Mathematica语句基本命令

合集下载

Mathematica基本运算指令

Mathematica基本运算指令

Mathematica基本运算指令基本运算a+b+c 加a-b 减a b c 或 a*b*c 乘a/b 除-a 负号a^b 次方Mathematica 数字的形式256 整数2.56 实数11/35 分数2+6I 复数常用的数学常数Pi 圆周率,π=3.141592654…E 尤拉常数,e=2.71828182…Degree 角度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity 无限大指定之前计算结果的方法% 前一个运算结果%% 前二个运算结果%%…%(n个%) 前n个运算结果%n 或 Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的大小或模数(Modulus)Arg[z] 复数z的幅角(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最后一个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果常用数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函数,其引数的单位为弧度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三角函数ArcCot[x],ArcSec[x],ArcCsc[x]ArcS inh[x],ArcCosh[x],ArcTanh[x],…反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] 自然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] 小于或等于x的最大整数Ceiling[x] 大于或等于x的最小整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0至1之间的随机数(最新版本已经不用这个函数,改为使用RandomReal[])Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极大/极小值数值设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或 Clear[x] 除去变数x所存的值变数使用的一些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为 x^2 y次方运算子比乘法的运算子有较高的处理顺序四个处理指令Expand[expr] 将 expr展开Factor[expr] 将 expr因式分解Simplify[expr] 将 expr化简成精简的式子FullSimplify[expr] Mathematica 会尝试更多的化简公式,将expr化成更精简的式子多项式/分式转换ExpandAll[expr] 把算式全部展开Together[expr] 将 expr各项通分在并成一项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将 expr拆成数项的和Cancel[expr] 把分子和分母共同的因子消去分母/分子运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分子ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分子多项式转换函数Collect[expr,x] 将 expr表示成x的多项式,如Collect[expr,{x,y,…}] 将 expr分别表示成x,y,…的多项式FactorTerms[expr] 将 expr的数值因子提出,如 4x+2=2(2x+1)FactorTerms[expr,x] 将 expr中把所有不包含x项的因子提出FactorTerms[exp r,{x,y,…}] 将 expr中把所有不包含{x,y,...}项的因子提出函数和指数运算TrigExpand[expr] 将三角函数展开TrigFactor[expr] 将三角函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次方的三角函数化成一次方的基本三角函数之组合ExpT oTrig[expr] 将指数函数化成三角函数或双曲函数TrigToExp[expr] 将三角函数或双曲函数化成指数函数复数、次方乘积ComplexExpand[expr] 假设所有的变数都是实数来对expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对 expr展开PowerExpand[expr] 将项次、系数最高次方Coefficient[expr,form] 于 expr中form的系数Exponent[expr,form] 于 expr中form的最高次方Part[expr,n] 或 expr[[n]] 在 expr项中第n个项代换运算子expr/.x->value 将 expr里所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执行数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将 expr代入不同的x值expr//.{x->value1,y->value2,…} 重复代换到 expr不再改变为止求解方程式的根Solve[lhs==rhs,x] 解方程式lhs==rhs,求xNsolve[lhs==rhs,x] 解方程式lhs==rhs的数值解Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式,求x,y,…NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式的数值解FindRoot[lhs==rhs,{x,x0}] 由初始点x0求lhs==rhs的根四种括号(term) 圆括号,括号内的term先计算f[x] 方括号,内放函数的引数{x,y,z} 大括号或串列括号,内放串列的元素p[[i ]] 或 Part[p,i] 双方括号,p的第i项元素p[[i,j]] 或 Part[p,i,j] p的第i项第j个元素缩短输出指令expr//Short 显示一行的计算结果Short[expr,n] 显示n行的计算结果Command; 执行command,但不列出结果查询物件Command 查询Command的语法及说明Command 查询Command的语法和属性及选择项Aaaa* 查询所有开头为Aaaa的物件定义之查询与清除f[x_]= expr 立即定义函数f[x]f[x_]:= expr 延迟定义函数f[x]f[x_,y_,…] 函数f有两个以上的引数f 查询函数f的定义Clear[f] 或 f=. 清除f的定义Remove[f] 将f自系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的自订函数lhs:=rhs/;condition 当condition成立时,lhs才会定义成rhs If指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test无法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]泰勒展开式Series[expr,{x,x0,n}] 对expr于x0点作泰勒级数展开至(x-x0)n 项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算子a==b 等于a>b 大于a>=b 大于等于aa<=b 小于等于a!=b 不等于逻辑运算子!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表示式展开二维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot几种指令选项预设值说明AspectRatio 1/GoldenRatio 图形高和宽之比例,高/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{?ylabel?},则为y轴之标记。

整理mathematica数学常用命令大全

整理mathematica数学常用命令大全

整理mathematica数学常⽤命令⼤全Mathematica的内部常数Mathematica的常⽤内部数学函数Mathematica中的数学运算符Mathematica的关系运算符注:上⾯的关系运算符也可从基本输⼊⼯具栏输⼊。

如何⽤mathematica求多项式的最⼤公因式和最⼩公倍式如何⽤mathematica求整数的最⼤公约数和最⼩公倍数如何⽤mathematica进⾏整数的质因数分解如何⽤mathematica求整数的正约数如何⽤mathematica判断⼀个整数是否为质数如何⽤mathematica求第n个质数如何⽤mathematica求阶乘如何⽤mathematica配⽅Mathematica没有提供专门的配⽅命令,但是我们可以⾮常轻松地⾃定义⼀个函数进⾏配⽅。

如何⽤mathematica进⾏多项式运算如何⽤mathematica进⾏分式运算如何⽤Mathematica进⾏因式分解如何⽤Mathematica展开如何⽤Mathematica进⾏化简如何⽤Mathematica合并同类项如何⽤Mathematica进⾏数学式的转换如何⽤Mathematica进⾏变量替换如何⽤mathematica进⾏复数运算如何在mathematica中表⽰集合与数学中表⽰集合的⽅法相同,格式如下:下列命令可以⽣成特殊的集合:如何⽤Mathematica求集合的交集、并集、差集和补集如何mathematica⽤排序如何在Mathematica中解⽅程注:⽅程的等号必须⽤:= =如何在Mathematica中解⽅程组Solve[{⽅程组},{变元组}]注:⽅程的等号必须⽤:= =如何在Mathematica中解不等式先加载:Algebra`InequalitySolve` ,加载⽅法为:<然后执⾏解不等式的命令InequalitySolve,此命令的使⽤格式如下:<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载⽅法为:<然后执⾏解不等式组的命令InequalitySolve,此命令的使⽤格式如下:<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载⽅法为:<<--mstheme-->如何⽤mathematica表⽰分段函数如何⽤mathematica求反函数对系统内部的函数⽣效,但对⾃定义的函数不起任何作⽤,也许是⽅法不对。

mathematica循环语句

mathematica循环语句

mathematica循环语句在Mathematica中,循环语句是一种重要的编程结构,可以帮助我们有效地处理大量的数据或重复的任务。

下面我们来看看一些常用的循环语句及其用法。

1. For循环:For循环是最常见的循环语句之一,在Mathematica中的语法结构为For[init, test, incr, body],其中init是初始化语句,test是循环条件,incr是迭代语句,body是循环体。

通过For循环,我们可以方便地对一个范围内的数据进行遍历和处理。

2. While循环:While循环是另一种常见的循环语句,其语法结构为While[test, body],其中test是循环条件,body是循环体。

While 循环会在每次迭代前检查循环条件是否成立,只有在条件为真时才会执行循环体。

3. Do循环:Do循环是一种简单而灵活的循环语句,在Mathematica中的语法结构为Do[expr, n],表示对表达式expr进行n次迭代。

Do循环适合于需要重复执行特定次数的任务。

4. Nest循环:Nest循环是一种递归循环语句,在Mathematica中的语法结构为Nest[f, x, n],表示对函数f进行n次嵌套调用。

Nest循环通常用于处理具有递归结构的问题。

5. Table循环:Table循环是一种快速生成数据的循环语句,在Mathematica中的语法结构为Table[expr, {i, n}],表示对表达式expr进行n次迭代,并将结果保存在列表中。

Table循环常用于生成序列数据或矩阵数据。

6. Map循环:Map循环是一种高阶函数循环语句,在Mathematica 中的语法结构为Map[f, data],表示对数据data中的每个元素应用函数f。

Map循环可以简化对数据的处理过程。

7. Select循环:Select循环是一种条件过滤循环语句,在Mathematica中的语法结构为Select[data, test],表示从数据data中筛选出满足条件test的元素。

mathmatic 基本用法

mathmatic 基本用法

mathmatic 基本用法Mathematica是一种强大的数学软件,它具有广泛的数学计算和可视化功能。

基本用法包括使用Mathematica进行数学运算、求解方程、绘制图表等。

1.数学运算:Mathematica可以进行基本的数学运算,如加减乘除、幂运算、三角函数、对数函数等。

例如,可以输入"2+3"得到结果"5",输入"Sin[π/2]"得到结果"1"。

2.方程求解:Mathematica可以求解各种类型的方程。

例如,可以输入"Solve[x^2 - 3x + 2 == 0, x]"来求解这个二次方程,得到结果"x == 1 || x == 2"。

3.符号计算:Mathematica可以进行符号计算,包括展开、化简、因式分解等。

例如,可以输入"Simplify[(x^2 + x - 6)/(x + 3)]"来化简这个表达式,得到结果"x - 2"。

4.绘图功能:Mathematica可以生成各种类型的图表,包括二维曲线图、三维曲面图、柱状图、散点图等。

例如,可以输入"Plot[Sin[x], {x, 0, 2π}]"来绘制正弦函数的曲线图。

除了基本用法外,Mathematica还有许多其他功能,如矩阵计算、微积分、概率统计、符号推导、动态演示等。

它还提供了大量的内置函数和算法,可以用于求解复杂的数学问题。

使用Mathematica还可以进行科学计算、工程计算、数据分析等各种应用领域。

总之,Mathematica是一款功能强大的数学软件,可以帮助用户进行各种数学计算和可视化操作。

mathematica循环语句

mathematica循环语句

mathematica循环语句1. For循环For循环是最基本的循环语句,它的语法格式为:For[循环变量, 初始值, 终止值, 步长, 循环体]。

其中循环变量是一个变量名,初始值和终止值是循环变量的初始值和终止值,步长是循环变量每次增加或减少的量,循环体是要执行的语句块。

2. While循环While循环是一种条件循环语句,它的语法格式为:While[条件, 循环体]。

其中条件是一个逻辑表达式,循环体是要执行的语句块。

当条件为True时,就一直执行循环体,直到条件为False为止。

3. Do-While循环Do-While循环也是一种条件循环语句,它的语法格式为:Do[循环体]; While[条件]。

其中循环体是要执行的语句块,条件是一个逻辑表达式。

先执行一次循环体,然后判断条件是否为True,如果是则继续执行循环体,直到条件为False为止。

4. Nest循环Nest循环是一种嵌套循环语句,它的语法格式为:Nest[循环体, {循环变量1, 初始值1, 终止值1, 步长1}, {循环变量2, 初始值2, 终止值2, 步长2}, ...]。

其中循环体是要执行的语句块,循环变量1、循环变量2等是循环变量的变量名,初始值、终止值、步长是循环变量的初始值、终止值和步长。

5. Table循环Table循环是一种生成列表的循环语句,它的语法格式为:Table[表达式, {循环变量, 初始值, 终止值, 步长}]。

其中表达式是要生成的列表项,循环变量是一个变量名,初始值、终止值、步长是循环变量的初始值、终止值和步长。

6. Map循环Map循环是一种将函数应用于列表元素的循环语句,它的语法格式为:Map[函数, 列表]。

其中函数是要应用的函数,列表是要操作的列表。

7. Select循环Select循环是一种根据条件选择列表元素的循环语句,它的语法格式为:Select[列表, 条件]。

其中列表是要操作的列表,条件是一个逻辑表达式,用来判断列表元素是否符合条件。

mathematica命令大全

mathematica命令大全

mathematica命令大全如何用mathematica求平均值首先要加载Statistics`DescriptiveStatistics`函数库,加载方法为:<< Statistics`DescriptiveStatistics`或者加载整个统计函数库,加载方法为:<<Statistics`Mean[data]求数据data的算术平均数。

数据data 的格式为:{a1,a2,…}HarmonicMean[data]求数据data的调和平均数。

数据data的格式为:{a1,a2,…} GeometricMean[data]求数据data的几何平均数。

数据data的格式为:{a1,a2,…}如何用mathematica求中位数首先要加载Statistics`DescriptiveStatistics`函数库,加载方法为:<< Statistics`DescriptiveStatistics`或者加载整个统计函数库,加载方法为:<<Statistics`Median[data]求数据data的中位数。

数据data的格式为:{ a1,a2,…}如何用mathematica求众数首先要加载Statistics`DescriptiveStatistics`函数库,加载方法为:<< Statistics`DescriptiveStatistics`或者加载整个统计函数库,加载方法为:<<Statistics`Mode[data]求数据data的众数。

数据data的格式为:{ a1,a2,…}如何用mathematica求方差和标准差首先要加载Statistics`DescriptiveStatistics`函数库,加载方法为:<< Statistics`DescriptiveStatistics`或者加载整个统计函数库,加载方法为:<<Statistics`Variance[data]求数据data的样本方差。

Mathematica基本命令

线形用来设定图象所使用的线形,其设定值Dashing[{实线长度,虚线长 度}]。
线宽用来设定曲线的宽度,其设定值为Thickness[宽度]。线宽是一个相 对数,以占整个图的宽度的比来衡量,线宽应在[0,1]之间选择。
例1:画出y=sin(x) 的图形,并设定曲线的颜色和线宽,函数图象用虚线绘 出。
散点图的常用选项 PlotStyle 一>PointSize[x] :设定散点图中每个点的大小 PlotJoined一>True :用线段连接绘制的点 例2:根据立方表的 y 值作出函数的散点图。
修饰整幅图的外观(第二类选择项)
Background一>GrayLevel [x](或 RGBColor [x,y,z]):指定图的背 景颜色
Automatic,设置None则不显示刻度记号 Frame一>True :在图形周围是否加框 FrameLabel一>“xxxx”:确定框的周围是否加标志,默认值为
False 例4:画出f(x)=Sinx的图象,但不显示刻度,且标注坐标名称,
x轴为time,y轴为height。
图形的组合与再现
Show[图形名称,选择项]: 再现一个已做好的图形 Show[图1,图2,…,选择项]:再现一组已做好图形 Show[GraphicsArray[{plot1,plot2,…}]]:将图形横向并排 Show[GraphicsArray[{plot1},{plot2},…}]]:将图形垂直排列 Show[GraphicsArray[{{plot1,plot2},…}]]:将图形以二维矩阵的
PlotLabel一>“xxxx” : 确定图的标题为 xxxx 例3:利用参数作图方法同时画出单位圆x2+y2=1和抛物线y= x2

mathmatics常用命令

基本操作1、 a*b 可表示为a b (中间加空格)2、 N[expr,n] 指定结果数字位数,而N[expr]可得到默认小数位数的近似值3、 Abs[x] 绝对值4、 % 表示上一个运算结果 %% 表示上面倒数第二个运算结果 ……以此类推 %n 输出行Out[n]上的结果代号5、 /. 替代符 如定义p 代表一多项式,则 p/.a->x 表示用a 代替p 中的x6、 取消变量赋值 Clear[p]数的操作1、GCD[a,b,c] 计算a ,b ,c 的最大公约数2、LCM[a,b,c] 计算a ,b ,c 的最小公倍数多项式操作1、 Expand[expr] 将多项式展开2、 Factor[expr] 将多项式分解因式3、 Simplify[expr] 将多项式化简4、 Together[expr] 对有理式通分5、 Apart[expr] 对有理式拆分6、 Collect[expr,x] 对多项式中的x 合并同类项7、 Coefficient[expr,form] 给出expr 中form 项前的系数8、 Exponent[expr,form] 给出expr 中form 项的最高次数函数功能1、 一元函数 f[x_]:=expr2、 二元函数 f[x_,y_]:=expr3、 分段函数 f[x_]:=expr1; x 范围f[x_]:=expr2; x 的范围4、 函数调用 如f[3] 或 f[3,4]导数和积分1、 D[f,{x,n}] 求函数f 关于变量x 的n 次偏导,默认为1次求导2、 D[f,x] 求函数f 的全导数3、 Integrate[f,x] 求不定积分, 也可以用符号()f x dx ⎰表示4、 Integrate[f,{x,a,b}] 求定积分, 也可以用符号()ba f x dx ⎰表示5、 Integrate[f,{x,a,b},{y,c,d}] 求二重积分, 也可以用符号()bda c dx f x dy ⎰⎰表示求解方程和方程组1、 一元简单代数方程求解 Solve[expr = = 0,x]2、 多元简单代数方程求解 Solve[{expr1==0,expr2==0},{x,y}]3、 一元超越方程求解 FindRoot[expr==0,{x,a}] 其中a 为要求根的初始值,求解结果依赖初始值的选择4、 多元超越方程求解FindRoot[{expr1==0,expr2==0},{x,a},{y,b}] 其中a ,b 为初始值表与矩阵1、表与Table函数(1)一维表如a={1,2,3}(2)二维表如aa={{1,2,3},{2,3,4}}(3)从表中取出元素a[[]] 如a[[2]]得到结果为{2,3,4}aa[[2,3]]得到结果为4(4)Table 可以生成有规律的表,可以用下标计算如Table[i^2,{i,1,6}] 结果为{1,4,9,16,25,36}Table[i-j,{i,3},{j,2}] 结果为{{0,-1},{1,0},{2,1}} 2、矩阵的表示(1)行向量{{a,b,c}} 列向量{{a},{b},{c}}(2)表//MatrixForm 可以将表直观的反应出来(3)DiagonalMatrix[{a,b,c}] 产生对角阵(4)IdentityMatrix[n] 产生n维单位阵3、矩阵的运算(1)数乘* 矩阵乘法·(2)Det[A] 求方阵A的行列式(3)Minors[A,k] 给出矩阵A的所有k阶子式(4)Transpose[A] 对矩阵A转置(5)Dimensions[A] 给出矩阵A的维数(6)Inverse[A] 求方阵A的逆矩阵(7)RowReduce[A] 用初等行变换将矩阵化为规范阶梯阵(8)MatrixPower[A,n] 求方阵的n次幂A n基本作图函数1、一般作图Plot[f,{x,xmin,xmax}]2、离散点作图ListPlot[{{x1,y1},{x2,y2},{x3,y3},{x4,y4}},其他命令]Prolog →AbsolutePointSize[n] 改变n可以调整点的大小PlotJoined →True 用光滑曲线把散点图连起来3、参数方程作图ParametricPlot[{fx,fy},{t,min,max},其他命令]AspectRatio →n 调整坐标的横纵坐标显示比为n4、利用函数包做特殊图形导入<<类名`包名`(1)极坐标方程图像的绘制<<Graphics`Graphics`PolarPlot[f,{t,min,max}](2)隐函数方程图像的绘制<<Graphics`ImplicitPlot`ImplicitPlot[f==0,{x,min,max}]5、三维作图Plot3D[f,{x,min,max},{y,min,max},其他命令]PlotRange →{a,b} 设置y轴的显示范围PlotPoints →n 设置取点密度,n越大,图形越精细。

Mathematica常用命令

Mathe‎m atic‎a常用命令‎软件学习‎2010-‎10-19‎21:0‎2:15 ‎阅读127‎评论0 ‎字号:‎大中小订‎阅 .‎M athe‎m atic‎a的内部常‎数Pi ‎,或π(‎从基本输入‎工具栏输入‎,或“E‎s c”+“‎p”+“E‎s c”)圆‎周率πE‎(从基本‎输入工具栏‎输入, 或‎“Esc”‎+“ee”‎+“Esc‎”)自然对‎数的底数e‎I (从‎基本输入工‎具栏输入,‎或“Es‎c”+“i‎i”+“E‎s c”)虚‎数单位i‎I nfin‎i ty, ‎或∞(从基‎本输入工具‎栏输入 ,‎或“Es‎c”+“i‎n f”+“‎E sc”)‎无穷大∞‎D egre‎e或°(‎从基本输入‎工具栏输入‎,或“Es‎c”+“d‎e g”+“‎E sc”)‎度Mat‎h emat‎i ca的常‎用内部数学‎函数指数‎函数Exp‎[x]以e‎为底数对‎数函数Lo‎g[x]自‎然对数,即‎以e为底数‎的对数L‎o g[a,‎x]以a为‎底数的x的‎对数开方‎函数Sqr‎t[x]表‎示x的算术‎平方根绝‎对值函数A‎b s[x]‎表示x的绝‎对值三角‎函数(自‎变量的单位‎为弧度)S‎i n[x]‎正弦函数‎C os[x‎]余弦函数‎Tan[‎x]正切函‎数Cot‎[x]余切‎函数Se‎c[x]正‎割函数C‎s c[x]‎余割函数‎反三角函数‎A rcSi‎n[x]反‎正弦函数‎A rcCo‎s[x]反‎余弦函数‎A rcTa‎n[x]反‎正切函数‎A rcCo‎t[x]反‎余切函数‎A rcSe‎c[x]反‎正割函数‎A rcCs‎c[x]反‎余割函数‎双曲函数S‎i nh[x‎]双曲正弦‎函数Co‎s h[x]‎双曲余弦函‎数Tan‎h[x]双‎曲正切函数‎Coth‎[x]双曲‎余切函数‎S ech[‎x]双曲正‎割函数C‎s ch[x‎]双曲余割‎函数反双‎曲函数Ar‎c Sinh‎[x]反双‎曲正弦函数‎ArcC‎o sh[x‎]反双曲余‎弦函数A‎r cTan‎h[x]反‎双曲正切函‎数Arc‎C oth[‎x]反双曲‎余切函数‎A rcSe‎c h[x]‎反双曲正割‎函数Ar‎c Csch‎[x]反双‎曲余割函数‎求角度函‎数ArcT‎a n[x,‎y]以坐标‎原点为顶点‎,x轴正半‎轴为始边,‎从原点到点‎(x,y)‎的射线为终‎边的角,其‎单位为弧度‎数论函数‎G CD[a‎,b,c,‎...]最‎大公约数函‎数LCM‎[a,b,‎c,...‎]最小公倍‎数函数M‎o d[m,‎n]求余函‎数(表示m‎除以n的余‎数)Qu‎o tien‎t[m,n‎]求商函数‎(表示m除‎以n的商)‎Divi‎s ors[‎n]求所有‎可以整除n‎的整数F‎a ctor‎I nteg‎e r[n]‎因数分解,‎即把整数分‎解成质数的‎乘积Pr‎i me[n‎]求第n个‎质数Pr‎i meQ[‎n]判断整‎数n是否为‎质数,若是‎,则结果为‎T rue,‎否则结果为‎F alse‎Rand‎o m[In‎t eger‎,{m,n‎}]随机产‎生m到n之‎间的整数‎排列组合函‎数Fact‎o rial‎[n]或n‎!阶乘函数‎,表示n的‎阶乘复数‎函数Re[‎z]实部函‎数Im[‎z]虚部函‎数Arg‎(z)辐角‎函数Ab‎s[z]求‎复数的模‎C onju‎g ate[‎z]求复数‎的共轭复数‎Exp[‎z]复数指‎数函数求‎整函数与截‎尾函数Ce‎i ling‎[x]表示‎大于或等于‎实数x的最‎小整数F‎l oor[‎x]表示小‎于或等于实‎数x的最大‎整数Ro‎u nd[x‎]表示最接‎近x的整数‎Inte‎g erPa‎r t[x]‎表示实数x‎的整数部分‎Frac‎t iona‎l Part‎[x]表示‎实数x的小‎数部分分‎数与浮点数‎运算函数N‎[num]‎或num/‎/N把精确‎数num化‎成浮点数(‎默认16位‎有效数字)‎N[nu‎m,n]把‎精确数nu‎m化成具有‎n个有效数‎字的浮点数‎Numb‎e rFor‎m[num‎,n]以n‎个有效数字‎表示num‎Rati‎o nali‎z e[fl‎o at]将‎浮点数fl‎o at转换‎成与其相等‎的分数R‎a tion‎a lize‎[floa‎t,dx]‎将浮点数f‎l oat转‎换成与其近‎似相等的分‎数,误差小‎于dx最‎大、最小函‎数Max[‎a,b,c‎,...]‎求最大数‎M in[a‎,b,c,‎...]求‎最小数符‎号函数Si‎g n[x]‎Math‎e mati‎c a中的数‎学运算符‎a+b 加‎法a-b‎减法a*‎b (可用‎空格键代替‎*)乘法‎a/b (‎输入方法为‎:“ Ct‎r l ” ‎+ “ /‎” ) ‎除法a^‎b (输入‎方法为:“‎Ctrl‎” + ‎“ ^ ”‎)乘方‎-a 负号‎Math‎e mati‎c a的关系‎运算符=‎=等于<‎小于>大‎于<=小‎于或等于‎>=大于或‎等于!=‎不等于注‎:上面的关‎系运算符也‎可从基本输‎入工具栏输‎入。

(完整版)mathematica命令大全

<< Statistics`DescriptiveStatistics`
或者加载整个统计函数库,加载方法为:
<<Statistics`
求数据data的众数。

数据data的格式为:{ a1,a2,…}
Mode[data]
如何用mathematica求方差和标准差
首先要加载Statistics`DescriptiveStatistics`函数库,加载方法为:
<< Statistics`DescriptiveStatistics`
或者加载整个统计函数库,加载方法为:
<<Statistics`
求数据data的样本方差。

数据data的格式为:{ a1,a2,…} Variance[data]
VarianceMLE[data] 求数据data的母体方差。

数据data的格式为:{ a1,a2,…} StandardDeviation[data] 求数据data的样本标准差。

数据data的格式为:{a1,a2,…} StandardDeviationMLE[data] 求数据data的母体标准差。

数据data的格式为:{ a1,a2,…}
如何用mathematica求协方差和相关系数
首先要加载Statistics`MultiDescriptiveStatistics`函数库,加载方法为:
<< Statistics`MultiDescriptiveStatistics`
或者加载整个统计函数库,加载方法为:
<<Statistics`
求数据data1和data2的样本协方差。

数据的格式为:{a1,a2,…}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mathematica的内部常数Pi , 或π(从基本输入工具栏输入, 或“Esc”+“p”+“Esc”)圆周率π E (从基本输入工具栏输入, 或“Esc”+“ee”+“Esc”)自然对数的底数e I (从基本输入工具栏输入, 或“Esc”+“ii”+“Esc”)虚数单位iInfinity, 或∞(从基本输入工具栏输入 , 或“Esc”+“inf”+“Esc”)无穷大∞Degree 或°(从基本输入工具栏输入,或“Esc”+“deg”+“Esc”)度Mathematica的常用内部数学函数指数函数Exp[x]以e为底数对数函数Log[x]自然对数,即以e为底数的对数Log[a,x]以a为底数的x的对数开方函数Sqrt[x]表示x的算术平方根绝对值函数Abs[x]表示x的绝对值三角函数(自变量的单位为弧度)Sin[x]正弦函数Cos[x]余弦函数Tan[x]正切函数Cot[x]余切函数Sec[x]正割函数Csc[x]余割函数反三角函数ArcSin[x]反正弦函数ArcCos[x]反余弦函数ArcTan[x]反正切函数ArcCot[x]反余切函数ArcSec[x]反正割函数ArcCsc[x]反余割函数双曲函数Sinh[x]双曲正弦函数Cosh[x]双曲余弦函数Tanh[x]双曲正切函数Coth[x]双曲余切函数Sech[x]双曲正割函数Csch[x]双曲余割函数反双曲函数ArcSinh[x]反双曲正弦函数ArcCosh[x]反双曲余弦函数ArcTanh[x]反双曲正切函数ArcCoth[x]反双曲余切函数ArcSech[x]反双曲正割函数ArcCsch[x]反双曲余割函数求角度函数ArcTan[x,y]以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度数论函数GCD[a,b,c,...]最大公约数函数LCM[a,b,c,...]最小公倍数函数Mod[m,n]求余函数(表示m除以n的余数)Quotient[m,n]求商函数(表示m除以n的商)Divisors[n]求所有可以整除n的整数FactorInteger[n]因数分解,即把整数分解成质数的乘积Prime[n]求第n个质数PrimeQ[n]判断整数n是否为质数,若是,则结果为True,否则结果为False Random[Integer,{m,n}]随机产生m到n之间的整数排列组合函数Factorial[n]或n!阶乘函数,表示n的阶乘复数函数Re[z]实部函数Im[z]虚部函数Arg(z)辐角函数Abs[z]求复数的模Conjugate[z]求复数的共轭复数Exp[z]复数指数函数求整函数与截尾函数Ceiling[x]表示大于或等于实数x的最小整数Floor[x]表示小于或等于实数x的最大整数Round[x]表示最接近x的整数IntegerPart[x]表示实数x的整数部分FractionalPart[x]表示实数x的小数部分分数与浮点数运算函数N[num]或num//N把精确数num化成浮点数(默认16位有效数字)N[num,n]把精确数num化成具有n个有效数字的浮点数NumberForm[num,n]以n个有效数字表示numRationalize[float]将浮点数float转换成与其相等的分数Rationalize[float,dx]将浮点数float转换成与其近似相等的分数,误差小于dx最大、最小函数Max[a,b,c,...]求最大数Min[a,b,c,...]求最小数符号函数Sign[x]Mathematica中的数学运算符a+b 加法a-b减法a*b (可用空格键代替*)乘法a/b (输入方法为:“ Ctrl ” + “ / ” ) 除法a^b (输入方法为:“ Ctrl ” + “ ^ ” )乘方-a 负号Mathematica的关系运算符==等于<小于>大于<=小于或等于>=大于或等于!=不等于注:上面的关系运算符也可从基本输入工具栏输入。

如何用mathematica求多项式的最大公因式和最小公倍式PolynomialGCD[p1,p2,...]求多项式p1,p2,...的最大公因式PolynomialLCM[p1,p2,...]求多项式p1,p2,...的最小公倍式如何用mathematica求整数的最大公约数和最小公倍数GCD[p1,p2,...]求整数p1,p2,...的最大公约数LCM[p1,p2,...]求整数p1,p2,...的最小公倍数如何用mathematica进行整数的质因数分解FactorInteger[n]把整数n分解成质数的乘积如何用mathematica求整数的正约数Divisors[n]求整数n的所有正约数如何用mathematica判断一个整数是否为质数PrimeQ[n]判断整数n是否为质数,若是,则运算结果为True,否则结果为False 如何用mathematica求第n个质数Prime[n]求第n个质数如何用mathematica求阶乘Factorial[n]或n!求n的阶乘如何用mathematica配方Mathematica没有提供专门的配方命令,但是我们可以非常轻松地自定义一个函数进行配方。

如何用mathematica进行多项式运算Collect[expr,x]将expr表示成x的多项式Collect[expr,x,func]将expr表示成x的多项式之后,再根据func处理各项系数Collect[expr,{x,y}]将expr表示成x的多项式,再把多项式的每一项系数表示成y的多项式FactorTerms[expr]提出expr中的数值因子FactorTerms[expr,x]提出expr中所有不包含x的因子FactorTerms[expr,{x,y,...}]提出expr中所有不包含x,y,...的因子PolynomialGCD[p1,p2,...]求多项式p1,p2,...的最大公因式PolynomialLCM[p1,p2,...]求多项式p1,p2,...的最小公倍式PolynomialQuotient[p1,p2,x]变量为x,求p1/p2 的商PolynomialRemainder[p1,p2,x]变量为x,求p1/p2 的余式PowerExpand[expr]将(xy)n分解成 xnyn 的形式如何用mathematica进行分式运算Denominator[f]提取分式f的分母Numerator[f]提取分式f的分子ExpandDenominator[f]展开分式f的分母ExpandNumerator[f]展开分式f的分子Expand[f]把分式f的分子展开,分母不变且被看成单项。

ExpandAll[f]把分式f的分母和分子全部展开ExpandAll[f, x]只展开分式f中与x匹配的项Together[f]把分式f的各项通分后再合并成一项Apart[f]把分式f拆分成多个分式的和的形式Apart[f, x]对指定的变量x(x以外的变量作为常数),把分式f拆分成多个分式的和的形式Cancel[f]把分式f的分子和分母约分Factor[f]把分式f的分母和分子因式分解如何用Mathematica进行因式分解Factor[表达式]如何用Mathematica展开Expand[表达式]如何用Mathematica进行化简Simplify[表达式]Simplify[表达式,假设条件]FullSimplify[表达式]FullSimplify[表达式,假设条件]如何用Mathematica合并同类项Collect[表达式,指定的变量]如何用Mathematica进行数学式的转换TrigExpand[表达式] 将三角函数展开TrigFactor[表达式] 将三角函数组成的表达式因式分解TrigReduce[表达式] 将相乘或乘方的三角函数化成一次方的基本组合ExpToTrig[表达式] 将指数函数化成三角函数或双曲函数TrigToExp[表达式] 将三角函数或双曲函数化成指数函数ComplexExpand[表达式] 将表达式展开,假设所有的变量都是实数ComplexExpand[表达式,{x,y,…}] 将表达式展开,假设x,y,…等变量都是复数如何用Mathematica进行变量替换表达式/.x->a表达式/.{x->a, y->b,…}如何用mathematica进行复数运算a+b*I表示复数a+bIConjugate[z]求复数z的共轭复数Exp[z]复数的指数函数,表示e^zRe[z]求复数z的实部Im[z]求复数z的虚部Abs[z]求复数z的模Arg[z]求复数z的辐角,如何在mathematica中表示集合与数学中表示集合的方法相同,格式如下:{a, b, c,…}表示由a, b, c,…组成的集合(注意:必须用大括号)下列命令可以生成特殊的集合:Table[f,{n}]生成包含n个元素f的集合Table[f[n],{n,nmax}]n从1到nmax,间隔为1,生成集合{f[1], f[2], f[3],…, f[nmax]}Table[f[n],{n,nmin, nmax}]n从nmin到nmax,间隔为1,生成集合{f[nmin],f[nmin+1],f[nmin+2],…, f[nmax]}Table[f[n],{n,nmin, nmax, dn}]n从nmin到nmax,间隔为dn,生成集合{f[nmin],f[nmin+dn], f[nmin+2*dn],…, f[nmax]}Range[n]生成集合{1, 2, 3 ,…, n}Range[imin, imax]生成集合{i min,imin+1,imin+2,…,imax}Range[imin, imax, di]生成集合{imin,imin+di,imin+2*di,… } (最大不超过imax)如何用Mathematica求集合的交集、并集、差集和补集Union[A,B,C,…] 求集合A,B,C,…的并集A~Union~B~Union~C~Union~… 求集合A,B,C,…的并集A∪B∪C∪… 求集合A,B,C,…的并集Intersection[A,B,C,…] 求集合A,B,C,…的交集A~ Intersection ~B~ Intersection ~C~ Intersection ~… 求集合A,B,C,…的交集A∩B∩C∩… 求集合A,B,C,…的交集Complement [A,B,C,…] 求差集A~ Complement ~B~ Complement ~C~ Complement ~… 求差集Complement [全集I,A] 求集合A关于全集I的补集全集I ~ Complement ~A 求集合A关于全集I的补集如何mathematica用排序Sort[v]将数组或向量v的元素从小到大排列(升序排列)Reverse[v]将数组或向量v的元素按照与原来相反的顺序重新排列(续排列)RotateLeft[v]将数组或向量v中的每一个元素向左移一个位置RotateRight[v]将数组或向量v中的每一个元素向右移一个位置RotateLeft[v,n]将数组或向量v中的每一个元素向左移n个位置RotateRight[v,n]将数组或向量v中的每一个元素向右移n个位置如何在Mathematica中解方程Solve[方程,变元]注:方程的等号必须用: = =如何在Mathematica中解方程组Solve[{方程组},{变元组}]注:方程的等号必须用: = =如何在Mathematica中解不等式先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[不等式,变元]<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[{不等式组},{变元组}] (我的研究成果)InequalitySolve[And[不等式组],{变元组}]InequalitySolve[不等式1&&不等式2&&…&&不等式n,{变元组}]<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[{不等式组},{变元组}] (我的研究成果)InequalitySolve[And[不等式组],{变元组}]InequalitySolve[不等式1&&不等式2&&…&&不等式n,{变元组}] 如何用mathematica表示分段函数lhs:=rhs/;condition当condition成立时,lhs才会被定义成rhsIf[test,then,else]如果test为True,则执行then,否则执行 elseIf[test,then,else,unknown]如果test为True,则执行then,为False 时,则执行else,无法判断test是True或False时则执行unknownWhich[test1,value1,test2,value2,...]如果test1为True,则执行value1,test2为True,则执行value2,依次类推。

相关文档
最新文档