操作系统实验三(进程通信)

合集下载

操作系统实验,实验3, 进程管理 (1)

操作系统实验,实验3, 进程管理 (1)

在图形界面上利用终端通过命令“su - ”切换到超级用户,编辑文件 “job”; 按组合键[Ctrl+Alt+F2]切换到第二个虚拟终端(超级用户); 输入命令“at –f job now+1 minute”,设置1分钟后执行at调度内容; 稍等后观察at调度的执行效果,再切换到第一个虚拟终端观察at调度 的执行效果;
切换到第一个虚拟终端观察at调度的执行效果(5分钟后系统将执行重 启调度任务)。
[操作要求2] 设置一个调度,要求1分钟后执行文件job中的作业。 文件job的内容为: find /home/jkx/ -name “*.c” > /home/jkx/fdresult wall user jkx, all code files have been searched out! Please check out. [操作步骤]
续表
守 护 进 程 innd Usenet新闻服务器 功 能 说 明
linuxconf
lpd named netfs network
允许使用本地WEB服务器作为用户接口来配置机器
打印服务器 DNS服务器 安装NFS、Samba和NetWare网络文件系统 激活已配置网络接口的脚本程序
nfsd
portmap postgresql routed sendmail
事件(例如xinetd和lpd)
启动守护进程有如下几种方法
在引导系统时启动 人工手动从shell提示符启动
系统启动script的执行期间 被启动(/etc/rc.d) 任何具有相应执行 权限的用户
使用crond守护进程启动
执行at命令启动
守护进程一般由系统在开机时通过脚本或root

操作系统实验3-进程控制

操作系统实验3-进程控制
DWORD dwVerReq=::GetProcessVersion(dwIdThis);
WORD wMajorReq=(WORD)(dwVerReq>16);
WORD wMinorReq=(WORD)(dwVerReq&0xffff);
::cout<<"Process ID:"<<dwIdThis<<",requires OS:"<<wMajorReq<<wMinorReq<<::endl;
{
//改变优先级
::SetPriorityClass(
::GetCurrentProcess(), //利用这一进程
HIGH_PRIORITY_CLASS); //改变为high
//报告给用户
::cout<<"Task Manager should indicate this "
"process is high priority."<<::endl;
//设置版本信息的数据结构,以便保存操作系统的版本信息
OSVERSIONINFOEX osvix;
::ZeroMemory(&osvix,sizeof(osvix));
osvix.dwOSVersionInfoSize=sizeof(osvix);
//提取版本信息和报告
::GetVersionEx(reinterpret_cast<LPOSVERSIONINFO>(&osvix));
Parent();
}
return 0;
}
分析:程序4-3.cpp说明了一个进程从“生”到“死”的整个一生,第一次执行时,它创建一个子进程,其行为如同“父亲”。在创建子进程之前,先创建一个互斥的内核对象,其行为对于子进程来说,如同一个“自杀弹”。当创建子进程时,就打开了互斥体并在其他线程中进行别的处理工作,同时等待着父进程使用ReleaseMutex()API发出“死亡”信号。然后用Sleep()API调用来模拟父进程处理其他工作,等完成时,指令子进程终止。

电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验电大操作系统实验报告 3 进程管理实验一、实验目的进程管理是操作系统的核心功能之一,本次实验的目的是通过实际操作和观察,深入理解进程的概念、状态转换、进程调度以及进程间的通信机制,掌握操作系统中进程管理的基本原理和方法,提高对操作系统的整体认识和实践能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C 语言,开发工具为 Visual Studio 2019。

三、实验内容及步骤(一)进程的创建与终止1、编写一个 C 程序,使用系统调用创建一个子进程。

2、在父进程和子进程中分别输出各自的进程 ID 和父进程 ID。

3、子进程执行一段简单的计算任务,父进程等待子进程结束后输出结束信息。

以下是实现上述功能的 C 程序代码:```cinclude <stdioh>include <stdlibh>include <unistdh>int main(){pid_t pid;pid = fork();if (pid < 0) {printf("创建子进程失败\n");return 1;} else if (pid == 0) {printf("子进程:我的进程 ID 是%d,父进程 ID 是%d\n",getpid(), getppid());int result = 2 + 3;printf("子进程计算结果:2 + 3 =%d\n", result);exit(0);} else {printf("父进程:我的进程 ID 是%d,子进程 ID 是%d\n",getpid(), pid);wait(NULL);printf("子进程已结束\n");}return 0;}```编译并运行上述程序,可以观察到父进程和子进程的输出信息,验证了进程的创建和终止过程。

(二)进程的状态转换1、编写一个 C 程序,创建一个子进程,子进程进入睡眠状态一段时间,然后被唤醒并输出状态转换信息。

16207318邓嘉操作系统实验三

16207318邓嘉操作系统实验三

操作系统实验第三次实验进程同步实验指导老师:***学号:********姓名:***操作系统第三次实验进程同步实验指导老师:谭朋柳学生:16207318邓嘉4.1 实验目的加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。

了解Linux 系统中IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。

4.2 实验说明在linux 系统中可以利用进程间通信(interprocess communication )IPC 中的3 个对象:共享内存、信号灯数组、消息队列,来解决协作并发进程间的同步与互斥的问题。

1)共享内存是OS 内核为并发进程间交换数据而提供的一块内存区(段)。

如果段的权限设置恰当,每个要访问该段内存的进程都可以把它映射到自己私有的地址空间中。

如果一进程更新了段中数据,那么其他进程立即会看到这一更新。

进程创建的段也可由另一进程读写。

linux 中可用命令ipcs -m 观察共享内存情况。

$ ipcs -m------ Shared Memory Segments --------key shmid owner perms bytes nattch status 0x00000000 327682 student 600 393216 2 dest0x00000000 360451 student 600 196608 2 dest 0x00000000 393220 student 600 196608 2 destkey 共享内存关键值shmid 共享内存标识owner 共享内存所由者(本例为student)perm 共享内存使用权限(本例为student 可读可写)byte 共享内存字节数nattch 共享内存使用计数status 共享内存状态上例说明系统当前已由student 建立了一些共享内存,每个都有两个进程在共享。

计算机操作系统03进程的同步与通信

计算机操作系统03进程的同步与通信

用TS实现进程互斥: repeat while TS(lock) do skip; critical section lock:=false; remainder section until false;
第三章 进程的同步与通信
2. 利用Swap指令实现互斥 Swap指令: procedure (var a,b:Boolean) var temp:Boolean; begin temp:=a; a:=b; b:=temp end
计算机操作系统
第三章 进程的同步与通信
教学目的与要求: 1.掌握进程同步、进程通信、资源、信号量等
基本概念 2.了解解决进程同步问题的软件方法和硬件方
法 3.能用信号量和管程解决简单进程同步问题 4.了解OS/2操作系统的进程同步与通信机制
第三章 进程的同步与通信
重点与难点:
1. 同步、通信、资源、信号量等基本概念
第三章 进程的同步与通信
2 临界资源的定义 临界资源是指并发进程之间在某段时间内同
时提出访问请求的互斥型资源。 例:在A进程正在访问打印机的时候,B进程也提
出对打印机的访问请求,则打印机为临界资源。应 互斥使用临界资源。
三.临界区 1 临界区的定义 是指进程中访问临界资源的那段代码
第三章 进程的同步与通信
第三章 进程的同步与通信
算法3:与算法2相似,只是在flag[i]=ture时表示进 程P[i]要求进入临界区,若此时无其它进程有此要求, 则进程P[i]可进入临界区。对于进程Pi repeat flag[i]:=true; while flag[j] do no_op critical section flag[i]:=false; remainder section until false 该算法的缺点:违背了空闲让进和有限等待原则

进程通信的实验报告

进程通信的实验报告

一、实验目的1. 理解进程通信的概念和作用。

2. 掌握进程通信的常用方法,包括管道、消息队列、信号量等。

3. 通过编程实践,加深对进程通信机制的理解和应用。

二、实验环境操作系统:Linux开发环境:gcc三、实验内容1. 管道通信2. 消息队列通信3. 信号量通信四、实验步骤及分析1. 管道通信(1)实验步骤1)创建一个父进程和一个子进程;2)在父进程中创建一个管道,并将管道的读端和写端分别赋给父进程和子进程;3)在父进程中,通过管道的写端发送数据给子进程;4)在子进程中,通过管道的读端接收父进程发送的数据;5)关闭管道的读端和写端;6)结束进程。

(2)实验分析通过管道通信,实现了父进程和子进程之间的数据传递。

管道是半双工通信,数据只能单向流动。

在本实验中,父进程向子进程发送数据,子进程接收数据。

2. 消息队列通信(1)实验步骤1)创建一个消息队列;2)在父进程中,向消息队列中发送消息;3)在子进程中,从消息队列中接收消息;4)删除消息队列;5)结束进程。

(2)实验分析消息队列是一种进程间通信机制,允许不同进程之间传递消息。

消息队列的创建、发送、接收和删除等操作都是通过系统调用实现的。

在本实验中,父进程向消息队列发送消息,子进程从消息队列接收消息,实现了进程间的消息传递。

3. 信号量通信(1)实验步骤1)创建一个信号量;2)在父进程中,对信号量执行P操作,请求资源;3)在子进程中,对信号量执行V操作,释放资源;4)结束进程。

(2)实验分析信号量是一种用于实现进程同步的机制。

在进程通信中,信号量可以用来协调多个进程对共享资源的访问。

在本实验中,父进程和子进程通过信号量实现了对共享资源的同步访问。

五、实验结果1. 管道通信实验结果:父进程成功向子进程发送数据,子进程成功接收数据。

2. 消息队列通信实验结果:父进程成功向消息队列发送消息,子进程成功从消息队列接收消息。

3. 信号量通信实验结果:父进程成功获取资源,子进程成功释放资源。

进程通讯管理实验报告(3篇)

进程通讯管理实验报告(3篇)

第1篇一、实验目的1. 理解进程通信的概念和原理;2. 掌握进程通信的常用机制和方法;3. 能够使用进程通信机制实现进程间的数据交换和同步;4. 增强对操作系统进程管理模块的理解。

二、实验环境1. 操作系统:Linux2. 编程语言:C3. 开发环境:GCC三、实验内容1. 进程间通信的管道机制2. 进程间通信的信号量机制3. 进程间通信的共享内存机制4. 进程间通信的消息队列机制四、实验步骤1. 管道机制(1)创建管道:使用pipe()函数创建管道,将管道文件描述符存储在两个变量中,分别用于读和写。

(2)创建进程:使用fork()函数创建子进程,实现父子进程间的通信。

(3)管道读写:在父进程中,使用read()函数读取子进程写入的数据;在子进程中,使用write()函数将数据写入管道。

(4)关闭管道:在管道读写结束后,关闭对应的管道文件描述符。

2. 信号量机制(1)创建信号量:使用sem_open()函数创建信号量,并初始化为1。

(2)获取信号量:使用sem_wait()函数获取信号量,实现进程同步。

(3)释放信号量:使用sem_post()函数释放信号量,实现进程同步。

(4)关闭信号量:使用sem_close()函数关闭信号量。

3. 共享内存机制(1)创建共享内存:使用mmap()函数创建共享内存区域,并初始化数据。

(2)映射共享内存:在父进程和子进程中,使用mmap()函数映射共享内存区域。

(3)读写共享内存:在父进程和子进程中,通过指针访问共享内存区域,实现数据交换。

(4)解除映射:在管道读写结束后,使用munmap()函数解除映射。

4. 消息队列机制(1)创建消息队列:使用msgget()函数创建消息队列,并初始化消息队列属性。

(2)发送消息:使用msgsnd()函数向消息队列发送消息。

(3)接收消息:使用msgrcv()函数从消息队列接收消息。

(4)删除消息队列:使用msgctl()函数删除消息队列。

进程控制与进程通信程序实验报告

进程控制与进程通信程序实验报告

进程控制与进程通信程序实验报告一、引言进程是计算机系统中最基本的概念之一,是操作系统中最小的资源管理单位。

进程控制与进程通信是操作系统中重要的内容,涉及到进程的创建、调度和终止,以及进程间的信息传递和同步管理。

本实验旨在通过编写进程控制与进程通信程序,加深对操作系统中进程管理和通信机制的理解。

二、实验目的1. 理解进程的概念和特点,掌握进程的创建、调度和终止方法。

2. 掌握进程通信的基本原理和方法,包括共享内存、管道、消息队列和信号量等。

3. 能够编写简单的进程控制和进程通信程序。

三、实验内容1. 进程控制实验:编写一个程序,实现进程的创建、调度和终止。

通过调用系统调用函数,创建多个子进程,并通过进程控制函数实现父子进程的协作与同步。

2. 进程通信实验:编写一个程序,实现进程间的信息传递和同步管理。

通过共享内存、管道、消息队列或信号量等机制,实现不同进程之间的数据交换和共享。

四、实验步骤1. 进程控制实验:(1)创建父进程和子进程:使用fork()函数创建子进程,并通过判断返回值来区分父子进程。

(2)调度子进程:使用wait()函数等待子进程的结束,以实现父子进程的同步。

(3)终止子进程:使用exit()函数终止子进程的运行。

2. 进程通信实验:(1)共享内存:使用shmget()函数创建共享内存段,使用shmat()函数映射共享内存到进程的地址空间,实现共享数据的读写。

(2)管道:使用pipe()函数创建管道,使用fork()函数创建子进程,通过读写管道实现进程间的数据传输。

(3)消息队列:使用msgget()函数创建消息队列,使用msgsnd()函数向消息队列发送消息,使用msgrcv()函数从消息队列接收消息,实现进程间的消息传递。

(4)信号量:使用semget()函数创建信号量,使用semop()函数对信号量进行P操作和V操作,实现进程间的同步和互斥。

五、实验结果通过实验,我们成功实现了进程的创建、调度和终止,以及进程间的信息传递和同步管理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

暨南大学本科实验报告专用纸
一、实验目的
学习如何利用管道机制或消息缓冲队列进行进程间的通信,并加深对上述通信机制的理解。

提高学生分析问题和解决问题的能力,并学习撰写规范的科学研究报告。

二、实验环境及设备
(一)实验室名称:计算机实验室
(二)主要仪器设备:PC机、Linux操作系统环境
三、实验内容
编写一段程序,使用管道来实现父子进程之间的进程通信。

子进程项父进程发送自己的进程表示符,以及某字符串。

父进程则通过管道读出子进程发来的消息,将消息显示在屏幕上,然后终止。

四、实验调试分析
1、实验函数说明
(1)pipe
头文件:#include<unistd.h>
定义函数:int pipe(int pipedes[2]);
函数说明:
pipe()会建立管道,并将文件描述词由参数pipedes 数组返回。

pipedes[0]为管道里的读取端,所以pipe用read调用的
pipedes[1]则为管道的写入端。

头文件:#include <stdio.h>
函数原型:int sprintf( char *buffer, const char *format [, argument] … );
返回值:字符串长度(strlen)
(3)flock
头文件: #include<sys/file.h>
定义函数: int flock(int fd,int operation);
函数说明: flock()会依参数operation所指定的方式对参数fd所指的文件做各种锁定或解除锁定的动作。

此函数只能锁定整个文件,无法锁定文
件的某一区域。

参数 operation有下列四种情况:
LOCK_SH 建立共享锁定。

多个进程可同时对同一个文件作共享锁定。

LOCK_EX 建立互斥锁定。

一个文件同时只有一个互斥锁定。

LOCK_UN 解除文件锁定状态。

LOCK_NB 无法建立锁定时,此操作可不被阻断,马上返回进程。

通常与LOCK_SH 或LOCK_EX 做OR(|)组合。

单一文件无法同时建立共享锁定和互斥锁定,而当使用dup()或fork()时文件描述词不会继承此种锁定。

返回值返回0表示成功,若有错误则返回-1,错误代码存于errno。

2、实验调试
实验过程中,由于将字符串"is sending a message to parent!"以字符数组的形式存储的,故只申请了31个字符空间,没有多申请一个字符空间存储末尾的'\0',在程序运行时就会出现错误结果,错误结果如下图所示,理论上应该不会出现错误的,因为在write、read函数中都有限制向管道中写入、读出多少个字符的。

但在运行时却出乎意料的出错了,要是申请的空间大于字符个数,就不会出现错误了。

在实验过程中还遇到了另一个问题——字符串"is sending a message to parent!"被两次输出。

怀疑是该字符串被两次的写入了管道,因为查看程序时只发现一个地方有输出该字符串,该字符串是从管道读出的且只输出一次,该字符串在写入管道时也是只写了一次。

总之向管道中写入一次字符串,也读出一次,但是输入该字符串时且输出了两次连续的该字符串,由于实验过程中一直调试该错误程序,没有保留当时的程序,所以没有找到当时错误的原因。

五、实验结果
六、实验源程序
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
int main(int argc,char *argv[]) {
pid_t pid;
int temp,result;
int pipedes[2];
char s[50];
char d[50];
if((pipe(pipedes))==-1) /*创建管道*/
{
perror("pipe");
exit(EXIT_FAILURE);
}
if((pid=fork())==-1) /*创建新进程*/
{
perror("fork");
exit(EXIT_FAILURE);
}else if(pid == 0) /*子进程*/
{
sprintf(s,"%d is sending a message to parent!",getpid());
printf("now,write data to pipe\n");
flock(pipedes[1],1,0);
if((write(pipedes[1],s,50))==-1) /*将数据写入管道*/
{
perror("write");
exit(EXIT_SUCCESS);
}
flock(pipedes[1],0,0);
}else if(pid > 0) /*父进程*/
{
wait(0);
printf("now,read data form pipe\n");
if((read(pipedes[0],d,50))==-1) /*从管道中读取数据*/
{
perror("read");
exit(EXIT_FAILURE);
}
printf("the data from pipe is: %s\n",d);
}
return 0;
}
七、实验心得
通过调用管道了解了父子进程之间的进程通信,子进程项发出的消息,对父进程的影响,以及父进程对子进程所有的内容进行显示。

相关文档
最新文档