xde xe e dx +∞+∞----+∞⎡⎤==-=--⎣⎦⎰⎰⎰lim 00x xx x b b xe e xe e ----→+∞+∞⎡⎤⎡⎤=--=--⎣⎦⎣⎦lim 11b bb be e --→+∞⎡⎤=---=⎣⎦ 其中 1lim limlim 0bb bb b b b bee e -→+∞→+∞→+∞==洛.(3)【答案】y =【详解】方法1:这是属于缺x 的(,)y f y y '''=类型. 命,dp dp dy dpy p y p dx dy dx dy'''====. 原方程20yy y '''+=化为20dpypp dy+=,得 0p =或0dpyp dy+= 0p =,即0dy dx =,不满足初始条件1'02y x ==,弃之;所以0p ≠所以,0dp yp dy +=,分离变量得dy dp y p =-,解之得1.C p y = 即1.C dy dx y= 由初始条件11,'2yy x x ====,可将1C 先定出来:1111,212C C ==. 于是得12dy dx y=解之得,22,y x C y =+=.以01x y ==代入,得1=,所以应取“+”号且21C =.于是特解是y =方法2:将20y y'''+=改写为()0yy ''=,从而得1yy C '=. 以初始条件1(0)1,(0)2y y '==代入,有1112C ⨯=,所以得12yy '=. 即21yy '=,改写为2()1y '=. 解得2,y x C =+y =1=""+且21C =. 于是特解y =(4)【答案】π【详解】利用定积分的概念将被积函数化为定积分求极限.因为1lim ...n n →∞ 11limnn i nππ→∞==11lim ()ni n i i f x nππ→∞==∆∑ 其中(),(1,2,,)i f x x i n nπ=∆==,所以根据定积分的定义,有1lim n n →∞+1cos 2x dx πππππ===⎰⎰(5)【答案】4【详解】记022222222A --⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,则02222222222222222E A λλλλλλλ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭(对应元素相减)两边取行列式,E A λ-22222222λλλ=---22230222λλλλ+-行行222011222λλλλ -把第行的公因子提出来0122011222λλλ-⨯ -行行11111(1)22λλλ+⋅⋅--按第行展开(其中11(1)+-指数中的1和1分别是λ所在的行数和列数)2(22)λλ=--2(4)λλ=-令0E A λ-=,解得1230,4λλλ===,故4λ=是矩阵的非零特征值.(另一个特征值是0λ=(二重))二、选择题 (1)【答案】(D)【详解】在可导条件下,0()x x dyy x o x dx=∆=∆+∆,当00x x dy dx=≠时x x dy x dx=⋅∆称为y ∆的线性主部.而2()2dy x f x x x dx '⋅∆=∆,以1,0.1x x =-∆=-代入得(1)0.2dyx f dx'⋅∆=⨯,由题设它等于0.1,于是(1)0.5f '=,应选(D).(2)【答案】(D)【详解】对与(D),令0()[()()]xF x t f t f t dt =+-⎰,则0()[()()]xF x t f t f t dt --=+-⎰,令t u =-,则dt du =-,所以()[()()]()[()()]xxF x t f t f t dt u f u f u du --=+-=--+-⎰⎰[()()](),xu f u f u du F x =-+=⎰所以(D)为偶函数.同理证得(A)、(C)为奇函数,而(B)不确定,如()1f t t =+.故应选(D).(3)【答案】(C)【详解】由3xy py qy e '''++=,且(0)(0)0y y '==,可知(0)1y ''=方法1:因为当20x →时,22ln(1)x x +,所以20ln(1)lim ()x x y x →+=2000222lim lim lim 2()()()1x x x x x y x y x y x →→→==='''=, 故选(C).方法2:由于(0)(0)0,(0)1y y y '''===. 将函数()y x 按麦克劳林公式展开22()00()2x y x o x =+++,代入2ln(1)()x y x +,有222000222ln(1)1lim lim lim 211()()()22x x x x x o x y x x o x x→→→+==++=.(4) 【详解】方法1:排斥法.令21()sin f x x x =,则()f x 在(0,)+∞有界,2221()sin 2cos f x x x x'=-+, lim ()0x f x →+∞=,但lim ()x f x →+∞'不存在,故(A)不成立;0lim ()0x f x +→=,但 0lim ()10x f x +→'=≠,(C)和(D)不成立,故选(B). 方法2:证明(B)正确. 设lim ()x f x →+∞'存在,记lim ()x f x A →+∞'=,证明0A =.用反证法,若0A >,则对于02Aε=>,存在0X >,使当x X >时,()2A f x A ε'-<=,即3()2222A A A AA f x A '=-<<+=由此可知,()f x '有界且大于2A.在区间[,]x X 上应用拉格朗日中值定理,有()()()()()()2Af x f X f x X f X x X ξ'=+->+-从而lim ()x f x →+∞=+∞,与题设()f x 有界矛盾.类似可证当0A <时亦有矛盾. 故0A =.(5)【答案】A【详解】方法1:对任意常数k ,向量组123,,ααα,12k ββ+线性无关. 用反证法,若123,,ααα,12k ββ+线性相关,因已知123,,ααα线性无关,故12k ββ+可由123,,ααα线性表出. 即存在常数123,,λλλ,使得 12112233k ββλαλαλα+=++又已知1β可由123,,ααα线性表出,即存在常数123,,l l l ,使得1112233l l l βααα=++代入上式,得121122332112233()k k l l l ββαααβλαλαλα+=+++=++⇒2111222333()()()kl kl kl βλαλαλα=-+-+-与2β不能由123,,ααα线性表出矛盾.故向量组123,,ααα,12k ββ+线性无关,选(A) 方法2:用排除法B 选项:取0k =,向量组123,,ααα,12k ββ+即123,,ααα,2β线性相关不成立,否则因为123,,ααα,2β线性相关,又123,,ααα线性无关,故2β可由123,,ααα线性表出.即存在常数123,,λλλ,使得 2112233βλαλαλα=++与已知矛盾,排除(B).C 选项:取0k =,向量组123,,ααα,12k ββ+,即123,,ααα,1β线性无关不成立,因为1β可由123,,ααα线性表出,123,,ααα,1β线性相关,排除(C).D 选项:0k ≠时,123,,ααα,12k ββ+线性相关不成立.若123,,ααα,12k ββ+线性相关,因已知123,,ααα线性无关,故12k ββ+可由123,,ααα线性表出.即存在常数123,,λλλ,使得 12112233k ββλαλαλα+=++. 又已知1β可由123,,ααα线性表出,即存在常数123,,l l l ,使得1112233l l l βααα=++代入上式,得121122332112233()k l l l k ββαααβλαλαλα+=+++=++ ⇒2111222333()()()k l l l βλαλαλα=-+-+-因为0k ≠,故3311222123l l l kkkλλλβααα---=++与2β不能由123,,ααα线性表出矛盾.故123,,ααα,12k ββ+线性相关不成立,排除(D). 故选(A).三【详解】由极坐标到直角坐标的变换公式cos sin x r y r θθ=⎧⎨=⎩,化极坐标曲线1cos r θ=-为直角坐标的参数方程为(1cos )cos (1cos )sin x y θθθθ=-⎧⎨=-⎩, 即 2c o s c o ss i nc o s s i n x y θθθθθ⎧=-⎨=-⎩ 曲线上6πθ=的点对应的直角坐标为31,2424-- 22666cos sin cos 1.sin 2cos sin dy dy d dx dxd ππθθπθθθθθθθθθ===+-===-+于是得切线的直角坐标方程为13()24y x -=--,即504x y -=.(这是由直线的点斜式得到的,直线的点斜式方程为00()y y k x x -=-,由导数的几何意义知在6πθ=时斜率为1,且该点的直角坐标为31,42), 法线方程为113(()),24124y x --=---即1044x y +-+=.(这是由直线的点斜式方程及在同一点切线斜率与法线斜率为负倒数的关系而得) 四【详解】当10x -≤<时1()()x F x f t dt -=⎰223131(2)()122x x t t dt t t -=+=+-⎰3211.22x x =+-当01x ≤<时,011()()()()x xF x f t dt f t dt f t dt --==+⎰⎰⎰232001()12(1)tx t te t t dt e =++-+⎰0112(1)x t td e =--+⎰010211x t tx t dt e e =--+++⎰01211tx x t x e dt e e --=--+++⎰1ln(1)021t x x x e e -=---++1ln ln 2211x xx x e e e =--++++ 所以3211,1022()1ln ln 2,01112xx x x x x F x e x x e e ⎧+--≤<⎪⎪=⎨⎪-+-≤<⎪++⎩当当五【详解】因为11()ln h ()()()f x hx hf x f x hx ef x ⎛⎫+ ⎪⎝⎭⎛⎫+= ⎪⎝⎭,又 001()1limln lim (ln ()ln ())()h h f x hx f x hx f x h f x h →→⎛⎫+=+- ⎪⎝⎭, 0x ≠ 0ln ()ln ()lim()h f x hx f x x hx→+-=⨯()(ln ())()xf x f x x f x ''=⨯=从而得到 1()1()0()lim ()xf x hf x x h f x hx e ef x '→⎛⎫+= ⎪⎝⎭由题设于是推得()1(ln ())()xf x f x x f x x ''==,即21(ln ())f x x'= 解此微分方程,得 11ln ()f x C x=-+,改写成 1()x f x Ce -=再由条件lim ()1x f x C →+∞==,于是得1().xf x e -=六【详解】这是一阶线性微分方程21y y x'-=-,由通解公式(如果一个一阶线性方程为()()y p x y q x '+=那么通解为()()[()]p x dx p x dxy e q x e dx C -⎰⎰=+⎰)有 22[]dx dx x x y e e dx C -⎰⎰=-+⎰221[]x dx C x =-+⎰221(),12x C x Cx x x=+=+≤≤由曲线2y x Cx =+与1,2x x ==及x 轴围成的图形绕x 轴旋转一周的旋转体的体积为2222131157()()523V x Cx dx C C ππ=+=++⎰ (旋转体的体积公式:设有连续曲线:()()y f x a x b Γ=≤≤,()0f x ≥与直线,x a x b ==及x 轴围成平面图形.该图形绕x 轴旋转一周产生旋转体的体积为2()ba V f x dx π=⎰)取C 使V 最小,由求最值的方法知先求函数的驻点,即0dVdC=的点, 6215()052dV C dC π=+= 解得75.124C =- 又()0V C ''>,故75124C =-为V 的惟一极小值点,也是最小值点,于是所求曲线为275.124y x x =-七【详解】方法1:建立坐标系如下图,由于底部是二次抛物线我们设此抛物线为2y px q =+,由坐标轴的建立知此抛物线过(0,0),(1,1)点,把这两点代入抛物线的方程,得220011p q p q⎧=⨯+⎨=⨯+⎩,所以0,1q p ==. 即底部的二次抛物线是2y x =,11x -≤≤.细横条为面积微元,按所建立的坐标系及抛物线的方程,得到面积微元2dA xdy =,因此压力微元2(1)dp gx h y dy ρ=+- (这是由压力的公式得到的:压力=压强⨯面积)平板ABCD 上所受的总压力为1112(1)hP gx h y dy ρ+=+-⎰其中以1x =代入,计算得21P gh ρ=.抛物板AOB 上所受的总压力为1202(1),P gx h y dy ρ=+-⎰其中由抛物线方程知x =2124()315P g h ρ=+,由题意12:5:4P P =,即251244()315h h =+ 解之得2h =(米)(13h =-舍去),即闸门矩形部分的高应为2m .D八【详解】由103x <<知1x 及13x -()均为正数,故211130(3).22x x x <≤+-= (2()2a b ab +≤,a b 为正数)假设302k x <≤,则再一次用不等式2()2a b ab +≤,得113(3).22k k k x x x +≤+-=由数学归纳法知,对任意正整数2n ≥有302n x <≤.另一方面,1n n n x x x +-20.≤=≥所以{}n x 单调增加.单调增加数列{}n x 有上界,所以lim n n x →∞存在,记为.a由1n x +=两边取极限,于是由极限的运算性质得a =即2230,a a -=解得32a =或0a =,但因10x >且单调增,故0a ≠,所以 3lim 2n n x →∞=.九【详解】左、右两个不等式分别考虑. 先证左边不等式, 方法1:由所证的形式想到用拉格朗日中值定理.ln ln 1(ln ),0.x b ax a b b aξξξ=-'==<<<-而22112a b a bξ>>+中第二个不等式来自不等式222a b ab +>(当0a b <<时),这样就证明了要证明的左边.方法2:用单调性证,将b 改写为x 并移项,命222()()ln ln a x a x x a a xϕ-=--+,有()0a ϕ=. 22222124()()()a ax x a x x a x a x ϕ-'=-+++222222()4()0()()x a ax x a x a x a x --=+>++(当0a x <<),所以,当0x a >>时()x ϕ单调递增. 所以()()0x a ϕϕ>=,故()0b ϕ>, 即222()()ln ln 0a b a b b a a b ϕ-=-->+⇒22ln ln 2b a ab a a b->-+再证右边不等式,用单调性证,将b 改写为x 并移项,命()ln ln ),x x a x aψ=---有()0a ψ=,及21()0,x x ψ'==<所以当0x a >>时,()0x ψ<,再以x b =代入,得ln ln ),b a b a-<-即ln ln b a b a -<-右边证毕.十【详解】从题目结论出发,要证存在唯一的一组123,,λλλ,使得1232()(2)(3)(0)lim0h f h f h f h f L h λλλ→++-==由极限的四则运算法则知,分子极限应为0,即[]1230lim ()(2)(3)(0)h f h f h f h f λλλ→++=由于()f x 在0x =连续,于是上式变形为123(0)()(0).f f λλλ++= 由(0)0,f ≠知123 1.λλλ++= (1)由洛必达法则,1232()(2)(3)(0)limh f h f h f h f L hλλλ→++-=1230()2(2)3(3)lim 2h f h f h f h hλλλ→'''++= (2) 由极限的四则运算法则知分子的极限应是0,即1230lim(()2(2)3(3))0h f h f h f h λλλ→'''++=由于()f x '在0x =连续,于是上式变形为123(23)(0)0f λλλ'++=,由(0)0,f '≠知123230λλλ++= (3)对(2)再用洛必达法则,和()f x ''在0x =连续1231230()4(2)9(3)1lim(49)(0)22h f h f h f h L f λλλλλλ→''''''++''==++ 由(0)0f ''≠,故应有123490λλλ++= (4)将(1)、(3)、(4)联立解之,由于系数行列式11112320,149=≠ 由克莱姆法则知,存在唯一的一组解满足题设要求,证毕.十一【详解】(1) 由题设条件124A B B E -=-,两边左乘A ,得124AA B AB A -=-,即24B AB A =-24AB B A ⇒-=所以 (2)A E B -2AB B =-4488A A E E ==-+4(2)8A E E =-+,⇒(2)4(2)8A E B A E E ---=⇒(2)(2)48A E B A E E E ---⋅=⇒(2)(4)8A E B E E --=⇒1(2)(4)8A EB E E --=根据可逆矩阵的定义知2A E -可逆,且11(2)(4)8A EB E --=-.(2) 由(1)结果知11(2)(4)8A EB E --=-,根据逆矩阵的性质111()kA k A ---=,其中k为不等于零的常数,有1112(4)8(4)8A E B E B E --⎡⎤-=-=-⎢⎥⎣⎦故 18(4)2A B E E -=-+又 1204003204120040120002004002B E ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦(对应元素相减) 因为若()()1A E E A - →初等行变换,对[]4B E E -进行初等行变换,[]3201004120010002001B E E ⎡--⎤⎢⎥-=-⎢⎥⎢⎥-⎣⎦13120010320100002001⎡-⎤⎢⎥→--⎢⎥⎢⎥-⎣⎦、行互换2131200100801300011002+⨯⎡⎤⎢⎥-⎢⎥→-⎢⎥⎢⎥-⎢⎥⎣⎦行行12()8010120130100880011002⨯-⎡⎤⎢⎥-⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦行12211044100130100880011002+⨯⎡⎤-⎢⎥⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦行行 故11104413(4)0881002B E -⎡⎤-⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,代入18(4)2A B E E -=-+中,则 18(4)2A B E E -=-+110442138028821002⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥=--+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦(常数与矩阵相乘,矩阵的每一个元素都需要乘以该常数)220213020042-⎡⎤⎡⎤⎢⎥⎢⎥=--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦020110002⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦(对应元素相加)十二【详解】方法1:记[]1234,,,A αααα=,由234,,ααα线性无关,及123420,αααα=-+即1α可以由234,,ααα线性表出,故1234,,,αααα线性相关,及1234βαααα=+++即β可由1234,,,αααα线性表出,知[][][][]12341234123,,,,,,,(),,3r A r r r A r βααααβααααααα=====系数矩阵的秩与增广矩阵的秩相等,故Ax β=有解.对应齐次方程组0Ax =,其系数矩阵的秩为3,故其基础解系中含有4-3(未知量的个数-系数矩阵的秩)个线性无关的解向量,故其通解可以写成k ξ,η*是Ax β=的一个特解,根据非齐次线性方程组的解的结构定理,知Ax β=的通解为k ξη*+,其中k ξ是对应齐次方程组0Ax =的通解,η*是Ax β=的一个特解,因123420,αααα=-+故[]123412341220,,,010αααααααα⎡⎤⎢⎥-⎢⎥-+-==⎢⎥⎢⎥⎣⎦,故[]1,2,1,0Tξ=-是0Ax =的一个非零解向量,因为0Ax =的基础解系中只含有一个解向量,故[]1,2,1,0Tξ=-是0Ax =的基础解系.又[]1234123411,,,11βαααααααα⎡⎤⎢⎥⎢⎥=+++=⎢⎥⎢⎥⎣⎦,即1111A β⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦故[]1,1,1,1Tη*=是Ax β=的一个特解,根据非齐次线性方程组的解的结构定理,方程组的通解为[][]1,2,1,01,1,1,1T Tk -+.(其中k 是任意常数) 方法2:令[]1234,,,Tx x x x x =,则线性非齐次方程为[]1234,,,Ax x αααα=[]12123434,,,x x x x αααα⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦11223344x x x x ααααβ=+++=已知1234βαααα=+++,故11223344x x x x αααα+++=1234αααα+++将1232ααα=-代入上式,得23122334423234(2)(2)x x x x αααααααααα-+++=-+++⇒21312233442323424223x x x x x αααααααααααα-+++=-+++=+⇒12231334424(2)30x x x x x αααααα+-++--= ⇒12213344(23)()(1)0x x x x x ααα+-+-++-=由已知234,,ααα线性无关,根据线性无关的定义,不存在不全为零的常数使得2233440k k k ααα++=,上式成立当且仅当1213423010x x x x x +=⎧⎪-+=⎨⎪-=⎩ 其系数矩阵为210010100001⎛⎫⎪- ⎪ ⎪⎝⎭,因为3阶子式10001010001=≠,其秩为3,故其齐次线性方程组的基础解系中存在1个(4-3)线性无关的解向量,取自由未知量3x k =,则方程组有解431321,,,23x x k x x k x k =====-+故方程组Ax β=有通解123410232310101x k x k k x k x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.(其中k 是任意常数)。

高等代数考研真题 第一章 多项式

高等代数考研真题  第一章 多项式

第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。

2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。

(2)设f(x),g(x),h(x)∈R[x],而满足以下等式 (x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0 (x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0 证明:x 2+1∣f(x),x 2+1∣g(x) 3、(北邮2002—12分)证明:x d -1∣x n -1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。

4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。

证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。

6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。

7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。

高等代数

高等代数

教材:
北京大学数学系编,高等代数(第三版),高等教育出版社,北京
参考书籍:
张禾瑞,郝炳新,高等代数(第四版),高等教育出版社,北京
姚慕生编著,高等代数,复旦大学出版社,上海(2002)
李师正主编,高等代数解题方法与技巧,高等教育出版社,北京(2004)
曹重光,张显,高等代数方法选讲,哈尔滨出版社,哈尔滨(2001)
徐仲,陆全等编,高等代数(北大第三版)导教.导学.导考,西北工大出版社,西安(2004)
钱吉林,陈良植主编,高等代数方法导论,华中师范大学出版社,武汉(1990)
孙宗明主编,高等代数的内容与方法,兰州大学出版社,兰州(1991)
林亚南,高等代数选讲,厦门大学(2003)
黄洛生,高等代数原理和方法,福建人民出版社,福州(1994)
陈昭木,陈清华,王华雄,林亚南,高等代数,福建教育出版社,福州(1991)
张远达,线性代数原理,上海教育出版社,上海(1980)
普罗斯库烈克夫,线性代数习题集(周晓锺译),人民教育出版社,北京(19 81)
法杰耶夫,索明斯基,高等代数习题集(丁寿田译),高等教育出版社,北京(1987)
杨子胥,高等代数习题解(修订版)上、下册,山东科学技术出版社,济南(2 001)
白述伟,高等代数选讲,黑龙江教育出版社,哈尔滨(1996)
徐德余主编,高等代数评估与测试,四川科学技术出版社,成都(1990)
许以超,线性代数与矩阵,高等教育出版社,北京(1992)
王品超,高等代数新方法,山东教育出版社,济南(1989)。

高等代数书籍

高等代数书籍

高等代数书籍是指专门针对高等代数这一数学分支进行深入研究和介绍的书籍。

这类书籍通常涵盖了高等代数的基本概念、定理、性质以及应用等内容,适合对数学和代数感兴趣的学生、教师以及研究者阅读和学习。

在我国,比较知名的高等代数书籍有:
1. 北京大学数学系编写的《高等代数》(第二版),高等教育出版社出版,该书是普通高等教育“十一五”国家级规划教材之一,内容全面、系统,注重基础知识的理解和训练。

2. 丘维声编写的《高等代数》(第二版),高等教育出版社出版,该书被列为“面向21世纪课程教材”,内容深入浅出,易于理解。

3. 孟道骥编写的《高等代数》,科学出版社出版,该书是“普通高等教育‘十一五’国家级规划教材”,内容丰富,涵盖了高等代数的主要知识点。

此外,还有许多其他的高等代数书籍可供选择,如张禾瑞的《高等代数》、刘仲奎的《高等代数》等。

在选择时,可以根据自己的学习需求和兴趣进行选择。

在选择高等代数书籍时,有几个方面需要考虑:
1. 内容深度和广度:根据个人需求选择适合自己水平的内容,初学者可以选择基础入门类书籍,而已经有一定基础的学生或研究者可以选择内容更深入的书籍。

2. 作者声誉:选择知名作者编写的书籍,通常内容更为可靠和系统。

3. 出版社品牌:选择知名出版社出版的书籍,通常印刷质量和内容质量都更有保障。

4. 读者评价:可以参考其他读者对书籍的评价,以了解书籍的优缺点,帮助自己做出选择。

除了以上提到的书籍,还有许多其他的高等代数书籍值得一读,可以根据自己的实际需求进行选择。

无论选择哪本书,关键是要认真阅读和练习,加深对高等代数的理解和掌握。

高等代数课程教学大纲

高等代数课程教学大纲

《高等代数》课程教学大纲一.课程教学目的与任务本课程是我院数学系数学教育专业的一门重要基础课程。

其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、向量空间、线性变换、欧氏空间、二次型等方面的系统知识。

它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛函分析)提供一些所需的基础理论和知识;另一方面还对提高学生的抽象思维、辑推理及运算能力,开发学生智能,加强“三基”(基础知识、基本理论、基本理论)和培养学生创造性能力等起到重要作用。

二.与各课程的联系本课程是数学专业的后继课程:如近世代数、数论、离散数学、计算方法、微分方程、泛函分析等的先导课程和基础课程。

三.教学时数及分配总学时198,其中课堂讲授 151学时,习题课(包括复习课)47学时。

各学期教学时数安排情况:第二学期:108学时,自第一章至第五章,周学时6第三学期:90学时,自第五章至第九章,周学时5四.讲授内容与要求:第一章基本概念(12学时)一.教学目的和要求:1. 正确理解集合的概念,明确集合的相等、子集、空集、交集、卡氏集等概念及他们之间的关系。

2.掌握映射、满射、单射、双射、映射的合成、可逆映射的概念和映射可逆的充要条件。

3.理解和掌握数学归纳法原理,能熟练运用数学归纳法。

4.理解和掌握整数的性质及带余除法、最大公因数与互素、素数的一些简单性质。

5.掌握数环,数域的概念,能够判别一些数集是否为数环、数域,懂得任意数域都包含有理数域。

二.教学内容:1.1 集合(2学时)1.2 映射(3学时)1.3 数学归纳法(2学时)1.4 整数的一些整除性质(3学时)1.5 数环,数域(2学时)第二章多项式(37学时)一.教学目的和要求:1.掌握数域上一元多项式的概念、运算以及多项式的和与积的次数。

2.正确理解多项式的整除概念和性质。

理解和掌握带余除法。

3.掌握最大公因式的概念、性质、求法以及多项式互素的概念和性质4.理解不可约多项式的概念,掌握多项式唯一因式分解定理。

《高等代数》课程教学标准

《高等代数》课程教学标准

《高等代数》课程教学标准第一部分:课程性质、课程目标与要求《高等代数》课程是我院数学与应用数学、信息与计算科学本科专业的必修课程,是系统地培养数学及其应用人才的重要的基础课程之一。

由于线性问题广泛存在于科学技术的各个领域,而某些非线性总是在一定条件下可以转化为线性问题,因此本课程所介绍的方法广泛地应用于各个学科。

尤其在计算机日益普及的今天,该课程的地位与作用更显得重要。

通过学习本课程,使学生掌握一元多项式及线性代数的基本知识和基础理论,培养解决实际问题的能力,并为学习相关课程如常微分方程、近世代数、泛函分析等及进一步扩大数学知识面奠定必要的数学基础。

同时,通过这门课本身的学习和训练,使学生熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,提高抽象思维、逻辑推理及运算能力,为将来从事相关领域的科学研究和教学工作打好基础。

教学时间应安排在第二学期与第三学期两个学期。

由于高等代数是重点讨论代数学中线性关系经典理论的课程,它具有较强的抽象性与逻辑性。

经过第一个学期的学习,学生已初步适应大学的学习方法,这对学习《高等代数》课程有一定的好处。

第二部分:教材与学习参考书本课程拟采用由北京大学丘维声编写的、高等教育出版社2002年出版的《高等代数》第二版上下两册书,作为本课程的主教材。

为了更好地理解和学习课程内容,建议学习者可以进一步阅读以下几本重要的参考书:1、《高等代数》(第二版),北京大学数学系代数小组,高等教育出版社,19882、《高等代数》,陈昭木、陈清华、王华雄、林亚南,福建教育出版社,19913、《高等代数原理与方法》,黄洛生,福建人民出版社,1994第三部分:教学内容纲要和课时安排第一章预备知识本章主要介绍了学习高等代数所必须的一些预备知识,同时统一了以后常用的一些记号。

通过这一章的学习,学习者要充分理解这些预备知识及熟练掌握常用记号的应用。

特别要对“初等变换”及记号加以重点关注,为进一步学习后续内容打好基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2002年高等代数考研试题
一.(12分)设多项式(),()f x g x 互素,证明: (1)(()(),()())1f x g x f x g x -=; (2) 22(()(),()())1f x g x f x g x -=
二.(8分)()f x 为整系数多项式,且(1)1f =,证明(3)0f ≠.
三.(10分)计算行列式0121
031201
2
3
n n D n =
.
四.(10分)若矩阵A,B.C=AB 满足:秩(B)=秩(C),证明线性方程组BX=O 与CX=O 同解.
五.(8分)对于n 阶方阵A,B,C,D,若D 可逆,是否A B C O ⎛⎫ ⎪⎝⎭与AD BD C
O ⎛⎫

⎝⎭的秩一定相等?若是,请证明;否则,举出反例.
六.(12分)证明二次型
2222
12341234121314232434(,,,)3333222222f x x x x x x x x x x x x x x x x x x x x =+++------
是半正定的,并把1234(,,,)f x x x x 化为标准型.
七.(8分)设3阶方阵A 满足2,A O =123,,ααα是线性空间V 的一组基,如果()123123(,,),,,A βββααα=证明123(,,)L βββ的维数1≤.
八.(12分)设V 的一个线性变换A 满足22A A =,证明: (1)A 的核1(0){2|}A A V ααα-=-∀∈;
(2)A 的值域A V 中的任一非零向量是特征值2的特征向量; (3)1(0)V AV A -=⊕.
九.(10分)若A 为实对称矩阵,则A 的特征值一定是实数.
十.(10分)对于 n 阶方阵A,B 证明:(,)A A '其中表示的转置其余类推 (1)若A ∽B,则A '∽B '(A ∽B 表示A 与B 相似)
(2)称矩阵
00
0001
1()1J λλλλλ⎛⎫ ⎪

⎪= ⎪ ⎪
⎪⎝

为一个Jordan 块,证明
00()()J J λλ'=相似;
(3)若
121()
()()()s s J J A J J λλλλ-⎛⎫

⎪ ⎪'=

⎪ ⎪⎝

,其中()i J λ为Jordan 块
(1,2,,)i s = ,
证明A∽A。

相关文档
最新文档