高等代数课程的基本内容与主要方法

合集下载

高等代数教学大纲(12学分)

高等代数教学大纲(12学分)

高等代数教学大纲(Higher Algebra)前言教学大纲是一门课程的指导性文件.教学大纲的科学化、规范化,对建设良好的教学秩序,提高教学质量,搞好教学管理等方面都有很重要的意义.为此,我们根据学校有关文件,编写了《高等代数》这门课程的教学大纲.《高等代数》这门课程是数学系各专业的必修专业基础课程之一,可为后继课程的学习打下必要的基础.它是数学系各专业硕士研究生入学考试的必考课程.它除培养学生掌握必要的基础知识之外,同时着重训练学生掌握数学结构的观念、公理化的方法、纯形式化的思维,从而在知识结构、综合素质、创新能力等方面对学生加以全面培养和整体提高.本课程的基本内容有: 包括:多项式,行列式,线性方程组, 矩阵,二次型,线性空间, 线λ矩阵,欧几里得内积空间,双线性函数和辛空间.重点是下列几章:多项式,行性变换, -列式,线性方程组, 矩阵,二次型,线性空间, 线性变换,欧几里得内积空间.通过本课程的学习,学生能正确理解矩阵、行列式、线性空间、线性变换、欧几里得空间等有关概念, 能理解并掌握线性方程组理论和多项式的理论,并能熟练地应用它们,为后续课程的学习打下坚实的基础.本课程作为基础课,对其它课程依赖不大,当然,如果在学完《空间解析几何》之后开设效果会更好.本课程作为基础课,应在大学低年级学生中开设,建议对本科一年级学生开设.本课程为一学年课程.教材: 《高等代数学》(第三版)北京大学数学系几何与代数教研室前代数小组, 高等教育出版社,2003年。

参考书:《线性代数》吴赣昌主编,中国人民大学出版社,2006年《高等代数学》姚慕生编, 复旦大学出版社,1999《高等代数新方法》王品超主编,山东教育出版社,1989年《高等代数学》(第二版)张贤科主编,清华大学出版社,2002年《Linear Algebra》S.K.Jain, A.D.Gunawardena,机械工业出版社,2003年建议学时分配课程内容第一章多项式[教学目的与要求]通过本章学习,实现如下目的:(1)理解整除、最大公因式、互素、多项式的不可约性、重因式、本原多项式等概念;(2)熟练掌握整除的性质;(3)熟练掌握最大公因式的求法;(4)熟练掌握有无重因式的判别方法;(5)熟练掌握整系数多项式的有理根的求法;(6)熟练掌握整系数多项式在有理数域上不可约的艾森斯坦判别法;(7)掌握复系数多项式因式分解定理、实系数多项式因式分解定理、有理系数多项式的因式分解定理的应用;(8)掌握韦达定理和多元多项式的基本性质.[教学重点]整除的性质、最大公因式的求法、有无重因式的判别方法、整系数多项式的有理根的求法、整系数多项式不可约的艾森斯坦判别法;复系数多项式因式分解定理、实系数多项式因式分解定理、有理系数多项式的因式分解定理的应用.[教学难点]整系数多项式的有理根的求法、整系数多项式不可约的艾森斯坦判别法.[教学内容]§1.1. 数域数域的定义和例子§1.2. 一元多项式一、一元多项式的定义二、一元多项式的运算和运算律§1.3. 整除的概念一、带余除法二、整除的定义和几个常用的性质§1.4. 最大公因式一、最大公因式的定义和求法二、互素§1.5. 因式分解定理一、不可约多项式的定义和简单性质二、因式分解唯一性定理§1.6. 重因式重因式的定义和性质§1.7. 多项式函数一、余数定理二、多项式的根或零点§1.8. 复系数与实系数多项式的因式分解一、复系数多项式的因式分解定理 二、实系数多项式的因式分解定理§1.9. 有理系数多项式一、本原多项式的定义和高斯引理 二、整系数多项式的有理根的求法 三、爱森斯坦判别法§1.10. 多元多项式多元多项式的定义及其次数§1.11. 对称多项式一、初等对称多项式二、对称多项式基本定理思考题1. 证明:多项式)(x f 整除任意多项式的充要条件是)(x f 是零次多项式.2. 设b a ,为两个不相等的常数.证明:多项式)(x f 被))((b x a x --除所得的余式为ba b bf a af x b a b f a f --+--)()()()(3. 证明:1|1--n d x x 当且仅当n d |.4. 设k 为正整数.证明:)(|x f x k 当且仅当)(|x f x .5. 已知242)(234---+=x x x x x f ,22)(234---+=x x x x x g ,求)(),(x v x u 使))(),(()()()()(x g x f x g x v x f x u =+. 6. 证明:如果)(|)(x f x d ,)(|)(x g x d ,且)()()()()(x g x v x f x u x d +=,则)(x d 是)(x f 与)(x g 的最大公因式.7. 证明:如果1))(),((=x g x f ,1))(),((=x h x f ,则1))()(),((=x h x g x f . 8. 证明:如果1))(),((=x g x f ,则1))(),((=mmx g x f . 9. 若1))(),((21=x f x f ,则对任意的)(x g ,))(),(())(),(())(),()((2121x g x f x g x f x g x f x f =.10.判断下列多项式在有理数域上是否有重因式,若有,则求出重因式,并确定重数(1)1)(24++=x x x f(2)277251815)(2346+-++-=x x x x x x f11.设)(x p 是)(x f '的k 重因式,能否说)(x p 是)(x f 的1+k 重因式,为什么?12.设n 为正整数,证明:如果)(|)(x g x f nn ,则)(|)(x g x f .13.设)(x p 为数域P 上的不可约多项式,)(x f 与)(x g 为数域P 上的多项式.证明:如果)()(|)(x g x f x p +,且)()(|)(x g x f x p ,则)(|)(x f x p ,且)(|)(x g x p .14.设)(x f 为数域P 上的n 次多项式,证明:如果)(|)(x f x f ',则nb x a x f )()(-=,其中P b a ∈,.15.求多项式92)(24++=x x x f 与944)(234-+-=x x x x g 的公共根.16.求多项式61510)(25-+-=x x x x f 的所有根,并确定重数.第二章 行列式[教学目的与要求] 通过本章学习,实现如下目的: (1) 理解行列式的概念;(2) 能熟练应用行列式的性质和展开定理计算行列式; (3) 会用Cramer 法则求解线性方程组. [教学重点]行列式的计算、Cramer 法则. [教学难点] 行列式的定义 [教学内容]§2.1. 引言二阶、三阶行列式与线性方程组的解§2.2. 排列一、排列及排列逆序数的定义 二、奇偶排列§2.3. n 阶行列式 n 阶行列式的定义§2.4. n 阶行列式的性质 n 阶行列式的性质及其推论§2.5. 行列式的计算n 阶行列式的计算§2.6. 行列式按一行一列展开一、n 阶行列式按一行一列展开定理 二、范德蒙(Vandermonde )行列式§2.7. 克拉默(Cramer )法则 克拉默(Cramer )法则§2.8. 拉普拉斯(Laplace )定理 行列式的乘法规则一、拉普拉斯(Laplace )定理 二、行列式的乘法规则思考题1. 求下列排列的逆序数:(1))2(24)12(13n n -; (2)21)1( -n n . 2. 写出四阶行列式中含有因子4123a a 的项,并指出应带的符号. 3.用行列式的定义计算下列行列式:(1)00001002001000nn -; (2)000000053524342353433323125242322211312a a a a a a a a a a a a a a a a . 4.用行列式的性质及行列式的展开定理计算下列行列式:(1)xa a a a x a a a a x a a a a xn nn321212121; (2)na a a +++11111111121,其中021≠n a a a(3)12125431432321-n n n; (4)221222212121211nn n n n na x a a a a a a a x a a a a a a a x +++其中021≠n x x x .(5)x a a a a a x x x n n n +-----122110000010001;(6)nnn n n nn n nna a a a a a a a a a a a21222212222121111---5. 已知4阶行列式D 中的第1行上的元素分别为4,0,2,1-,其余子式分别为1,5,2,1--;第3行上元素的余子式分别为x ,7,1,6-;求行列式D 的值,及x 的值.6.设4阶行列式1234302186427531中第4行元素的余子式分别为44434241,,,M M M M ,代数余子式分别为44434241,,,A A A A ,求44434241432A A A A +++,44434241432M M M M +++.7. 设4阶行列式2211765144334321中第4行元素的代数余子式分别为44434241,,,A A A A ,求4241A A +与4443A A +.8. 设行列式nn0010301002112531-中第1行元素的代数余子式分别为n A A A 11211,,, ,求n A A A 11211+++ .第三章 线性方程组[教学目的与要求] 通过本章学习,实现如下目的:(1) 掌握向量的线性表示、线性相关性的判别法; (2) 掌握极大无关组的求法; (3) 掌握矩阵秩的求法;(4) 掌握线性方程组解情况的判定方法; (5) 掌握齐次线性方程组的基础解系的求法; (6) 掌握非齐次线性方程组解结构定理[教学重点] 向量的线性表示、线性相关性、极大无关组、向量组的秩、矩阵的秩、齐次线性方程组的基础解系.[教学难点] 极大无关组、矩阵的秩.[教学内容]§3.1. 消元法消元法§3.2. n 维向量空间n 维向量及其运算§3.3. 线性相关性一、线性表示二、向量组的线性相关性 三、向量组的极大无关组、秩§3.4. 矩阵的秩矩阵的行秩、列秩、秩§3.5. 线性方程组有解判定定理线性方程组有解判定定理§3.6. 线性方程组解的结构一、齐次线性方程组的解结构 二、非齐次线性方程组的解结构§3.7. 二元高次方程组二元高次方程组可作为选学内容.思考题1.设)1,1,1(1λα+=,)1,1,1(2λα+=,)1,1,1(3λα+=,),,0(2λλβ=.问当λ为何值时(1)β不能由321,,ααα线性表出?(2)β可由321,,ααα线性表出,并且表示法唯一?(3)β可由321,,ααα线性表出,并且表示法不唯一? 2.设)1,2,(1a =α,)0,,2(2a =α,)1,1,1(3-=α,问a 为何值时321,,ααα线性相关?3. 求下列向量组的一个极大无关组,并将其余向量表为该极大无关组的线性组合.(1))5,2,1(1-=α,)1,2,3(2-=α,)17,10,3(3-=α;(2))4,0,1,1(1-=α,)6,5,1,2(2=α,)0,2,1,1(3--=α,)14,7,0,3(4=α. 4.已知21,ββ是非齐次线性方程组b Ax =的两个解,21,αα是其导出组0=Ax 的基础解系,21,k k 是任意常数,则b Ax =的通解是( ).(A)2)(2121211ββααα-+++k k ; (B)2)(2121211ββααα++-+k k ;(C)2)(2121211ββββα-+-+k k ; (D)2)(2121211ββββα++-+k k .5.设A 为秩为3的45⨯矩阵,321,,ααα是非齐次线性方程组b Ax =的三个不同的解,若)0,0,0,2(2321=++ααα,)8,6,4,2(321=+αα,求方程组b Ax =的通解. 6.设b Ax =为4元线性方程组,其系数矩阵A 的秩为3,又321,,ααα是b Ax =的三个解,且)0,2,0,2(1=α,)0,2,2,0(32=+αα,求方程组b Ax =的通解.7.已知β是非齐次线性方程组b Ax =的解,s ααα,,,21 是其导出组0=Ax 的基础解系,证明s αβαβαββ+++,,,,21 是b Ax =解向量组的极大无关组.8.线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++243214312143214321121053153363132k x x x x x x k x x x x x x x x x x ,当21,k k 取何值时,无解?有唯一解?有无穷多解?在方程组有无穷多解时,用导出组的基础解系表示其全部解.第四章 矩阵[教学目的与要求] 通过本章学习,实现如下目的:(1) 能熟练地进行矩阵的各种运算(加、减、数乘、乘、转置、求逆等); (2) 能熟练掌握矩阵的初等变换,理解初等变换和初等矩阵的关系; (3) 能掌握各种求逆矩阵的方法; (4) 会应用分块乘法的初等变换. [教学重点]矩阵的各种运算(加、减、数乘、乘、转置、求逆等);矩阵的初等变换; 初等变换求逆法;分块乘法的初等变换.[教学难点] 分块乘法的初等变换 [教学内容]§2.1. 矩阵的概念的一些背景矩阵的概念§2.2. 矩阵的运算一、矩阵的加法、减法 二、矩阵的乘法三、数与矩阵的乘法 四、矩阵的转置§2.3. 矩阵乘积的行列式与秩一、矩阵乘积的行列式 二、矩阵乘积的秩§2.4. 矩阵的逆一、矩阵可逆的定义 二、伴随矩阵求逆法§2.5. 矩阵的分块一、分块矩阵的概念 二、分块矩阵的运算三、几种分块矩阵的逆矩阵§2.6. 初等矩阵一、初等矩阵及其性质 二、初等变换求逆法§2.7. 分块乘法的初等变换及应用举例一、分块乘法的初等变换二、分块乘法的初等变换应用举例思考题1. 举例说明下列命题是错误的:(1) 若02=A ,则0=A ;(2) 若A A =2,则0=A 或E A =;(3) 若E A =2,则E A =或E A -=; (4) 若AY AX =,且0≠A ,则Y X =. 2. 证明(1)2222)(B AB A B A +±=±成立当且仅当BA AB =; (2)22))((B A B A B A -=-+成立当且仅当BA AB =. 3.已知n n ij a A ⨯=)(为n 阶方阵,写出:(1)2A 的k 行l 列元素; (2)TAA 的k 行l 列元素; (3)A A T的k 行l 列元素. 4. 已知)3,2,1(=α,)31,21,1(=β.设矩阵βαT A =,求n A . 5. 证明:对任意的n m ⨯矩阵A ,T AA 和A A T都是对称矩阵.6. 设A 是n 阶方阵,且E AA T=,1||=A ,求||n E A -.7.已知A 为三阶方阵,且21||=A ,求|2)3(|*1A A --.8.已知⎪⎪⎪⎭⎫ ⎝⎛--=100021201A ,求1*])[(-T A .9.(1)已知⎪⎪⎪⎭⎫ ⎝⎛=300130113A ,矩阵B 满足B A AB 2+=,求B ;(2)已知⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,矩阵B 满足B A E AB +=+2,求B ;(3)已知)1,2,1(-=diag A ,矩阵B 满足E BA BA A 82*-=,求B . 10.已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A .11.(1)证明)()()(B r A r B A r +≤+;(2)若n 阶矩阵B A ,满足0=AB ,证明n B r A r ≤+)()(;(3)若n 阶矩阵A 满足A A =2,证明n E A r A r =-+)()(;(4)若n 阶矩阵A 满足E A =2,证明n E A r E A r =-++)()(. 12.(1)B A ,为两个n 阶方阵,证明||||B A B A AB BA -⋅+=; (2)B A ,分别为m n ⨯和n m ⨯矩阵,证明||||BA E AB E E AB E m n nm -=-=.第五章 二次型[教学目的与要求] 通过本章学习,实现如下目的:(1)掌握用非退化线性替换把二次型化成标准形和规范形的方法; (2)会判断二次型的正定性.[教学重点] 二次型化标准形和规范形的方法;惯性定理;二次型的正定性. [教学难点] 惯性定理 [教学内容]§5.1. 二次型及其矩阵表示一、二次型及其矩阵表示 二、矩阵的合同§5.2. 标准形化二次型为标准形的配方法§5.3. 唯一性一、复二次型的规范形二、实二次型的规范形、惯性定理§5.4. 正定二次型一、正定二次型的概念和判定方法二、半正定二次型简介思考题1.写出下列二次型AX X '的矩阵,其中 (1)⎪⎪⎪⎭⎫⎝⎛---=205213111A ; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211 2. 设二次型32212221442x x x x x x f --+=,分别作下列可逆线性变换,求新二次型的矩阵,(1)Y X ⎪⎪⎪⎭⎫⎝⎛--=100210211; (2)Y X ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2101101121.3.分别用配方法和初等变换法化下列二次型为标准形,并写出所作的非退化线性替换(1)2332223121214322x x x x x x x x x f +++++=; (2)323121622x x x x x x f -+=.4. 分别在实数域和复数域上将3题中的两个二次型进一步化成规范型,并写出所作的非退化线性替换.5. 证明:秩等于r的对称矩阵可以表示成r个秩等于1的对称矩阵之和. 6. 证明:一个实二次型可以分解成两个实系数的一次齐次多项式的乘积的充分必要条件是,它的秩等于2和符号差等于0,或者秩等于1. 7. t 取什么值时,下列二次型是正定的:(1)3231212222214223x x x x x tx x x x f +-+++=; (2)32312123222161024x x x x x tx x x x f +++++=.8. 证明:如果A 正定,则1-A 和*A 也都正定.9.已知m 阶实对称矩阵A 正定,B 是n m ⨯矩阵,证明:AB B T正定的充要条件是n B r =)(.10. 已知A 为实矩阵,证明:)()(A r A A r ='.第六章 线性空间[教学目的与要求] 通过本章学习,实现如下目的:(1)能熟练地判断所给非空集合在指定的运算下能否构成线性空间; (2)会判断所给非空子集能否构成子空间; (3)会判断子空间之间的和是否为直和; (4)会判断两个线性空间的同构;(5)能熟练掌握线性空间基和维数的求法;(6)能熟练求向量在基下的坐标、基到基的过渡矩阵; (7)能熟练地求和空间的维数;(7)能熟练地应用维数公式求交空间的基与维数.[教学重点] 线性空间的定义、子空间的直和、维数公式、线性空间的同构. [教学难点] 线性空间的定义 [教学内容]§6.1. 集合 映射一、集合的概念和运算二、映射的概念、映射的乘法、逆映射§6.2. 线性空间的定义与简单性质一、线性空间的定义 二、线性空间的简单性质§6.3. 维数 基与坐标一、线性表示、线性相关和线性无关、向量组的等价 二、线性空间的基、维数,向量的坐标§6.4. 基变换与坐标变换一、基到基的过渡矩阵 二、坐标变换公式§6.5. 线性子空间一、线性子空间的定义二、线性子空间的维数和基§6.6. 子空间的交与和一、子空间的交 二、子空间的和§6.7. 子空间的直和一、两个子空间的直和 二、多个子空间的直和§6.8. 线性空间的同构一、线性空间同构的定义 二、同构映射的性质思考题1.检验下列集合对于所规定的运算是否构成给定数域上的线性空间:(1) 数域P 上的对角线元素的和为零的所有n 阶方阵所成的集合,对于矩阵的加法和数量乘法;(2) 设},|2{Q b a b a V ∈+=,Q 为有理数域,对于通常数的加法和乘法; (3) 设},|),{(R b a b a V ∈=,R 为实数域,定义加法和数乘如下:),(),(),(21212211b b a a b a b a +=+, ),(),(kb ka b a k = )(R k ∈.(4) 按照通常的数的运算,实数域R 是否构成实数域R 上的线性空间?是否构成复数域C 上的线性空间?(5) 按照通常的数的运算,复数域C 是否构成实数域R 上的线性空间?是否构成复数域C 上的线性空间? (6) +R 是全体正实数组成的集合,定义加法和数乘如下:ab b a =⊕, k a a k =⋅,这里+∈R b a ,,R k ∈.2.证明:在数域P 上的线性空间V 中,成立以下运算律:(1)βαβαk k k -=-)(;(2)αααl k l k -=-)(.这里P l k ∈,,V ∈βα,.3.实数域R 按照通常的乘法构成实数域R 上的线性空间.全体正实数集合+R 对1(6)题中定义的加法和数乘也构成实数域R 上的线性空间,能否据此说明+R 是线性空间R 的一个子空间?+R 是线性空间R 的子空间吗?4. 设)1,2,1(1-=α,)3,1,0(2-=α,)0,1,1(3-=α;)5,1,2(1=β,)1,3,2(2-=β,)2,3,1(3=β,(1) 证明:321,,ααα和321,,βββ都是3R 的基; (2) 求321,,ααα到321,,βββ的过渡矩阵; (3) 求向量)1,4,1(=α在两组基下的坐标.5. 在线性空间nR 中,判断下列哪些子集是子空间,(1)},|),0,,0,{(11R a a a a n n ∈ ;(2)}0|),,,{(121=∑=ni in aa a a ;(3)}1|),,,{(121=∑=ni in aa a a ;(4)},,2,1,|),,,{(21n i Z a a a a i n =∈.6. 举例说明线性空间的两个子空间的并一般不是子空间.两个子空间的并仍是子空间的充要条件是什么?7. 设线性空间V 含有非零向量,21,V V 是V 的任意两个真子空间,证明:V V V ≠⋃21. 8.在线性空间3][x P 中,求向量组21-=x α,x 22=α,x -=13α,24x =α 的一个极大无关组.9. 判断正误,并说明理由.(1)V 是n 维向量空间,V r ∈αα,,1 ,则r αα,,1 是子空间),,(1r L αα 的一组基;(2)n 个向量n αα,,1 是n 维向量空间V 的一组生成元,则n αα,,1 一定是V 的一组基;(3)向量空间V 的维数等于V 的任一生成组所含向量的个数; (4)任一向量空间都有基; (5)若向量空间V 的每一个向量都可以由n αα,,1 唯一的线性表示,则n αα,,1 是V 的一组基;(6)若s αα,,1 与t ββ,,1 的极大无关组分别是r i i αα,,1 与p j j ββ,,1 ,则),,(),,(11t s L L ββαα +的一组基为r i i αα,,1 p j j ββ,,1 .10. 下列向量组是否为3][x P 的基:(1)}22,,1,1{2322++++++x x x x x x x ; (2)},22,1,1{322x x x x x -+--. 11.求下列子空间的维数:(1)3))4,2,5(),2,4,1(),1,3,2((R L ⊆--; (2)][),1,1(22x P x x x x L ⊆---;(3)],[),,(32b a C e e e L x xx⊆,],[b a C 表示区间],[b a 上的全体连续函数空间.12.设⎪⎪⎪⎭⎫ ⎝⎛=000100010A ,求33⨯P 中所有与A 可交换的矩阵组成的子空间的维数和一组基.13.令},|{1A A P A A V n n ='∈=⨯,},|{2A A P A A V n n -='∈=⨯,证明21V V P n n ⊕=⨯. 14.设n αα,,1 是P 上n 维线性空间V 的一组基,A 是P 上的一个s n ⨯矩阵,令A n s ),,(),,(11ααββ =,证明:)(),,(dim 1A r L s =ββ . 15.证明:线性空间][x P 可以和它的真子空间同构.第七章 线性变换[教学目的与要求] 通过本章学习,实现如下目的: (1) 能熟练掌握线性变换的运算; (2) 能理解线性变换与矩阵的关系;(3) 能熟练地求线性变换的特征值与特征向量;(4) 理解哈密尔顿—凯莱(Hamilton-Caylay )定理; (5) 能熟练地将矩阵对角化;(6) 能熟练地求出线性变换的值域与核; (7) 了解若尔当标准形理论.[教学重点] 线性变换与矩阵的关系;线性变换的特征值与特征向量;线性变换的值域与核;矩阵对角化.[教学难点] 矩阵的对角化 [教学内容]§7.1. 线性变换的定义一、线性变换的定义 二、线性变换的简单性质§7.2. 线性变换的运算一、线性变换的乘法 二、线性变换的加法三、线性变换的数量乘法 四、线性变换的逆§7.3. 线性变换的矩阵一、线性变换的矩阵 二、矩阵的相似§7.4. 特征值与特征向量一、线性变换特征值与特征向量的概念 二、线性变换特征值与特征向量的求法 三、哈密顿-凯莱定理§7.5. 对角矩阵一、特征向量的性质二、线性变换的矩阵可以是对角矩阵的条件§7.6. 线性变换的值域与核一、线性变换的值域 二、线性变换的核§7.7. 不变子空间一、不变子空间二、不变子空间与线性变换矩阵的化简§7.8. 若尔当(Jordan )标准形介绍若尔当标准形介绍§7.9. 最小多项式最小多项式概念和性质思考题1.线性空间V 到V 的同构映射称为线性空间V 的自同构.线性空间V 的线性变换和它的自同构有什么异同?2.A 是线性空间V 的线性变换,s αα,,1 是V 中一组线性无关的向量,问)(,),(1s ααA A 是否仍线性无关?试举例说明. 3.设A 是n 维线性空间V 的线性变换,证明:(1)A 是线性空间V 的自同构当且仅当A 把线性无关的向量组变成线性无关的向量组;(2)A 把线性空间V 中某一组线性无关的向量变成一组线性相关的向量的充要条件是A 把V 中某个非零向量变成零向量,即}0{)0(1≠-A ;(3)A 是线性空间V 的自同构当且仅当}0{)0(1=-A .4.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A ,定义4P 的变换为:ξξA =A ,4P∈ξ,证明A 为4P 的线性变换,并求A 的核和象空间以及它们的维数.5.为什么线性变换的问题可以转化为相应的矩阵的问题去研究?)(V L 与nn P ⨯有什么关系?求出线性空间)(V L 的维数.6.设⎪⎪⎭⎫ ⎝⎛=4321A ,求22⨯P 的如下线性变换A 在基⎪⎪⎭⎫ ⎝⎛=00011ε,⎪⎪⎭⎫⎝⎛=00102ε,⎪⎪⎭⎫ ⎝⎛=01003ε,⎪⎪⎭⎫⎝⎛=10004ε下的矩阵. (1)AX X =)(A ; (2)XA X =)(A .7.在3R 中,试求关于基)0,0,1(1=ε,)0,1,1(2=ε,)1,1,1(3=ε的矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=221101211A 的线性变换.8.设三维线性空间线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫⎝⎛---=6788152051115A ,求A 在基321,,βββ下的矩阵,其中321132αααβ++=,321243αααβ++=,321322αααβ++=.若3212αααξ-+=,求)(ξA 在基321,,βββ下的坐标.9.设三维线性空间线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A , 求(1)A 在基123,,ααα下的矩阵;(2)A 在基321,,αααk 下的矩阵;)0(≠k (3)A 在基3221,,αααα+下的矩阵.10.四维线性空间V 的线性变换A 在基4321,,,αααα下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3707011311013412A ,求:(1)A 的值域; (2)A 的核;(3)在A 的值域中选一组基,把它扩充成线性空间V 的基; (4)在A 的核中选一组基,把它扩充成线性空间V 的基.11.若矩阵A 与B 相似,证明:(1) 若A 与B 可逆,则1-A 与1-B 相似; (2) 对任意的常数k ,kA 与kB 相似;(3) 对任意的正整数m ,mA 与mB 相似;(4) 对于任意多项式)(x f ,)(A f 与)(B f 相似.12.若矩阵A 与B 相似,C 与D 相似,证明:⎪⎪⎭⎫⎝⎛C A 00与⎪⎪⎭⎫⎝⎛D B 00相似. 13.取定矩阵n n P A ⨯∈.对于任意的nn P X ⨯∈,定义变换A 为XA AX X -=)(A ,(1) 证明A 为线性空间nn P ⨯的线性变换;(2) 若⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n A λλλ00000021,求线性变换A 在基},1|{n j i E ij ≤≤下的矩阵. 14.在线性空间3P 中,定义线性变换A 为),,(),,(312321x x x x x x =A .令}2,1,|)0,,{(21=∈=i P x x x S i ,则S 是3P 的一个子空间,试问S 是否为线性变换A 的不变子空间.15.V 为数域P 上的一个线性空间,A 为V 的一个线性变换,][)(x P x f ∈,如果S 为线性变换A 的不变子空间,则S 线性变换)(A f 的不变子空间.16.若S 为线性空间V 的线性变换A 和B 的不变子空间,则S 也是B A +和AB 的不变子空间.17.若21,S S 为线性空间V 的线性变换A 的不变子空间,则21S S ⋂,21S S +也是A 的不变子空间. 18.若S 为线性空间V 的线性变换A 的不变子空间,当线性变换A 可逆时,则S 也是1-A的不变子空间. 19.若A 是线性空间V 的线性变换,且满足A A=2,证明:(1)}|)({)0(1V ∈-=-ξξξA A; (2))Im()0(1A A ⊕=-V .20.n 阶矩阵A 和B 相似时,它们有相同的特征多项式.反过来对吗?即n 阶矩阵A 和B 有相同的特征多项式时,哪它们相似吗?试举例说明.21.A 是线性空间V 的线性变换,证明A 可逆的充分必要条件是A 的特征值都非零. 22.证明线性变换A 的一个特征向量不能同时属于两个不同的特征值.23.证明:对角形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021和⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n b b b 0021 相似的充分必要条件是n b b b ,,,21 是n a a a ,,,21 的一个排列.24.设A 是复数域C 上的一个n 阶矩阵,n λλλ,,,21 是A 的全部特征值(按重数计算),证明:(1)如果][)(x C x f ∈是次数大于0的多项式,则)(,),(),(21n f f f λλλ 是)(A f 的全部特征值;(2)如果A 可逆,则n λλλ,,,21 全部不等于零; (3)如果A 可逆,则nλλλ1,,1,121 为1-A 的全部特征值.25.设三维线性空间V 的线性变换A 在基321,,ααα下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=533242111A , 求:(1)A 的特征值和特征向量;(2)是否存在V 的基321,,βββ使得线性变换A 在其下的矩阵为对角形.若这样的基321,,βββ存在,试写出由基321,,ααα到321,,βββ的过渡矩阵T .以及A 在321,,βββ下的矩阵;(3)计算AT T 1-.第八章 -λ矩阵[教学目的与要求] 通过本章学习,实现如下目的: (1)会求-λ矩阵的标准形 (2)会求-λ矩阵的行列式因子(3)会求矩阵A 的初等因子,并能写出A 若尔当标准形 (4)会求矩阵A 的有理标准形[教学重点] 矩阵A 的初等因子,矩阵的A 若尔当标准形 [教学难点] 矩阵相似的条件 [教学内容]§8.1. -λ矩阵一、-λ矩阵的秩 二、-λ矩阵的可逆§8.2. -λ矩阵在初等变换下的标准形一、-λ矩阵的初等变换 二、-λ矩阵的标准形§8.3. 不变因子一、-λ矩阵的行列式因子 二、-λ矩阵的不变因子§8.4. 相似矩阵的条件两个矩阵相似的充要条件§8.5. 初等因子一、初等因子的概念 二、初等因子的求法§8.6. 若尔当(Jordan )标准形理论推导一、若尔当矩阵的概念二、矩阵的若尔当标准形的求法§8.7. 矩阵的有理标准形一、有理形矩阵的概念 二、有理标准形的求法思考题1.求下列矩阵的初等因子、不变因子、行列式因子,并写出若当标准形.(1)⎪⎪⎪⎭⎫ ⎝⎛-----222333111, (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0167121700140013, (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10021*********1. 2. 已知nn P A ⨯∈,证明A 与A '相似.3. 设复矩阵⎪⎪⎪⎭⎫ ⎝⎛-=102002c b a A ,(1)求出A 的一切可能的若当标准形;(2)给出A 可对角化的条件.第九章 欧几里得空间[教学目的与要求] 通过本章学习,实现如下目的:(1) 掌握求标准正交基的施密特(Schmidt )正交化方法;(2) 会判断两个欧氏空间的同构; (3) 理解正交变换与正交矩阵的关系; (4) 会求欧氏空间子空间的正交补;(5) 能熟练地把实对称矩阵正交相似于对角矩阵; (6) 能掌握最小二乘法.[教学重点] 求标准正交基的施密特(Schmidt )正交化方法;欧氏空间的同构;正交变换;对乘变换;实对称矩阵正交相似于对角矩阵的方法.[教学难点] 最小二乘法[教学内容] §9.1. 定义与基本性质一、内积与欧氏空间的定义 二、向量的长度 三、向量的正交四、欧氏空间基的度量矩阵§9.2. 标准正交基一、标准正交基的概念 二、标准正交基的求法§9.3. 同构一、欧氏空间同构的概念 二、欧氏空间同构的充要条件§9.4. 正交变换一、正交变换的定义 二、正交变换的性质§9.5. 子空间一、欧氏空间中子空间的正交 二、欧氏空间子空间的正交补§9.6. 实对称矩阵的标准形一、对称变换二、实对称矩阵的特征值特征向量的性质 三、实对称矩阵的对角化四、二次型化标准形的正交变换法§9.7. 向量到子空间的距离 最小二乘法一、向量到子空间的距离 二、最小二乘法§9.8. 酉空间介绍一、酉空间的概念二、酉空间中的一些重要结论思考题1.下列线性空间对给定的二元函数),(βα是否构成欧氏空间(1)在线性空间nR 中,对任意向量),,(1n a a =α,),,(1n b b =β,定义二元函数∑==ni i i b a 1||),(βα(2)在线性空间nn R ⨯中,对任意向量nn RB A ⨯∈,,定义二元函数)(),(A B tr B A '=2. 在欧氏空间4R 中求出两个单位向量使它们同时与下面三个向量正交.)0,4,1,2(1-=α,)2,2,1,1(2--=α,)4,5,2,3(3=α3. 称||),(βαβα-=d 为向量α和β间的距离.证明:),(),(),(βγγαβαd d d +≤. 4.设α,β是欧氏空间中任意两个非零向量,证明:(1))0(>=k k βα的充分必要条件是α和β间的夹角为零; (2))0(<=k k βα的充分必要条件是α和β间的夹角为π. 5. 已知)0,1,2,0(1=α,)0,0,1,1(2-=α,)1,0,2,1(3-=α,)1,0,0,1(4=α是4R 的一个基,对这个基正交化,求出4R 的一个标准正交基.6. 在欧氏空间]1,1[-C 里,对基32,,,1x x x 正交化,求出]1,1[-C 的一个标准正交基. 7. 已知))0,2,0(),0,0,1((L W =是3R 的一个子空间,求⊥W . 8.设21,,W W W 为欧氏空间V 的子空间,则(1)W W =⊥⊥)(;(2)如果21W W ⊂,则⊥⊥⊂12W W ; (3)⊥⊥⊥⋂=+2121)(W W W W . 9.求正交矩阵T 使得AT T '成对角形.其中A 为(1)⎪⎪⎪⎭⎫ ⎝⎛--510810228211; (2)⎪⎪⎪⎭⎫ ⎝⎛----114441784817. 10.用正交的线性替换化下列二次型为标准形(1)322322214332x x x x x f +++=;(2)43324121242322212222x x x x x x x x x x x x f +--++++=; (3)434232413121222222x x x x x x x x x x x x f ++--+=.第十章 双线性函数与辛空间 *[教学目的与要求] 通过本章学习,实现如下目的:(1)理解线性函数的定义,熟悉线性函数的简单性质 (2)理解线性空间与其对偶空间的同构关系(3)理解双线性度量空间、正交空间、准欧氏空间、辛空间等概念 [教学重点] 对偶空间和对偶基、双线性函数、双线性度量空间、正交空间、准欧氏空间、辛空间等概念。

高等代数课程的基本内容与主要方法

高等代数课程的基本内容与主要方法
21 0 0年第 2期 ( 第 1 o ) 总 R 2
牡 丹 江 教 育 学 院 学 报
J OU RNAL OF M UDANJ ANG OLLE I C GE OFEDUCATI ON
N o.2,2 0 01
S r lNo 1 0 ei . 2 a
高 等 代 数 课 程 的 基 本 内容 与 主 要 方 法
高 等 代 数是 高 等 学校 数 学 专 业 的一 门 必 修 的 专业 基础
课 程 , 是 由多 项 式 理 论 和 线 性 代 数 两 部 分 组 成 。 多 项 式 它
7 整 系 多项 式 有 理 根 的求 法 , 森 斯 坦 判 断 法 。 . 艾
二 、 列 式 行
部 分 以 一元 多项 式 的 因式 分 解 理 论 为 中心 , 性 代 数 部 分 线
法 , 项法 。 拆
内容 与 主 要方 法 进 行 归 纳 和 总 结 , 其 所 涉 及 的知 识 点 之 使
间 的 相 互关 系清 晰 明 了 , 时 也 体 现 出 了 高 等 代 数 课 程 要 同
求 学生 掌握 的知 识 体 系 。


多 项 式

元 多 项 式 理 论 主 要 讨论 了三 个 问题 : 除性 理 论 , 整 因
1 多 项式 除 多项 式 的带 余 除 法 。 .
2用 辗转 相 除 法 求 两 个 多 项 式 的 最 大 公 因式 , 大 公 . 最
因 式 的判 别 法 。
3两 多 项 式 互 素 的 判 别 法 。 .
4 不 可 约 多 项 式 的 判别 法 , 项 式 标 准 分解 式 求 法 , . 多 重 因式 的判 别 法 。

高等代数课程教学大纲.总结

高等代数课程教学大纲.总结

精品文档高等代数( 1)课程教学大纲第一部分前言一、课程基本信息1.课程类别:专业基础课2.开课单位:数学与财经系3.适用专业:数学与应用数学专业4. 备选教材:《高等代数(第三版)》,北京大学数学系几何与代数教研室前代数组编.高等教育出版社,2003.二、课程性质和目标高等代数是数学与应用数学专业的一门重要基础课程。

本课程的主要内容是多项式理论和线性代数理论。

通过本课程的教学,使学生掌握代数基本理论和基本方法,培养学生代数方面的科学的思维、抽象的思维,逻辑推理、提高运算以及解决实际应用的能力,为进一步学习专业后续课程奠定坚实的代数基础。

本课程的教学目的是使学生获得一元多项式,行列式,线性方程组,矩阵等方面的系统知识 , 为进一步学习近世代数,复变函数、等后续课程打下坚实的基础,也为深入理解初等数学、指导中学数学教学提供了高等的专业知识与重要的方法论。

通过本门课程系统的学习与严格的训练,全面掌握高等代数的基本理论知识;培养抽象的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用代数学的理论知识解决实际应用问题的能力。

三、课程学时与学分教学时数:96 学时,其中理论教学81 学时,实践教学15 学时学分数: 6 学分教学时数具体分配:教学内容理论教学实践教学合计(学时)(学时)(学时)第一章多项式26632第二章行列式16319第三章线性方程组22325第四章矩阵17320合计811596第二部分教学内容及其要求第一章多项式1.教学目标:要求学生理解数域的概念;掌握一元多项式的概念、运算及基本性质;掌握带余除法与整除性的关系,会进行相关运算;会求多项式的最大公因式;理解不可约多项式的概念,掌握求重因式的方法;理解多项式在不同的数域的因式分解形式;掌握Eisenstein判别法,会求有理系数多项式的根。

2.教学重点:整除概念,带余除法及整除的性质,最大公因式、互素、辗转相除法、不可约多项式概念、性质,k 重因式与 k 重根的关系。

(完整word版)《高等代数》课程简介

(完整word版)《高等代数》课程简介

《高等代数》课程简介一、课程概述《高等代数》是高等院校数学专业的一门重要的基础课,其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、向量空间、线性变换、欧氏空间和酉空间、二次型、群,环和域简介等方面的系统知识。

它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛函分析)提供一些所需的基础理论和知识。

尤其在本世纪,计算机技术、通讯信息技术和现代生物工程技术已成为最热门的学科领域,这些学科均需要代数学的发展。

《高等代数》是中学代数的继续和提高。

通过这一课程的教学,应使学生掌握为进一步提高专业知识水平所必需的代数基础理论和基本方法,且对初等代数内容有比较深入的了解,并能居高临下地处理中学数学的有关教材,培养学生独立思考、科学抽象思维、正确的逻辑推断能力和迅速准确的运算能力,对开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造能力、树立辩证唯物论观点等有重要的作用。

二、本课程的教学目的及要求1、使学生掌握多项式理论、线性代数理论的基础知识和基本理论,着重培养学生解决问题的基本技能。

2、使学生熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。

3、使学生进一步掌握具体与抽象、特殊与一般、有限与无限等辩证关系,培养其辩证唯物主义观点。

4、逐步培养学生的对知识的发现和创新的能力,训练其对特殊实例(正例和反例)的观察、分析、归纳、综合、抽象概括和探索性推理的能力。

5、使学生对中学数学有关内容从理论上有更深刻的认识,以便能够居高临下地掌握和处理中学数学教材,进一步提高中学数学教学质量。

6、根据教学的实际内容的需要,对课程标准中所列各章内容,分别提出了具体的教学内容与内容要求,教学时必须着重抓住重点内容进行教学。

7、通过本课程教学的主要环节(讲授与讨论,习作课,作业,辅导等),使学生对多项式理论、线性代数的“解析理论”、与“几何理论”及其思想方法有较深的认识和理解,从而有助于学生正确理解《高等代数》的基本概念和论证方法及提高分析问题解决问题的能力。

810高等代数

810高等代数

810高等代数【原创版】目录1.课程简介2.课程目标3.课程内容4.课程安排5.课程资源6.课程评价正文810 高等代数是数学专业的一门重要课程,主要面向数学与应用数学、信息与计算科学等专业的本科生。

该课程旨在帮助学生掌握高等代数的基本理论、方法和应用,培养学生具备较强的抽象思维能力、逻辑推理能力和运算能力,为后续学习矩阵论、线性代数、代数几何等课程打下坚实的基础。

课程内容涵盖了线性代数、抽象代数、域论和格论等四个方面的内容。

其中,线性代数部分包括向量空间、线性变换、特征值与特征向量等内容;抽象代数部分包括群、环、域等基本代数结构及其性质;域论和格论部分主要研究代数结构的性质及其应用。

课程安排共计 16 周,每周安排 2-3 个学时。

教学方式采用讲授与讨论相结合的方式,强调理论知识与实际应用的结合,培养学生的实际解题能力。

课程将按照教材的章节顺序进行讲授,同时根据学生的实际情况适当调整教学进度。

课程资源主要包括教材、习题集和网络资源。

教材采用《高等代数》(第五版)一书,习题集选用《高等代数习题集》。

此外,课程还将利用网络资源,如 MOOC、学术论文等,以丰富课程内容,拓宽学生的视野。

课程评价采用平时成绩与期末成绩相结合的方式。

平时成绩主要包括课堂表现、作业完成情况和课堂测验等;期末成绩主要通过期末考试来评定。

课程要求学生完成规定的作业和课堂测验,积极参与课堂讨论,认真复习备考,以达到课程目标。

通过本课程的学习,学生将能够熟练掌握高等代数的基本理论、方法和应用,具备较强的抽象思维能力、逻辑推理能力和运算能力,为后续学习矩阵论、线性代数、代数几何等课程打下坚实的基础。

《高等代数》课程教学大纲

《高等代数》课程教学大纲

《高等代数》课程教学大纲一、教学大纲说明(一)课程的性质、地位、作用和任务《高等代数》是数学专业本科学生的三门主要基础课程之一。

它不仅是代数学的基础,也是其它数学课程必要的前提。

该课程是为大学一年级的学生开设的,总课时144学时,开设时间为一年。

通过本课程的教学,使学生掌握为进一步提高专业知识水平所必需的代数基础理论和基本方法。

本课程的任务是使学生系统地掌握基本的、系统的代数知识和抽象的严格的代数方法,为后继课程如近世代数、常微分方程、概率论与数理统计、泛函分析、计算方法等提供必须具备的代数知识,也为进一步学习数学与应用数学专业的各门课程所需要的抽象思维能力提供一定的训练。

(二)教学目的和要求通过本课程的学习,使学生掌握高等代数的基本概念、基本理论与基本方法,熟悉代数的语言、工具、方法,具有一定理解问题、分析问题、解决问题的能力。

为今后的学习打下扎实的基础。

1.熟练掌握:集合、映射、单射、满射、双射的概念,第一、第二数学归纳法,带余除法,不可约多项式,线性方程组的消元法,矩阵的行(列)初等变换,矩阵的秩,初等矩阵的性质,可逆矩阵,向量空间的基、维数,线性相关与线性无关,齐次线性方程组的基础解系,线性变换,矩阵特征值、特征向量的概念与求法,内积的定义,正交变换与正交矩阵,二次型的概念及与其矩阵的对应关系。

2.掌握:整数的整除性、素数的性质,集合的表示与运算,辗转相除法,综合除法,多项式的互素,根与系数的关系,重因式及其判定,行列式的性质,行列式的展开,矩阵的乘法,矩阵的行列式,子空间的交与和,坐标,过渡矩阵,线性方程组的特解与通解,线性变换的运算及其形成的向量空间,线性变换的向量空间与矩阵的向量空间的同构,矩阵的相似,几类向量空间的内积,Cauchy不等式,正交基与正交化,三维空间中的几种正交变换,正交变换与正交矩阵的关系,二次型的矩阵的合同及其求法,对称矩阵合同于对角矩阵,复数域上的二次型的规范形、实数域上二次型的惯性定理、规范形、分类,正定二次型的判定。

高等代数课程标准

高等代数课程标准

《高等代数》课程标准一、课程概述高等代数是高等师范院校数学教育专业的一门重要基础课程,本课程的主要内容是多项式理论和线性代数理论.此外,还介绍群丶环丶域的基本概念。

通过本课程的教学,应使学生掌握为进一步提高专业知识水平所必需的代数基础理论和基本方法,并能处理中学数学的有关教材内容。

同时,培养学生的科学思维丶逻辑推理和运算的能力,以及学生的辩证唯物论观点。

在教学中应注意理论联系实际,联系中学教学。

二、课程目标1、知道《高等代数》这门学科的性质、地位、研究对象及内容、研究方法、知识架构、学科进展及未来发展方向。

2、理解该学科的主要概念、基本原理。

如多项式、行列式、矩阵、向量空间、二次型等。

3、掌握该课程的基本方法和计算与证明技巧。

4、学会应用该学科的原理和基本方法解决实际问题,为学习其它课程打下必要的基础,高观点解决中学数学实际问题。

三、课程内容和教学要求本课程主要内容:基本概念、多项式、行列式、线性方程组、矩阵、向量空间、线性变换、欧氏空间、二次型以及群、环和域简介。

教学内容和要求表中的“√”号表示教学知识和技能的教学要求层次。

本标准中打“*”号的内容可作为自学,教师可根据实际情况确定要求或不布置要求。

第一章基本概念第二章多项式第三章行列式第四章线性方程组第五章矩阵第六章向量空间第七章线性变换第八章欧氏空间第九章二次型第十章群丶环和城简介*四、课程实施(一) 课时安排与教学建议高等代数是数学专业的基础必修课,系主干课程。

一般情况下,每周安排5课时,共165课时.具体课时安排如下:(二) 教学组织形式与教学方法要求教学组织形式:采用以教学班为单位进行授课的教学形式。

教学方法要求:以课堂讲授结合多媒体和讨论为主,辅以课外作业、单元测验、答疑等,有条件的话,可以进行专业调查和课程设计,或组织课外兴趣小组,培养学生对该课程知识综合运用能力和发现问题、分析问题、解决问题的能力。

五、教材编写与选用《高等代数》,张禾瑞、郝鈵新。

高等代数 学习指南

高等代数 学习指南

学习指南〇、学习方法只是个传说所谓学习方法就像武侠小说中的“葵花宝典”一样是虚构的。

但别人的经验和教训的确值得借鉴,中学的学习方式必须改变。

学习数学的方法:听课、看书、写作业。

听课之前应了解一下这次课要讲什么内容(用三五分钟的时间翻翻教材就行了);课堂上要认真听老师讲解思想方法,要学习数学的语言表达和规范;课后要用一定的时间看教材,领悟课堂内容,同时还要学习数学的书面语言表达和规范,然后再做作业,写作业要尽量模仿规范的数学表达。

要想学好就得多听、多看、多想、多练。

尽快掌握数学语言,要能把任何想法严谨清楚地表达出来。

学习可分成两步:理解思想方法,再严谨清楚地表达出来。

数学是一种工具,所以它的理论形成的往往有固定的模式:问题→方法→理论→应用和扩展。

代数学研究集合上的运算以及运算之间的关系。

要考察任意两个运算之间的关联。

这种思想贯穿于整个课程。

两种运算之间的联系通常以“换序”的形式表现出来,比如乘法与加法的关系a(b+c)=ab+ac,其中左边是先加再乘,右边是先乘再加。

另一种思想方法是分类:等价关系、不变量、标准形。

重视等式:尽量把关系用等式表示出来。

高等代数的内容有三个基本模块:多项式、矩阵、向量空间。

一、多项式多项式的内容相对独立,除了其自身的价值,主要用作研究矩阵和向量空间的工具。

在学习一元多项式时,可将其与整数集的性质对照学习,因为二者都有带余除法,所以许多性质都相似,用我们熟知的整数性质来类比将使学习一元多项式变得容易。

多项式的基本问题还是根的问题。

如果我们知道了多项式f(x)的所有的根,这个多项式基本就搞清楚了。

但是,f(x)在所考虑的数域上可能根本就没有根,而且即使有根我们也可能找不出来,所以需要换一个思路。

因为a是f(x)的根等价于说x-a是f(x)的因式,所以“寻根”其实就是因式分解。

因式分解唯一定理是多项式内容的核心。

因式分解唯一定理也是“把复杂对象分解成简单对象”这朴素的思想方法的一个具体表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年第2期 牡丹江教育学院学报 No 12,2010(总第120期) JOU RN A L OF M U D AN JIA N G CO LL EG E OF EDU CA T IO NSerial N o 1120[收稿日期]2009-10-25[作者简介]戴立辉(1963-),男,江西乐安人,闽江学院教授,研究方向为矩阵论;林大华(1959-),男,福建福州人,闽江学院副教授,研究方向为代数学;吴霖芳(1979-),女,福建永安人,闽江学院讲师,硕士,研究方向为微分方程;陈翔(1980-),男,福建连江人,闽江学院讲师,硕士,研究方向为代数环论。

[基金项目]/十一五0国家课题/我国高校应用型人才培养模式研究0数学类子课题项目(F IB070335-A2-03)。

高等代数课程的基本内容与主要方法戴立辉 林大华 吴霖芳 陈 翔(闽江学院,福建 福州 350108)[摘 要] 对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时体现高等代数课程要求学生掌握的知识体系。

[关键词] 高等代数;基本内容;主要方法[中图分类号]O 15 [文献标识码]A[文章编号]1009-2323(2010)02-0146-03高等代数是高等学校数学专业的一门必修的专业基础课程,它是由多项式理论和线性代数两部分组成。

多项式部分以一元多项式的因式分解理论为中心,线性代数部分主要包括行列式、线性方程组、矩阵、二次型、线性空间、线性变换、K -矩阵与若尔当标准形、欧几里得空间等。

通过高等代数课程的教学,要求学生掌握一元多项式及线性代数的基本知识和基础理论,熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,提高抽象思维、逻辑推理及运算能力。

根据我们多年的教学经验,本文拟对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时也体现出了高等代数课程要求学生掌握的知识体系。

一、多项式一元多项式理论主要讨论了三个问题:整除性理论,因式分解理论和根的理论。

其中整除性是基础,因式分解是核心。

(一)基本内容1.整除性理论)))整除,最大公因式,互素。

2.因式分解理论)))不可约多项式,典型分解式,重因式。

3.根的理论)))多项式函数,根的个数,根与系数的关系。

(二)主要方法1.多项式除多项式的带余除法。

2.用辗转相除法求两个多项式的最大公因式,最大公因式的判别法。

3.两多项式互素的判别法。

4.不可约多项式的判别法,多项式标准分解式求法,重因式的判别法。

5.多项式函数值的求法,x -c 除多项式f (x )的综合除法,多项式按x -x 0的方幂展开的方法。

6.多项式根的判别法,多项式重根的判别法。

7.整系数多项式有理根的求法,艾森斯坦判断法。

二、行列式行列式是线性方程组理论的一个重要组成部分,是一种重要的数学工具。

(一)基本内容n 级排列及其性质,n 级行列式的概念,行列式的性质,行列式的计算,克拉默规则。

(二)主要方法1.求一个排列的逆序数的方法。

2.行列式的计算方法:定义法,性质法,化为三角形行列式的方法,降级法(按一行或一列展开法、拉普拉斯展开法),化为范得蒙行列式的方法,递推法,加边法,数学归纳法,拆项法。

3.一些特殊行列式的计算方法)))三角形行列式,ab 型行列式,范得蒙行列式,爪型行列式,三对角行列式。

4.克莱姆规则。

三、线性方程组/线性方程组0这部分在理论上解决了线性方程组有解的判定、解的个数及求法、解的结构等。

(一)基本内容1.向量的线性关系)))n 维向量,向量的线性运算,线性组合,线性表出,线性相关,线性无关,极大线性无关组,向量组等价,向量组的秩。

2.矩阵的秩)))矩阵的秩=矩阵行(列)向量组的秩,即矩阵的行(列)秩=矩阵不为零的子式的最大级数,初等变换不改变矩阵的秩,用初等变换计算矩阵的秩。

3.线性方程组的解的情形)))线性方程组有解的判定,线性方程组解的个数,齐次线性方程组解的情形。

4.线性方程组解的结构)))齐次线性方程组的基础解系,齐次线性方程组解的表示,非齐次线性方程组解的表示。

(二)主要方法1.用消元法解线性方程组,利用方程组的增广矩阵的初等变换解方程组的方法。

2.向量组线性相关性的判定法,向量组极大线性无关组的求法,向量组秩的求法。

3.矩阵秩的若干求法:¹子式法:找出矩阵A中不为零的最高级子式。

º初等变换法:用初等变换将矩阵A化为阶梯形矩阵等方法。

4.线性方程组解的公式求法,基础解系的求法,线性方程组有解(即相容)的判别法。

四、矩阵矩阵是线性代数的一个主要研究对象,它是数学及其他学科的一个重要工具。

(一)基本内容1.矩阵运算)))加法与减法、数乘、乘法、转置、可逆矩阵。

2.矩阵的运算规律)))满足加法的交换律,结合律,乘法的结合律,数乘对加法的分配律,乘法对加法的左右分配律。

3.几种特殊矩阵)))数量矩阵,对角矩阵,三角形矩阵,对称矩阵,反对称矩阵。

4.矩阵可逆的条件)))n级矩阵A可逆Z|A|X0Z 秩(A)=n Z A可以通过初等变换化为单位矩阵Z A可以写成初等矩阵的乘积。

5.伴随矩阵的常用性质。

6.矩阵秩的一般性质。

7.矩阵的分块运算。

8.初等矩阵,矩阵的等价及标准形。

9.广义初等变换,广义初等矩阵。

(二)主要方法1.矩阵的加法、减法、数乘、乘法、转置、逆以及混合运算。

2.矩阵可逆性的证明及逆矩阵的求法(伴随矩阵法、初等变换法、矩阵分块法)。

3.伴随矩阵性质的证明及应用。

4.用初等变换解一些矩阵方程:如,若AX=B(|A|X 0),则通过(A s B)初等行变换(E s A-1B),可得X=A-1B.5.矩阵的秩及相关问题的计算和证明。

6.利用分块矩阵进行矩阵的加、减和乘法运算的方法。

五、二次型二次型的理论起源于解析几何中二次曲线和二次曲面的分类,是线性代数的一个主要研究对象。

(一)基本内容1.二次型与矩阵)))二次型的定义,二次型的矩阵和秩,非退化线性替换,矩阵的合同。

2.二次型的标准形与规范形)))配方法,合同变换法,正惯性指数、负惯性指数、符号差,惯性定律。

3.正定二次型)))正定二次型,正定矩阵,顺序主子式,负定二次型,半正定二次型,半负定二次型,不定二次型。

(二)主要方法1.用非退化线性替换化二次型为标准形(配方法、合同变换法)。

2.化二次型为复数域上和实数域上规范形的方法。

3.实二次型正定性的判别法。

4.实对称矩阵正定性的判别法。

六、线性空间线性空间是线性代数的中心内容,是几何空间的抽象和推广,线性空间的概念具体展示了代数理论的抽象性和应用的广泛性。

(一)基本内容1.线性空间的概念与性质。

2.基、维数和坐标)))基、维数和坐标的基本概念,过渡矩阵,基变换与坐标变换。

3.线性子空间及其形成)))子空间的概念,子空间的判别,生成子空间,子空间的交与和,维数公式,子空间的直和。

4.线性空间的同构。

(二)主要方法1.线性空间、线性子空间的判定法。

2.线性空间中向量组线性相关或线性无关的判定法。

3.有限维线性空间的基与维数的确定,向量在一组基下坐标的求法。

4.由一组基到另一组基的过渡矩阵的求法。

5.同一向量在不同基下的坐标的求法。

6.确定线性子空间(如¹齐次线性方程组的解空间,º向量组的生成子空间)的基、维数的方法。

7.确定生成子空间的和与交的基、维数的方法。

8.判定两子空间的和是否为直和的方法。

9.线性空间同构的判定法。

七、线性变换线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用。

线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换或替换等的抽象和推广,它的理论和方法(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其他应用学科,都有极为广泛的应用。

本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换。

(一)基本内容1.线性变换及其运算)))线性变换及其性质,可逆线性变换与逆变换,线性变换的和与差、乘积、数量乘法、幂、多项式,线性变换的值域与核,秩与零度。

2.线性变换与矩阵)))线性变换在基下的矩阵,相似矩阵及其性质。

3.特征值与特征向量)))线性变换(或矩阵)的特征值与特征向量,特征多项式,特征子空间,H amilton-Cay lay 定理。

4.对角化问题)))线性变换可对角化的条件,不变子空间。

(二)主要方法1.线性变换的加法、减法、数量乘法、乘法等运算。

2.线性变换在一组基下的矩阵的求法。

3.线性变换在不同基下的矩阵的求法。

4.线性变换或矩阵的特征值和相应的特征向量的求法。

5.线性变换或矩阵可对角化的判别法。

6.线性变换的值域与核的求法。

7.不变子空间的判定法。

八、K-矩阵与若尔当标准形(一)基本内容K-矩阵,可逆的K-矩阵,K-矩阵(下转第167页)生物等孳息依法享有的占有、使用、收益或者处分的权利。

由此概念可以肯定,将林权的客体限定为林木和林地,有利于构建清晰的林权法律制度框架,有利于明确林权的权利义务边界,有利于规范林权交易行为,有利于划清作为私法性质的林权法律制度和作为公法性质的生态环境保护法律制度的功能,从中构建起林权法律制度逻辑框架:林权包括林木所有权与林地使用权和林木使用权与林地使用权,林权中涉及的环境生态价值和社会公益价值由环境保护法律制度和行政管理法律制度去规范。

二、林权与森林资源所有权首先,森林资源从物理形态方面看,包括林地、林木、野生动植物和微生物等;从价值形态方面看,主要包括涵养水土、防风固沙、净化空气等保护生态环境价值。

因此,森林资源所有权主要是从/自然资源属性0角度规定权利归属,在森林资源所有权项下可以构建多种他物权形态。

林权主要是由森林资源中的几个要素结合而形成的权利,主要是由林地、林木和依托林地、林木生存的植物或者微生物等孳息结合而构建起来的权利。

林权主要是从/财产权利0角度规定权利的归属。

其次,根据5物权法6第四十八条之规定/森林、山岭、草原、荒地、滩涂等自然资源,属于国家所有,但法律规定属于集体所有的除外0,和5森林法6第三条之规定/森林资源属于国家所有,由法律规定属于集体所有的除外0,森林资源所有权的主体只能是国家和集体。

根据5森林法6第二十七条规定:/农村居民在房前屋后、自留地、自留山种植的林木,归个人所有。

城镇居民和职工在自有房屋的庭院内种植的林木,归个人所有。

集体或者个人承包国家所有和集体所有的宜林荒山荒地造林的,承包后种植的林木归承包的集体或者个人所有;承包合同另有规定的,按照承包合同的规定执行。

0建立在林地使用权基础上的林权所有权主体包括自然人在内的任何民事主体。

相关文档
最新文档