变压器差动电流计算原理之变压器CT的接线方式

合集下载

关于差动保护电流互感器极性现场接线

关于差动保护电流互感器极性现场接线

关于差动电流保护互感器的极性
网上有好多关于差动电流极性不能接错的讨论,并且都给出了原理图,但实际应用中怎样接才不错,尤其是用了微机保护以后,接入保护装置的端子具体的用图示来看。

一、首先看电动机差动接线如下图
其中1LH和3LH用作差动保护
这里注意,CT的极性端一定要注意,电动机差动保护CT的极性端不在同一侧,即
1、如果机端互感器的同极性端在靠近母线侧,则电动机中性点侧的电流互感器同极性端应该靠近中性点侧(远离电动机侧)。

2、如果机端互感器的同极性端在靠近电动机侧,则中性点侧的电流互感器同极性端应该靠近电源侧(接近电动机侧)。

二、变压器差动
变压器差动保护的接线同电动机,即接进保护装置的互感器极性高压侧和低压侧
的极性端要么都靠近变压器,要么都远离变压器。

常用的都是靠近母线侧即变压器高
低压母线侧。

注意在保护装置内①②是一组原件(可理解为一个绕组),③④是一组原件,其
中①③是极性端。

三、线路光纤差动保护
对于线路的差动由于微机差动保护装置有两个,一般为同一厂家、同一型号、同一版本,分别在线路的两端,通过光纤通道连接。

可以理解为同变压器的一样,只不过两
个绕组装在了两个地点。

至于互感器的极性都要以接近母线侧为减极性端(同名端),下面看具体的界限图示。

动作判据如下。

变压器差动保护CT二次接线

变压器差动保护CT二次接线

变压器差动保护CT二次接线杨振国提要:分析变压器差动保护CT二次接线越级跳闸的原因,指出现场接线常出现的错误,介绍如何分析电路及正确接线的方法。

关键词:变压器差动保护 CT二次接线新安装的变压器投入运行后,往往在低压侧主母线出现短路时,或输电线路故障时引起变压器差动保护动作的越级跳闸事故。

究其原因,大多是差动保护CT二次回路接线错误。

变压器的纵联差动保护是按比较其各侧电流的大小和相位而构成的一种保护。

正常运行及外部短路时,流入差动继电器的电流应等于零。

但实际上由于变压器的励磁漏流,接线方式和电流互感器的误差等因素的影响,继电器中有不平衡电流流过;而在保护范围内短路时,差动回路电流应为各侧电流的算术和,从而使差动保护动作,切除故障。

根据差动保护的特点,为了达到上述要求,在设计和保护定值计算中对差动的回路中产生不平衡电流的五个因素进行补偿。

其中之一便是对其接线组别的补偿。

若变压器的接线组别为Y/d-11(以35/10KV双绕组变压器为例)。

这样,变压器高低压侧电流之间就存在着30Ο的相位差,若不采取补偿措施,将会在差动回路中产生不平衡电流。

为此,我们通常采用将变压器高压侧CT二次绕组接成Δ型,将低压侧CT二次绕组接成Y型来进行相应补偿。

这样,在现场接线中,便存在CT 二次绕组Δ型本身如何接线及与Y型接线相对应的极性问题。

这个问题稍不注意便会出现接线错误。

怎样做到正确接线呢?先来分析一下几种可能的接线方式:图1方式。

图中i A、i B、i C压器高压CTi a、i b、i b二次绕组三相电流。

下面对图1均从其两侧CT入,L2流出。

i AYiii C i B(a)i a(i/a) i/c图1i b(i/b) i/bi c(i/C) i/a(c) (d)图2在正常运行情况下,先画出i A、i B、i C相量与如图2(a)。

文档大全根据图1可得:i/A=i A-i Bi/B=i B-i Ci/C=i C-i A作出i/A、i/B、i/C相量如图2(b)。

变压器差动保护电流互感器接线方式分析

变压器差动保护电流互感器接线方式分析

变压器差动保护电流互感器接线方式分析差动保护是变压器的主要保护,它的工作情况的好坏对变压器的正常运行关系极大。

要想使变压器在正常运行或在变压器外部故障时,差动保护可靠不动,就要设法使变压器的电源侧和负荷侧的CT二次线电流相位相差,及电流产生的动作安匝相等。

只要满足这两个条件变压器的差动保护在变压器内部正常时就不会动作。

为使变压器电源侧和负荷侧CT二次电流相位差,现介绍以下几种接线方式:第一种接线方式:以我县110kV变电站1#主变为例。

它的容量为2万千伏安。

接线组别为丫O/丫O/A—12—11。

ll 0kV侧为电源侧,压侧和低压侧为负荷侧,其接线图如下所示因为变压器的接线组别为丫o/丫O/A—12—11其低压测线电流Ia、Ib、Ic分别超前高压侧线电流高压侧CT二次相电流在减极性时与一次电流同相位。

要想使变压器电源侧和负荷侧CT二次线电流相位相差。

就设法使变压器低压侧的CT二次线电流落后于相电流,这样低压侧CT的连接顺序是a相的头连C相的尾;b相的头连a相第二种接线方式:我们把CT的接线组别同样用钟表的12个钟头来表示,那么第一种接线方式,高压侧的CT为6点接线,中压侧为12点接线.低压侧为1点接线。

第二种接线方式就是把高压侧的CT接成12点,中压侧接成6点.低压侧接成7点。

第三种接线方式:把高压侧的CT二次接成11点,中压倒为5点,低压侧接成6点。

第四种接线方式,把高压侧的CT二次接成5点,中压侧为11点,低压侧为12点。

变压器差动保护的接线方式有四种,选CT变比时每侧就有两种;一种是星型接线,一种是三角型接线。

如果用第一种接线方式接,对三卷变压器来说,高中低三侧CT中有两侧的CT接成星型,只有一侧接成三角型。

接线较为简单。

在特定条件下,采用此种接线方式能解决差流回路中无法解决的不平衡电流。

当然无论采用那种接线方式,效果都一样,但因各地区的技术水平不一,为使差动保护不致因CT接线错误造成保护跨动,最好选其中一种接线做为典设。

变压器差动保护CT二次接线

变压器差动保护CT二次接线

变压器差动保护CT二次接线杨振国提要:分析变压器差动保护CT二次接线越级跳闸的原因,指出现场接线常出现的错误,介绍如何分析电路及正确接线的方法。

关键词:变压器差动保护 CT二次接线新安装的变压器投入运行后,往往在低压侧主母线出现短路时,或输电线路故障时引起变压器差动保护动作的越级跳闸事故。

究其原因,大多是差动保护CT二次回路接线错误。

变压器的纵联差动保护是按比较其各侧电流的大小和相位而构成的一种保护。

正常运行及外部短路时,流入差动继电器的电流应等于零。

但实际上由于变压器的励磁漏流,接线方式和电流互感器的误差等因素的影响,继电器中有不平衡电流流过;而在保护范围内短路时,差动回路电流应为各侧电流的算术和,从而使差动保护动作,切除故障。

根据差动保护的特点,为了达到上述要求,在设计和保护定值计算中对差动的回路中产生不平衡电流的五个因素进行补偿。

其中之一便是对其接线组别的补偿。

若变压器的接线组别为Y/d-11(以35/10KV双绕组变压器为例)。

这样,变压器高低压侧电流之间就存在着30Ο的相位差,若不采取补偿措施,将会在差动回路中产生不平衡电流。

为此,我们通常采用将变压器高压侧CT二次绕组接成Δ型,将低压侧CT二次绕组接成Y型来进行相应补偿。

这样,在现场接线中,便存在CT 二次绕组Δ型本身如何接线及与Y型接线相对应的极性问题。

这个问题稍不注意便会出现接线错误。

怎样做到正确接线呢?先来分析一下几种可能的接线方式:图1方式。

图中i A、i B、i C压器高压CTi a、i b、i b二次绕组三相电流。

下面对图1均从其两侧CT入,L2流出。

i AYiii C i B(a)i a(i/a) i/c图1i b(i/b) i/bi c(i/C) i/a(c) (d)图2在正常运行情况下,先画出i A、i B、i C相量与如图2(a)。

参考资料根据图1可得:i/A=i A-i Bi/B=i B-i Ci/C=i C-i A作出i/A、i/B、i/C相量如图2(b)。

变压器差动保护整定计算

变压器差动保护整定计算

变压器差动保护整定计算计算变压器各侧的一次及二次电流值,并选择电流互感器的变比,如表所示。

表5-1变压器和互感器各侧电流值所以选定10kv侧为基本侧5.4 变压器最大运行方式下10千伏基本侧(1)变压器最大运行方式下10千伏侧的短路电流10kv侧简化网络图:图3-8***1360.200.1280.16422T T X X X ++===图3-6将它化成星形:图3-7***3413***3450.030.240.0160.030.240.18X X X X X X ⨯===++++ ***4514***3450.030.180.0120.030.240.18X X X X X X ⨯===++++ ***3515***3450.240.180.0960.030.240.18X X X X X X ⨯===++++ 将*2X 、*13X 合并成*23X ;将*6X 、*14X 合并成*24X :将*1X 、*15X 合并成*25X :***232130.40.0160.416X X X =+=+= ***246140.0120.1640.176X X X =+=+= ***251150.50.0960.596X X X =+=+=计算各电源点到短路点的转移电抗,化成△:图3-4*****2324332324*250.4160.1760.4160.1760.670.596X X X X X X ⨯=++=++= *****2425342425*230.1760.5960.1760.596 1.0240.416X X X X X X ⨯=++=++= *33X 为S2到短路点的转移电抗,*34X 是S1到短路点的转移电抗。

它们分别对应的计算电抗:*332200.67 1.474100js X =⨯=*3414501.02414.85100jsX =⨯= 又由于*34js X >3.5,故直接由.34*3410.067f t jsI X ==查4秒曲线得10kv 侧短路电流:0.0670.73 5.348.814.14()f I KA ∞=+=+=(2)变压器最小运行方式下10kv 侧的短路电流:10kv 侧简化网络图:图3-8***1360.200.1280.16422T T X X X ++===将它化成星形:图5-1***3413***3450.030.240.0160.030.240.18X X X X X X ⨯===++++***4514***3450.030.180.0120.030.240.18X X X X X X ⨯===++++ ***3515***3450.240.180.0960.030.240.18X X X X X X ⨯===++++ 将*2X 、*13X 合并成*23X ;将*6X 、*14X 合并成*24X :将*1X 、*15X 合并成*25X :***232130.70.0160.716X X X =+=+= ***246140.0120.1640.176X X X =+=+= ***251150.80.0960.896X X X =+=+=计算各电源点到短路点的转移电抗,化成△:图3-4*****2324332324*250.7160.1760.7160.176 1.030.896X X X X X X ⨯=++=++= *****2425342425*230.1760.8960.1760.896 1.30.716X X X X X X ⨯=++=++= *33X 为S2到短路点的转移电抗,*34X 是S1到短路点的转移电抗。

在实际工作中主变差动保护应注意的几个问题

在实际工作中主变差动保护应注意的几个问题

在实际工作中主变差动保护应注意的几个问题差动保护是变压器的主要保护,它的工作情况的好坏对变压器的正常运行关系极大。

要想使变压器在正常运行或在变压器外部故障时,差动保护可靠不动,区内故障时差动保护正确动作,在现场实际工作中,以下现场中作中应特别关注。

标签:差动保护;变压器;问题一、差动保护CT接线方式变压器差动保护的接线方式有四种,选CT变比时每侧就有两种;一种是星型接线,一种是三角型接线。

如果用第一种接线方式接,对两卷变压器来说,高压侧CT接成星型,低压侧接成三角型。

对三卷变压器来说,高中低三侧CT中有两侧的CT接成星型,只有一侧接成三角型,接线较为简单。

这种接线方式在非微机保护中广泛应用。

而在微机保护中目前普遍采用高中低各侧CT星型接线,补偿通过微机保护进行。

当然无论采用那种接线方式,效果都一样,为使差动保护不致因CT接线错误造成保护误动,最好选其中一种接线做为典型设计,避免在现场实际工作中由于人员对设备不熟悉造成的事故。

二、差动保护动作电流能否躲过励磁涌流我公司所属XXX变电站新投运时,发现主变低压侧断路器合闸时,出现合闸瞬间就跳闸,经多次操作仍出现此情况。

在认真检查变压器后,断路器还出现一合闸即跳闸的现象,后对变压器进行分析,是由于励磁涌流的影响,微机差动保护软件设置不合理,引起保护误动,致使断路器无法合闸,经过厂家修改程序,故障消除。

1 励滋涌流对变压器切除外部故障后进行空载合闸,电压突然恢复的过程中,变压器可能产生很大的冲击电流,其数值可达额定电流的6~8倍,将这个电流称之为励磁涌流。

产生励磁涌流的原因是变压器铁芯的严重饱和和励磁阻抗的大幅度降低。

2 励磁涌流的特点励磁涌流数值很大,可达额定电流的6~8倍。

励磁涌流中含有大量的直流分量及高次谐波分量,其波形偏向时间轴一侧。

励磁涌流具有衰减特性,开始部分衰减得很快,一般经过0.5~1s后,其值通常不超过0.25~0.5倍的额定电流,对于大容量变压器,其全部衰减时间可能达到几十秒。

差动保护的接线原理

差动保护的接线原理

变压器一、差动保护的接线原理变压器差动保护是防止变压器内部故障的主保护。

其接线方式,按回路电流法原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,如果忽略不平衡电流,在两个互感器的二次回路臂上没有差电流流入继电器,即:iJ=ibp=iI-iII=0。

见图1。

如果内部故障,如图ZD点短路,流入继电器的电流等于短路点的总电流。

即:iJ=ibp=iI2+iII2。

当流入继电器的电流大于动作电流,保护动作断路器跳闸。

由于变压器原副绕组联接方式不同,以双绕组变压器为例,常采用Y/⊿-11接线,高低压两侧电流相位差30°,即:原边电流滞后于付边电流30°,见图3。

虽然变压器两侧互感器二次电流大小相等,但由于相位不同,仍有差电流流入继电器。

其大小为:为了消除两侧电流相位差产生的差电流ibp,必须对变压器两侧互感器采取不同的接线方式。

二、变压器差动保护的正确接线我们还以双绕组Y/⊿-11变压器为例,见图4:变压器原边互感器二次线圈接成⊿形,按减极性原边一次电流由L1流向L2为正,二次电流由K1流向K2 为正,互感器二次接线按AK2与BK1连接,BK2与CK2连接,CK2与AK1连接,二次电流由AK2,BK2,CK2引出线电流。

变压器副边电流互感器二次线圈接成人形,假设母线电流从L2进,按减极性,一次电流由L2流向L1为正,二次电流由K2流向K1也为正。

端子ak1,bK1,CK1;连在一起引出中线,端子aK2,bK1,CK1引出线电流。

根据基尔霍夫第一定律:“对于三角形联接的电路,无论是电源或是负载,线电流等于两相电流之差”。

按照原边互感器接线列出电流方程式,并作向量图5和图6:由向量图可以看出变压器原边互感器二次线电流分别超前相电流30°,也即超前一次电流30°。

变压器付边电流互感器二次线圈因入接,互感器二次电流与一次电流同相位。

正好变压器两侧互感器二次线电流同相位。

差动保护的基本接线原理

差动保护的基本接线原理

变压器差动保护变压器的纵差动保护用于防御变压器绕组和引出线多相短路故障、大接地电流系统侧绕组和引出线的单相接地短路故障及绕组匝间短路故障。

目前国内的微机型差动保护,主要由分相差动元件和涌流判别元件两部分构成。

对于用于大型变压器的差动保护,还有5次谐波制动元件,以防止变压器过激磁时差动保护误动。

为防止在较高的短路电流水平时,由于电流互感器饱和时高次谐波量增加,产生极大的制动力矩而使差动元件据动,故在谐波制动的变压器差动保护中还设置了差动速断元件,当短路电流达到4~10 倍额定电流时,速断元件快速动作出口。

差动保护的基本接线原理一般地,对于Y/∆接线方式的变压器,定义电流的正方向为自母线流向变压器,其差动保护的接线如下图所示,图3.1.1 差动保护接线图该接线图中包含了两个方面的内容:1)由于Y/∆接线方式,导致两侧CT一次电流之间出现一定的相位偏移,所以应对Y侧(或∆侧)CT一次电流进行相位补偿;2)由于I1 、I2 所在侧的电压等级不同,所以二者的有名值不能直接进行运算,二者必须归算到同一电压等级。

一般的处理方法为将I2 归算到I1 侧(通常即高压侧)。

针对以上两点,传统的方法是通过将Y 测的CT 做∆接,同时∆侧的CT 做Y 接,实现相位补偿(即保护内部五校正),由此而导致的Y 侧电流放大3倍则结合CT 变比的选择以及CT 的不平衡补偿完成,最后将处理后的电流I1′、I2′引入保护;随着微机型变压器差动保护的出现,为了简化现场接线,通常要求变压器各侧CT均按星型接线方式,CT极性端均指向同一方向(如母线侧),然后将各侧的CT二次电流I1、I2直接引入保护,而以上关于相位和CT变比的不平衡补偿则在保护内部通过软件进行补偿。

下面以Y/∆-11接线方式的变压器为例,来简单介绍微机型变压器差动保护内部利用软件进行数字式纵差动保护的相位校正和幅值校正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一期我们和大家一起了解了变压器的接线组别,定量分析了变压器高低压侧一次电流的相位、幅值关系。

我们的继电保护装置在进行差流计算时使用的是二次电流,因此需要经过电流互感器(CT)将一次电流转换为供保护使用的二次电流。

本期我们和大家一起来讨论一下变压器CT的接线方式。

1、CT的极性
我们先来了解一下CT接线的极性问题。

这就需要搞清楚几个名词:极性端、同名端、减极性。

极性端一般用“*”标记,在图中,一次侧P1为极性端,P2为非极性端,一般设计P1装于母线侧(或变压器侧),P2装于负荷侧。

二次侧S1为极性端,S2为非极性端。

P1和S1(P2和S2)互为同名端。

至于减极性,我们只需要简单的记住:若CT采用减极性,对于一次绕组电流从极性端流入,对于二次绕组电流从极性端流出。

如果将CT二次回路断开,将保护装置直接串联在一次回路中,流过装置的电流方向与CT减极性标注的二次电流方向相同。

所以减极性标注对于判断二次电流的流向非常直观。

所以我国CT均采用减极性标注。

2、变压器两侧CT的接线方式
在模拟型变压器保护中,为了相位校正的需要CT有些情况下需要接成三角形。

现在的微机型保护中,相位校正都在软件中实现,所以变压器两侧CT均使用Y接线。

以下图所示的Yd-11变压器两侧CT的接线方式为例:
如图所示的CT接线形式,其高压侧及低压侧电流互感器二次绕组中,靠近变压器侧的端子连在一起,我们称为封CT的变压器侧。

如果是靠近母线侧的二次绕组端子连在一起,则称为封CT的母线侧。

设高压侧电流互感器变比为nH,低压侧电流互感器变比为nL。

分析流入保护装置的二次电流(Iha,Ihb,Ihc,Ila,Ilb,Ilc)与变压器一次电流(IHa,IHb,IHc,ILa,ILb,ILc)的对应关系。

从图中可以看出高压侧二次电流从极性端流出,流入保护装置。

低压侧二次电流从保护装置流出,从极性端流入CT二次绕组。

若程序设定二次电流的方向以流入保护装置的(A,B,C)端为正方向,则有:
低压侧二次电流与一次电流反向。

做出向量图如下:
故有,当主变高压侧CT与低压侧CT同时封变压器侧时,高压侧二次电流超前低压侧二次电流150°。

同样也可以推导出,当高压侧CT和低压侧CT同时封母线侧时,高压侧二次电流与一次电流方向。

也为高压侧二次电流超前低压侧二次电流150°,结论一致,大家有兴趣可以自行推导。

所以:电流互感器的二次绕组接线方式决定了一次侧电流与进入保护装置的二次侧电流的对应关系。

了解完变压器的接线组别和CT接线,保护装置外部的接线就介绍的差不多了。

至此二次电流已流入保护装置,差动电流的计算剩下的部分,就由软件完成。

大致可以分为三个方面:相位校正,幅值校正,消除零序电流。

相关文档
最新文档