专题06 数列与数学归纳法(原卷版)
数列与数学归纳法

数列与数学归纳法一、数列1. 数列的概念- 数列是按照一定顺序排列的一列数。
例如:1,3,5,7,·s就是一个数列,其中的每一个数叫做这个数列的项,第n个数叫做数列的第n项,通常用a_{n}表示。
- 数列的表示方法:- 列举法:如数列2,4,6,8,10,直接将数列的项一一列举出来。
- 通项公式法:如果数列{a_{n}}的第n项a_{n}与n之间的函数关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式。
例如,数列a_{n}=2n,n = 1,2,3,·s,当n = 1时,a_{1}=2×1 = 2;当n = 2时,a_{2}=2×2 = 4等。
- 递推公式法:给出数列的第一项(或前几项),并给出数列的某一项与它的前一项(或前几项)的关系式来表示数列,这种表示数列的式子叫做这个数列的递推公式。
例如,数列{a_{n}}满足a_{1}=1,a_{n}=a_{n - 1}+2(n≥slant2),通过这个递推公式可以依次求出数列的各项。
2. 等差数列- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示。
即a_{n}-a_{n - 1}=d(n≥slant2)。
- 通项公式:a_{n}=a_{1}+(n - 1)d。
例如,已知等差数列a_{1}=3,d = 2,则a_{n}=3+(n - 1)×2=2n + 1。
- 前n项和公式:S_{n}=frac{n(a_{1}+a_{n})}{2}=na_{1}+(n(n - 1))/(2)d。
3. 等比数列- 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数(不为0),那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示。
即frac{a_{n}}{a_{n - 1}}=q(n≥slant2)。
高中数学:“数列与数学归纳法”专题课共33页

16、云无心以出岫,鸟倦飞而知还。 17、童孺纵行歌,斑白欢游诣。 18、福不虚至,祸不易来。 19、久在樊笼里,复得返自然。 20、羁鸟恋旧林,池鱼思故渊。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
专题06 数列与数学归纳法【解析版】

专题6.数列与数学归纳法数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显,小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等变难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.关于数学归纳法的考查,主要与数列、不等式相结合. 预测2021年将保持稳定,主观题将与不等式、函数、数学归纳法等相结合.1.(2020·浙江省高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0,.记b 1=S 2,b n+1=S 2n+2–S 2n ,,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C . D .【答案】D 【解析】对于A ,因为数列为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,,A 正确; 对于B ,由题意可知,,1212b S a a ==+, ∴,,,. ∴,.根据等差数列的下标和性质,由31177,41288+=++=+可得,B 正确; 对于C ,, 当时,,C 正确;对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,,.当时,,∴即24280b b b ->;当时,,∴即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.2.(2020·浙江省高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列 的前3项和是________. 【答案】 【解析】 因为,所以. 即. 故答案为:.3.(2020·浙江省高考真题)已知数列{a n },{b n },{c n }中,1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N . (Ⅰ)若数列{b n }为等比数列,且公比,且1236b b b +=,求q 与{a n }的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差,证明:.【答案】(I )1142,.23n n q a -+==;(II )证明见解析.【解析】(I )依题意21231,,b b q b q ===,而1236b b b +=,即,由于,所以解得,所以.所以,故,所以数列是首项为,公比为的等比数列,所以.所以114n n n n a a c -+==-(*2,n n N ≥∈).所以12142144.3n n n a a --+=+++⋅⋅⋅+=(II )依题意设,由于, 所以, 故1232111143n n n n n n b b b b b c b b b b b ---+-=⋅⋅⋅⋅⋅ . 所以 .由于10,1d b >=,所以,所以. 即,.4.(2020·天津高考真题)已知为等差数列,为等比数列,. (Ⅰ)求和的通项公式;(Ⅱ)记的前项和为,求证:()2*21n n n S S S n ++<∈N;(Ⅲ)对任意的正整数,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列的前项和.【答案】(Ⅰ),;(Ⅱ)证明见解析;(Ⅲ). 【解析】(Ⅰ)设等差数列的公差为,等比数列的公比为q . 由,()5435a a a =-,可得d =1. 从而的通项公式为. 由,又q ≠0,可得,解得q =2, 从而的通项公式为. (Ⅱ)证明:由(Ⅰ)可得, 故21(1)(2)(3)4n n S S n n n n +=+++,, 从而2211(1)(2)02n n n S S S n n ++-=-++<, 所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,, 当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有, 和 ① 由①得 ②由①②得, 由于, 从而得:. 因此,.所以,数列的前2n 项和为.5.(2020·山东省高考真题)已知公比大于的等比数列满足24320,8a a a +==. (1)求的通项公式;(2)记为在区间中的项的个数,求数列的前项和. 【答案】(1);(2)100480S =. 【解析】(1)由于数列是公比大于的等比数列,设首项为,公比为,依题意有,解得解得,或(舍), 所以,所以数列的通项公式为. (2)由于,所以 对应的区间为:,则;对应的区间分别为:,则,即有个;4567,,,b b b b 对应的区间分别为:,则,即有个;对应的区间分别为:,则,即有个; 对应的区间分别为:,则1617314b b b ====,即有个; 对应的区间分别为:,则3233635b b b ====,即有个; 对应的区间分别为:,则64651006b b b ====,即有个.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.一、单选题1.(2020·浙江省桐庐分水高级中学高三期中)数列满足,则该数列从第5项到第15项的和为( ) A .2016 B .1528 C .1504 D .992【答案】C 【解析】因为, 所以,,498448941112152222222212a a a -+++=++=++==--,该数列从第5项到第15项的和为 故选:C2.(2020·浙江杭州市·高一期末)已知等比数列的前项和为,若,,则( ) A .8 B .7C .6D .4【答案】A 【解析】已知为等比数列,,且, 满足,则S 3=8. 故选:A .3.(2020·浙江高三期中)在数列中,,对任意的,,若1262n a a a ++⋅⋅⋅+=,则( ) A .3 B .4C .5D .6【答案】C 【解析】因为对任意的,都有,所以令,则112+=⋅=n n n a a a a , 因为,所以,即,所以数列是以2为首项,2为公比的等比数列, 所以,解得n =5, 故选:C4.(2020·浙江杭州市·高一期末)设公差为d 的等差数列的前n 项和,若4228S S =+,则( ) A .1 B .2C .3D .4【答案】B 【解析】因为4228S S =+, 所以, 所以, 即, 解得, 故选:B.5.(2019·浙江高二学业考试)已知数列是是正项等比数列,且,则的值不可能是() A . B . C . D .【答案】C 【解析】数列是是正项等比数列,且,根据题意,数列是正项等比数列,设其公比为,则, 则且,求得,故的值不可能是, 故选.6.(2020·浙江杭州市·高一期末)已知等差数列的公差为正数,为常数,则( ) A . B . C . D .【答案】A 【解析】 ,, 令,则,解得令,则,即,若,则,与已知矛盾,故解得 等差数列,,即()2111t t -=++,解得 则公差,所以. 故选:A7.(2020·浙江杭州市·高一期末)已知数列满足,()11i i a a i +=+∈N ,则的值不可能是( ) A .2 B .4 C .10 D .14【答案】B 【解析】由得()2221121i i i i a a a a +=+=++, 则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,……,2202022121a a a -=+,以上各式相加可得:()2112022102212 (20202)kk a a a a a a=-=+++++=∑,所以,又,所以21200211a a a =++=,则,因为()11i i a a i +=+∈N ,,则,所以,则或,所以或;则或,所以或;则或或,所以或或;则或或,所以或或;……, 以此类推,可得:或或或或或或或或或或,因此所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21, 所以所有可能取的值为,,,,,,,,,,; 则所有可能取的值为,,,,,,,,,,, 即ACD 都有可能,B 不可能. 故选:B.8.(2020·浙江宁波市·高三期中)公元1202年列昂那多·斐波那契(意大利著名数学家)以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,……,即,,()*12,2n n n a a a n n --=+∈>N ,此数列在现代物理、化学等学科都有着十分广泛的应用。
高三数学题:数列与数学归纳法

高三数学题:数列与数学归纳法数列是数学中重要的概念,也是高中数学中常见的考点。
数学归纳法作为解决数列问题的有效方法,也需要我们掌握和运用。
下面,我们将通过几道高三数学题,来探索数列及数学归纳法的应用。
题目1:已知数列 {an} 的通项公式为 an = 4n + 1,其中 n 是自然数。
求数列的前五项。
题目2:已知数列 {bn} 的前 n 项和 Sn = n(n+1)。
证明数列 {bn} 是等差数列,并求其通项公式。
题目3:已知数列 {cn} 的前 n 项和 Sn = 2^n - 1。
证明数列 {cn} 是等比数列,并求其公比。
解答1:根据题目给出的数列通项公式 an = 4n + 1,我们可以依次代入 n 的值来计算前五项。
当 n = 1 时,an = 4(1) + 1 = 5;当 n = 2 时,an = 4(2) + 1 = 9;当 n = 3 时,an = 4(3) + 1 = 13;当 n = 4 时,an = 4(4) + 1 = 17;当 n = 5 时,an = 4(5) + 1 = 21。
所以,数列的前五项依次为 5,9,13,17,21。
解答2:我们已知数列前 n 项和 Sn = n(n+1)。
要证明数列 {bn} 是等差数列,我们需要使用数学归纳法。
首先,当 n = 1 时,Sn = 1(1+1) = 2,代入数列的首项 b1,我们可以得到 b1 = 2。
其次,假设当 n = k 时,Sn = k(k+1),数列的第 k 项为 bk,即 Sk = bk。
现在来证明当 n = k+1 时,Sn = (k+1)((k+1)+1)。
根据归纳假设,Sk = bk,那么 Sk+1 = bk + (k+1)。
根据题目中给出的数列 {bn} 的前 n 项和公式 Sn = n(n+1),我们有 Sn+1 =(k+1)(k+2)。
因此,当 n = k+1 时,Sn = (k+1)((k+1)+1) 成立,数列 {bn} 为等差数列。
专题06 巧妙求和(原卷)

2022-2023学年小学四年级思维拓展举一反三精编讲义专题06 巧妙求和知识精讲在日常生活和生产中,我们经常会遇到下面的问题:完成一件事情,怎样合理安排才能做到用的时间最少,效果最佳。
这类问题在数学中称为统筹问题。
我们还会遇到“费用最省”、“面积最大”、“损耗最小”等等问题,这些问题往往可以从极端情况去探讨它的最大(小)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1典例分析【典例分析01】有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
【典例分析02】有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399【典例分析03】有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
高中数学练习题附带解析数列与数学归纳法

高中数学练习题附带解析数列与数学归纳法数列与数学归纳法在高中数学中是非常重要的概念,在学习和应用过程中,练习题是最有效的辅助方式。
本篇文章将提供一些常见的高中数学数列与数学归纳法练习题,并附带详细解析。
题目一:1、一个等差数列的首项为3,公差为5,求第10项和第20项。
解析:已知a1=3, d=5. 求a10和a20。
根据公式an=a1+(n-1)d可求出:a10=3+(10-1)×5=48a20=3+(20-1)×5=98因此,数列第10项为48,第20项为98。
题目二:2、求下列数列的通项公式:3,6,9,12 ……解析:根据题目可以确定第一项a1=3,公差d=3。
因为首项为3,而公差为3,可以将通项公式表示为a_n=3+(n-1)×3。
因此,该数列的通项公式为an=3+(n-1)×3。
题目三:3、有一等比数列的第一项为1,公比为2,求第5项和第10项。
解析:已知a1=1,q=2. 求a5和a10。
根据公式an=a1×q^(n-1),可得:a5=1×2^(5-1)=16a10=1×2^(10-1)=512因此,数列第5项为16,第10项为512。
题目四:4、已知数列{an}满足:a1=3, a3=7,每一项都等于前一项与后一项的和,求数列的通项公式。
解析:根据题目可以得到:a1=3a3=7a_n=a_(n-1)+a_(n+1) (n>1)将上述式子表示为:a_(n+1)=a_n+a_(n-1)设数列的通项公式为an=x^n,代入上式可得:x^(n+1)=x^n+x^(n-1)化简可得:x^2-x-1=0解方程可得:x1=(1+sqrt(5))/2 ,x2=(1-sqrt(5))/2由于数列的通项公式必须满足a1=3,因此,x=(1+sqrt(5))/2最终,求得数列的通项公式为an=((1+sqrt(5))/2)^n。
高考数学大一轮复习 第六章 数列与数学归纳法 6.4 数学归纳法课件 理

第四十四页,共六十八页。
2.已知f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的关系(guān xì)是
√A.f(k+1)=f(k)+(2k+1)2+(2k+2)2
B.f(k+1)=f(k)+(k+1)2 C.f(k+1)=f(k)+(2k+2)2 D.f(k+1)=f(k)+(2k+1)2 解析(jiě xī) f(k+1)=12+22+32+…+(2k)2+(2k+1)2+[2(k+1)]2=f(k)+(2k+1)2+ (2k+2)2.
1+15·…·1+2n1-1>
2n+1 2 均成立.
12/11/2021
第二十三页,共六十八页。
多维探究
(tànjiū)
题型三 归纳(guīnà)—猜想—证明
命题点1 与函数有关的证明问题
例2 设函数(hánshù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数. (1)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;
解 S1=a1=-23, S2+S12+2=S2-S1⇒S2=-34, S3+S13+2=S3-S2⇒S3=-45, S4+S14+2=S4-S3⇒S4=-56.
n+1 由1此2/11/猜2021想:Sn=-n+2(n∈N+).
第三十二页,共六十八页。
(2)用数学归纳法证明(zhèngmíng)所得的结论.
12/11/2021
123456
第十二页,共六十八页。
2
PART TWO
题型分类(fēn lèi) 深度剖析
2021/12/11
专题06 数列与数学归纳法(解析版)

1 专题6.数列与数学归纳法数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显,小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等变难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.关于数学归纳法的考查,主要与数列、不等式相结合.预测2021年将保持稳定,主观题将与不等式、函数、数学归纳法等相结合.1.(2020·浙江省高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0,11a d ≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a =D .2428b b b =【答案】D【解析】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+.∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 专题6.数列与数学归纳法
数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显,小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等变难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.关于数学归纳法的考查,主要与数列、不等式相结合.
预测2021年将保持稳定,主观题将与不等式、函数、数学归纳法等相结合
.
1.(2020·浙江省高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0,
11a d ≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能...
成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .2428a a a = D .2428b b b =
2.(2020·浙江省高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭
(N )n *∈ 的前3项和是________. 3.(2020·浙江省高考真题)已知数列{a n },{b n },{c n }中,111112
1,,()n n n n n n n b a b c c a a c c n b +++====-=
⋅∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与{a n }的通项公式;
(Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d +++<+.*()n N ∈ 4.(2020·天津高考真题)已知{}n a 为等差数列,{}n b 为等比数列,
()()115435431,5,4a b a a a b b b ===-=-.
(Ⅰ)求{}n a 和{}n b 的通项公式;
(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;。