法拉第电磁感应定律知识点及例题
法拉第电磁感应定律

法拉第电磁感应定律一1.感应电动势:在 现象中产生的电动势.产生感应电动势的部分相当于 .2.法拉第电磁感应定律:公式 =E 。
注意:(1)利用上式计算的是平均感应电动势。
(2)区别磁通量、磁通量的变化、磁通量的变化率.(3)感应电量:在时间△t 内通过任一截面的电量为:q=I △t=E △t/R =N △φ/R .3.导线切割磁感线产生的感应电动势:(1)公式:=E(2)L 为导体切割磁感线的 长度(3)若v 为瞬时速度,则E 为 电动势. 二、考点整合1.动生电动势对应的电路问题:【例1】 如右图,ab 金属棒以2m/s 速度向右运动,棒的电阻为1Ω,电阻R=4Ω,其它电阻不计,ab 棒有效长度为30cm,匀强磁场的磁感应强度B=0.6T 。
则流过R 电流为________,a 、b 两点电压为________.变式:把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图所示,一长度为2a ,电阻等于R ,粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的电接触.当金属棒以恒定速度v 向右移动经过环心O 时,求:(1)棒上电流的大小和方向;(2)棒两端的电压U MN ;(3)在圆环和金属棒上消耗的总热功率。
足够长的平行金属导轨AB 、CD ,在导体的AC 端连接一阻值为R的电阻,一根垂直于导体放置的金属棒ab ,质量为m ,导轨和金属棒的电阻及它们间的摩擦不计,若用恒力F 沿水平方向向右拉棒运动,求:金属棒的最大速度。
变式:如图,一个半径为L 的半圆形硬导体ab 在竖直U 型框架上释放从静止,匀强磁场的磁感应强度为B ,回路电阻为R ,半圆形硬导体ab 的质量为m ,电阻为r ,重力加速度为g ,其余电阻不计,(1)当半圆形硬导体ab 的速度为v 时(未达到最大速度),求ab 两端的电压;(2)求半圆形硬导体ab 所能达到的最大速度.【例3】如图所示,竖直向上的匀强磁场磁感强度B 0=0.5T ,并以t B ∆∆=0.1T/s 在变化。
(完整版)法拉第电磁感应定律的例题

法拉第电磁感应定律的例题【例1】如图所示,磁感强度B=1.2T的匀强磁场中有一折成30°角的金属导轨aob,导轨平面垂直磁场方向。
一条直线MN垂直ob方向放置在轨道上并接触良好。
当MN以v=4m/s从导轨O点开始向右平动时,若所有导线单位长度的电阻r=0.1Ω/m。
求:(1)经过时间t后,闭合回路的感应电动势的瞬时值和平均值;(2)闭合回路中的电流大小和方向。
【分析】磁场B与平动速度v保持不变,但MN切割磁感线有效【解答】 (1)设运动时间为t后,在ob上移动S=vt=4t,MN的回路总电阻R=Lr=10.9t×0.1=1.09t【说明】 (1)本题切割的有效长度是时间的函数,所以电动势的平均值、即时值与有效长度的平均值、即时值有关(2)解这一类有效长度随时间变化的问题,关键是找到有效长度与时间的函数关系。
【例2】如图所示,匀强磁场的磁感应强度为B,方向垂直纸面向里,长L电阻R0的裸电阻丝cd在宽L的平行金属轨道上向右滑行,速度为v。
已知R1=R2=R0,其余电阻忽略不计,求电键K闭合与断开时,M、N两点的电势差U MN。
【分析】 cd在磁场中做切割磁感线的运动,这部分电路是电源,你知道电键K 断开和闭合,U cd有什么不同吗?电键K断开时,电路abcd不闭合,只产生感应电动势,而没有感应电流,N、c、b等势,M、a、d等势,U MN=U dc=E;电键K闭合时,电路中有感应电流,此时U MN=U dc为路端电压。
【解答】ε=BLvK断开时,U MN=U dc=ε=BLv【说明】 1、不要以为切割磁感线导体两端电压都等于感应电动势,通过此题想想在什么情况下,两端电压不等于电动势的值。
2、cd部分是电源,在电源内部,电流方向是从低电势流向高电势(规定为电动势的方向),所以U MN=U dc为正值。
【例3】如图所示,小灯泡的规格为“2V、4W”,接在光滑水平导轨上,轨距0.1m,电阻不计。
法拉第电磁感应定律 典例与练习

法拉第电磁感应定律典例与练习【典型例题】类型一、法拉第电磁感应定律的应用例1、(2015 安徽) 如图所示,abcd为水平放置的平行“匚”形光滑金属导轨,间距为l。
导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。
已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。
则A.电路中感应电动势的大小为sinBlvθB.电路中感应电流的大小为sinBvrθC.金属杆所受安培力的大小为2sinlvrBθD.金属杆的热功率为22sinlrvBθ【答案】B【解析】导体棒切割磁力线产生感应电动势E=Blv,故A错误;感应电流的大小sinsinE BvIl rrθθ==,故B正确;所受的安培力为2sinl B lvF BIrθ==,故C错误;金属杆的热功率222sinsinl B vQ I rrθθ==,故D错误。
【考点】考查电磁感应知识。
举一反三【变式】如图所示,水平放置的平行金属导轨,相距L=0.50 m,左端接一电阻R =0. 20n,磁感应强度B=0.40 T,方向垂直于导轨平面的匀强磁场,导体棒a b垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当a b以v=4.0 m/s的速度水平向右匀速滑动时,求:(1)a b棒中感应电动势的大小,并指出a、b哪端电势高?(2)回路中感应电流的大小;(3)维持a b 棒做匀速运动的水平外力F 的大小。
【答案】(1)0.8V ;a 端电势高;(2)4.0A ;(3)0. 8 N 。
【解析】(1)根据法拉第电磁感应定律,a b 棒中的感应电动势为0.40.5 4.00.8E BLv V V ==⨯⨯= 根据右手定则可判定感应电动势的方向由b a →,所以a 端电势高。
(2)导轨和导体棒的电阻均可忽略不计,感应电流大小为 0.8 4.00.2E I A A R === (3)由于a b 棒受安培力,棒做匀速运动,故外力等于安培力 4.00.50.40.8F BIL N N ==⨯⨯=, 故外力的大小为0. 8 N 。
电磁感应解题技巧及练习

电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。
③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。
)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。
再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。
然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。
按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。
最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。
【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。
法拉第电磁感应定律知识点及例题培训讲学

法拉第电磁感应定律知识点及例题第3讲 法拉第电磁感应定律及其应用一、感应电流的产生条件1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。
2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。
3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。
二、法拉第电磁感应定律 公式一: t n E ∆∆=/φ注意: 1)该式普遍适用于求平均感应电动势。
2)E 只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。
公式tnE ∆∆=φ中涉及到磁通量的变化量∆φ的计算, 对∆φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由∆∆φ=BS , 此时S tBn E ∆∆=, 此式中的∆∆B t 叫磁感应强度的变化率, 若∆∆Bt是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。
2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则∆∆φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。
严格区别磁通量φ, 磁通量的变化量∆φB 磁通量的变化率∆∆φt, 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量∆φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率∆∆φt表示磁通量变化的快慢,公式二: θsin Blv E =要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。
4.4_法拉第电磁感应定律(自整理)

E t
E t
En t
(国际单位时)
若有n匝线圈,则相当于有n个电源串联,总电动势为:
注意:公式中Δφ应取绝对值,不涉及正负.
二、法拉第电磁感应定律
1、内容:
电路中感应电动势的大小,跟穿过这 一电路的磁通量变化率成正比 。 2、公式:
楞次定律
楞次定律指出:感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化,它 是判断感应电流方向的普遍规律。 1.应用楞次定律判断步骤
愣次定律 感应电流磁场 B2方 向 原磁通变化(增加或减少 ) (与B1相 同 或 相 反 ) 原磁场B1方向
右手螺旋定则
感应电流方向
4.4法拉第电磁 感应定律
穿过回路的磁感 线的条数多少
穿过回路的磁通 量变化了多少 穿过回路的磁通 量变化的快慢
无直接关系
产生感应电动 势的条件 决定感应电动 势的大小
ΔΦ/Δt
注意:磁通量Ф=BS (与匝数无关)
思考与讨论
问题1:磁通量大,磁通量变化一定大吗? 问题2:磁通量变化大,磁通量的变化率一定大吗? 磁通量的变化率和磁通量、磁通量的变化无 直接关系:磁通量大(小,零),磁通量的变化率不 一定大(小,零);磁通量的变化大(小),磁通量的变 化率不一定大(小). (可以类比速度、速度的变化和加速度)
例1、在赤道的上方,一根沿东西方向
的水平导体自由下落,下落过程中导体上各
点的电势高低是( A ) A.东端高 B.西端高
C.中点高 D.无感应电动势产生
探究: 影响感应电动势大小的因素
我们怎样能够感知到感应电动势的大小?
法拉第电磁感应定律(专题训练)

法拉第电磁感应定律一:感应电流(电动势)产生的条件(1)感应电流产生条件:(2)感应电动势产生条件:1.关于电磁感应,下列说法正确的是()A. 线圈中磁通量变化越大,产生的感应电动势越大B. 在电磁感应现象中,有感应电动势,就一定有感应电流产生C. 闭合电路内只要有磁通量,就有感应电流产生D. 磁感应强度与导体棒及其运动方向相互垂直时,可以用右手定则判断感应电流的方向2.图中能产生感应电流的是()A. B. C. D.3.如图所示,一个闭合三角形导线框位于竖直平面内,其下方固定一根与线框所在的竖直平面平行且相距很近(但不重叠)的水平直导线,导线中通以图示方向的恒定电流。
不计阻力,线框从实线位置由静止释放至运动到直导线下方虚线位置过程中()A. 线框中的磁通量为零时其感应电流也为零B. 线框中感应电流方向先为顺时针后为逆时针C. 线框减少的重力势能全部转化为电能D. 线框受到的安培力方向始终竖直向上4.如图所示,一个U形金属导轨水平放置,其上放有一根金属导体棒ab,有一磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ。
在下列各过程中,一定能在闭合回路中产生感应电流的是()A. ab向右运动,同时使θ角增大(0<θ<90°)B. 磁感应强度B减小,同时使θ角减小C. ab向左运动,同时减小磁感应强度BD. ab向右运动,同时增大磁感应强度B和角θ(0<θ<90°)5.如图所示,有一矩形闭合导体线圈,在范围足够大的匀强磁场中运动、下列图中回路能产生感应电动势的是()A. 水平运动B. 水平运动C. 绕轴转动D. 绕轴转动二:楞次定律(右手定则)内容:6.如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动。
金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面。
第二十九讲 法拉第电磁感应定律

第二十九讲 法拉第电磁感应定律一、法拉第电磁感应定律的应用例1:★★(多选)(2015·惠州调研)如图甲所示,面积S =1 m 2的导体圆环内通有垂直于圆平面向里的磁场,磁场的磁感应强度B 随时间t 变化的关系如图乙所示(B 取向里为正),以下说法正确的是( )A .环中产生逆时针方向的感应电流B .环中产生顺时针方向的感应电流C .环中产生的感应电动势大小为1 VD .环中产生的感应电动势大小为2 V解析:选AC 由图乙可知,B 随t 均匀增大,穿过圆环的磁通量增加,据楞次定律,B 感向外,又据安培定则可知圆环中产生逆时针方向的感应电流,A 正确,B 错误。
圆环中产生的感应电动势的大小E =ΔΦΔt =ΔB Δt·S =1×1 V =1 V ,C 正确,D 错误。
例2:★★(2015·重庆)图为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S 。
若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )A .恒为nS (B 2-B 1)t 2-t 1B .从0均匀变化到nS (B 2-B 1)t 2-t 1C .恒为-nS (B 2-B 1)t 2-t 1D .从0均匀变化到-nS (B 2-B 1)t 2-t 1磁场均匀变化----感应电动势为定值(排除BD ),AC 的区别就是电势的高低问题。
感应电流的磁场是水平向左,根据右手定则可知感应电流方向是a 进b 出。
[解析] 根据法拉第电磁感应定律得,感应电动势E =n ΔΦΔt =n (B 2-B 1)S t 2-t 1,由楞次定律和右手螺旋定则可判断b 点电势高于a 点电势,因磁场均匀变化,所以感应电动势恒定,因此a 、b 两点电势差恒为φa -φb =-n (B 2-B 1)S t 2-t 1,选项C 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 法拉第电磁感应定律及其应用一、感应电流的产生条件1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。
2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。
3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。
二、法拉第电磁感应定律公式一: t n E ∆∆=/φ注意: 1)该式普遍适用于求平均感应电动势。
2)E 只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。
公式tnE ∆∆=φ中涉及到磁通量的变化量∆φ的计算, 对∆φ的计算, 一般遇到有两种情况:1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由∆∆φ=BS , 此时S t B n E ∆∆=, 此式中的∆∆B t 叫磁感应强度的变化率, 若∆∆B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。
2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则∆∆φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。
严格区别磁通量φ, 磁通量的变化量∆φB 磁通量的变化率∆∆φt, 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量∆φφφ=-21, 表示磁通量变化的多少,磁通量的变化率∆∆φt 表示磁通量变化的快慢,公式二: θsin Blv E =要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l B )。
2)θ为v 与B 的夹角。
l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。
公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+==222ω, 故221l B E ω=。
ω221BL E =——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。
公式三:ω···S B nE m =——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势m E 。
如图所示,设线框长为L ,宽为d ,以ω转到图示位置时,ab 边垂直磁场方向向纸外运动,切割磁感线,速度为v d =ω·2(圆运动半径为宽边d 的一半)产生感应电动势ωω····BS d BL v BL E 212===,a 端电势高于b 端电势。
cd 边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势ωBS E 21=。
c 端电势高于e 端电势。
bc 边,ae 边不切割,不产生感应电动势,b .c 两端等电势,则输出端M .N 电动势为ωBS E m =。
如果线圈n 匝,则ω···S B nE m =,M 端电势高,N 端电势低。
参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大值m E ,如从图示位置转过一个角度θ,则圆运动线速度v ,在垂直磁场方向的分量应为v cos θ,则此时线圈的产生感应电动势的瞬时值即作最大值θcos .m E E =.即作最大值方向的投影,θωcos ···S B n E =(θ是线圈平面与磁场方向的夹角)。
当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线,感应电动势为零。
●总结:计算感应电动势公式: 为平均感应电动势。
是平均速度,则如为即时感应电动势。
是即时速度,则如E v E v BLvE = ω221BL E =(道理同上) ,为即时感应电动势。
应电动势。
为这段时间内的平均感是一段时间,o t E t t n E →∆∆∆∆=φ θωcos ···S B n E =(θ是线圈平面与磁场方向的夹角)。
()()⎩⎨⎧==夹角是线圈平面与磁场方向瞬时值公式,····有感应电动势最大值线圈平面与磁场平行时··θθωωcos S B nE BS n E m 注意:区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感应电流, 在∆t 内迁移的电量(感应电量)为Rn t t R n t R E t I q φφ∆=∆∆∆=∆=∆=, 仅由回路电阻和磁通量的变化量决定, 与发生磁通量变化的时间无关。
例题分析例1:如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。
求:将线圈以向右的速度v 匀速拉出磁场的过程中,⑴拉力的大小F ; ⑵拉力的功率P ; ⑶拉力做的功W ; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。
L解:这是一道基本练习题,要注意计算中所用的边长是L 1还是L 2 ,还应该思考一下这些物理量与速度v 之间有什么关系。
⑴v Rv L B F BIL F R E I v BL E ∝=∴===22222,,, ⑵22222v Rv L B Fv P ∝== ⑶v Rv L L B FL W ∝==12221 ⑷v W Q ∝=⑸ Rt R E t I q ∆Φ==⋅=与v 无关 特别要注意电热Q 和电荷q 的区别,其中Rq ∆Φ=与速度无关!例2:如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计)。
磁感应强度为B 的匀强磁场方向垂直于纸面向外。
金属棒ab 的质量为m ,与导轨接触良好,不计摩擦。
从静止释放后ab 保持水平而下滑。
试求ab 下滑的最大速度v m解:释放瞬间ab 只受重力,开始向下加速运动。
随着速度的增大,感应电动势E 、感应电流I 、安培力F 都随之增大,加速度随之减小。
当F 增大到F=mg 时,加速度变为零,这时ab 达到最大速度。
由mg R v L B F m ==22,可得22LB mgR v m = 这道题也是一个典型的习题。
要注意该过程中的功能关系:重力做功的过程是重力势能向动能和电能转化的过程;安培力做功的过程是机械能向电能转化的过程;合外力(重力和安培力)做功的过程是动能增加的过程;电流做功的过程是电能向内能转化的过程。
达到稳定速度后,重力势能的减小全部转化为电能,电流做功又使电能全部转化为内能。
这时重力的功率等于电功率也等于热功率。
进一步讨论:如果在该图上端电阻的右边串联接一只电键,让ab 下落一段距离后再闭合电键,那么闭合电键后ab 的运动情况又将如何(无论何时闭合电键,ab 可能先加速后匀速,也可能先减速后匀速,还可能闭合电键后就开始匀速运动,但最终稳定后的速度总是一样的)。
例3:如图所示,U 形导线框固定在水平面上,右端放有质量为m的金属棒ab ,ab 与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L 1、L 2,回路的总电阻为R 。
从t =0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B =kt ,(k >0)那么在t 为多大时,金属棒开始移动 解:由tE ∆∆Φ== kL 1L 2可知,回路中感应电动势是恒定的,电流大小也是恒定的,但由于安培力F=BIL ∝B =kt ∝t ,所以安培力将随时间而增大。
当安培力增大到等于最大静摩擦力时,ab 将开始向左移动。
这时有:2212211,L L k mgR t mg R L kL L kt μμ==⋅⋅ 例4:如图所示,xoy 坐标系y 轴左侧和右侧分别有垂直于纸面向外、向里的匀强磁场,磁感应强度均为B ,一个围成四分之一圆形的导体环oab ,其圆心在原点o ,半径为R ,开始时在第一象限。
从t =0起绕o 点以角速度ω逆时针匀速转动。
试画出环内感应电动势E 随时间t 而变的函数图象(以顺时针电动势为正)。
解:开始的四分之一周期内,oa 、ob 中的感应电动势方向相同,大小应相加;第二个四分之一周期内穿过线圈的磁通量不变,因此感应电动势为零;第三个四分之一周期内感应电动势与第一个四分之一周期内大小相同而方向相反;第四个四分之一周期内感应电动势又为零。
感应电动势的最大值为E m =BR 2ω,周期为T =2π/ω,图象如右。
例5:如图所示,矩形线圈abcd 质量为m ,宽为d ,在竖直平面内由静止自由下落。
其下方有如图方向的匀强磁场,磁场上、下边界水平,宽度也为d ,线圈ab 边刚进入磁场就开始做匀速运动,那么在线圈穿越磁场的全过程,产生了多少电热 解:ab 刚进入磁场就做匀速运动,说明安培力与重力刚好平衡,在下落2d 的过程中,重力势能全部转化为电能,电能又全部转化为电热,所以产生电热Q =2mgd 。
例6:如图所示,水平面上固定有平行导轨,磁感应强度为B 的匀强磁场方向竖直向下。
同种合金做的导体棒ab 、cd 横截面积之比为2∶1,长度和导轨的宽均为L ,ab 的质量为m ,电阻为r ,开始时ab 、cd 都垂直于导轨静止,不计摩擦。
给ab 一个向右的瞬时冲量I ,在以后的运动中,cd 的最大速度v m 、最大加速度a m 、产生的电热各是多少解:给ab 冲量后,ab 获得速度向右运动,回路中产生感应电流,cd 受安培力作用而加速,ab 受安培力而减速;当两者速度相等时,都开始做匀速运动。
所以开始时cd 的加速度最大,最终cd 的速度最大。
全过程系统动能的损失都转化为电能,电能又转化为内能。
由于ab 、cd 横截面Rv l B F 22=积之比为2∶1,所以电阻之比为1∶2,根据Q=I 2Rt ∝R ,所以cd 上产生的电热应该是回路中产生的全部电热的2/3。