9年级 - 反比例函数
九年级数学-反比例函数

第19讲 反比例函数知识导航1.反比例函数的定义和解析式;2.反比例函数的图象和性质;3.反比例面数与方程及不等式;4.反比例函教与神奇的几何性质;5.反比例函数与直线y =a 或x =a ;6.反比例函数与全等相似;7.反比例函数与图形变换;8.反比例函数与定值及最值。
【板块一】反比例函数的定义和解析式 方法技巧 根据定义解题1.定义:一般地,形如ky x=(k 为常数,k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.自变量x 的取值范围是不等于0的一切实数.2.解析式:ky x=(k ≠0)或xy =k (k ≠0)或1y kx -= (k ≠0). 题型一根据定义判断反比例函数【例1】下列函数:①2x y =;@2y x =;③y =12y x =;⑤12y x =+;⑥12y x =- ;⑦2xy =; ⑧12y x -=;⑨22y x = .其中y 是x 的反比例函数的有 (填序号).【解析】②③④⑦⑧.题型二根据定义确定k 值或解析式 【例2】(1)反比例函数32y x =- ,化为ky x=的形式,相应的k = ; (2)函数ky x =中,当x =2时,y =3,则函数的解析式为 【解析】(1)32- ;(2)6y x=.题型三根据定义确定待定系数的值【例3】(1)如果函数2+1m y x = 是关于x 的反比例函数,则m 的值为 (2)若函数()252m y m x -=+ (m 为常数)是关于x 的反比例函数,求m 的值及函数的解析式。
【解析】(1)-1;(2)m =2,y =4x .针对练习11.下列函数中,为反比例函数的是(B )A . 3x y =B . 13y x =C . 13y x =-D .21y x=答案:B2.反比例函数y =一化为ky x=的形式后,相应的k =答案: 3.若关于x 的函数()2274mm y m x --=- 是反比例函数,求m 的值答案:3.【板块二】反比例函数的图象和性质 式抓住反比例函数的性质并结合图象解题 一般地,对于反比例函数()0ky k x=≠,由函数图象,并结合解析式,我们可以发现: 1.图象分布当k >0时,x ,y (同号或异号),函数图象为第 象限的两支曲线;当k <0时,x ,y (同号或异号),函数图象为第 象限的两支曲线。
北师大版九年级数学上册第六章《反比例函数》

探究一:初步了解反比例函数的形式,探究反比例函数
1.游泳池体积150(立方米),那么底面积s(平方米)和 高h(米)之间的关系式为:h=___1_5__0_____.
s
2.京沪高速铁路全长约为1318km,列车沿京沪高速铁路 从上海驶往北京,列车行完全程所需的时间t(h)与行驶
说一说
你能举出生活中反比例函 数的例子吗?
基础练习
1.下列函数表达式中,x表示自变量,哪些是反 比例函数?若是,请指出相应的k值。
(1)y = 0.4(2) y =5-x (3) y = 3x1
x
(4)xy = - 2(5)y =
x 2
(6) y =
1 6x
2. y是x的反比例函数,下图给出了x与 y的一些值:
x -5 -2 -1
y
2
5
12
① 求出这个反比例函Hale Waihona Puke 的表达式;2 77
② 根据函数表达式完成上表。
解: 1设y k k 0
x
当x -1, y -2时,k -1 2 -2
y 2 x
互动课堂
问题1:
若
y n6 x
是反比例函数,则n应
满足的条件是n 6.
问题2: 已知y是x的反比例函数,当x=2 时,y=5求:当x=1时,y的值.
北师大版九年级数学上册
第六章 反比例函数 6.1 反比例函数
函数的定义
一般地.在某个变化过程中,有两个变量x和y, 如果给定一个x的值,相应地y就有唯一确定的 值和它相对应,那么我们称y是x的函数,其中x 叫自变量,y叫因变量.
回顾与思考
如果y=kx+b(k、b为常数,k≠0),那么y 是x的一次函数.
北师大版数学九年级上册第六章反比例函数复习教案

(2)反比例函数在实际问题中的应用:学生在将反比例函数应用于实际问题中时,往往难以正确设定变量和建立模型。
突破方法:通过典型例题的讲解和练习,引导学生如何从问题中抽象出反比例关系,并建立数学模型。
(3)反比例函数与其他函数的区分:学生容易混淆反比例函数与其他函数的性质和图像。
同学们,今天我们将要复习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过路程不变,速度与时间成反比的情况?”(如:固定距离,速度越快,所需时间越短)这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
另外,学生在将反比例函数应用于实际问题中时,有时会感到困惑,不知道如何从问题中抽象出反比例关系。针对这个问题,我计划在接下来的教学中,设计更多具有实际背景的问题,引导学生逐步学会如何从问题中提炼出反比例函数模型,提高他们解决实际问题的能力。
在小组讨论环节,我发现学生们积极参与,讨论氛围浓厚,但部分小组在分享成果时,表达不够清晰。为了提高学生的表达能力,我打算在今后的教学中,多给予他们展示和表达的机会,并适时给予指导和鼓励,帮助他们更好地展示比例函数复习教案
一、教学内容
本节课为北师大版数学九年级上册第六章“反比例函数”的复习教案。教学内容主要包括以下几部分:
1.反比例函数的定义与性质:回顾反比例函数的定义,即y=k/x(k为常数,k≠0),以及其性质,如图像关于原点对称、在每个象限内的符号等。
2.反比例函数的图像:复习反比例函数图像的特点,如曲线在第一、三象限单调递减,在第二、四象限单调递增,以及图像与坐标轴无交点等。
人教版九年级数学下册第26章反比例函数PPT

知识点 1 反比例函数的定义
知1-导
问题
下列问题中,变量间具有函数关系吗?如果有,它 们的解析式有什么共同特点? (1)京沪线铁路全程为1 463 km,某次列车的平均速度
v(单位: km/h)随此次列车的全程运行时间t (单位:h) 的变化而变化;
知1-导
(2) 某住宅小区要种植一块面积为1 000 m2的矩形草坪, 草坪的长y (单位:m)随宽x (单位:m)的变化而变化;
(4)还原:写出反比例函数的解析式.
知2-讲
2.由于反比例函数的解析式中只有一个待定系数k, 因此求反比例函数的解析式只需一组对应值或一 个条件即可.
知2-讲
例2 已知y是x的反比例函数,并且当x=2时,y=6.
(1)写出y关于x的函数解析式;
(2)当x=4时,求y的值.
分析:因为y是x的反比例函数,所以设 y k .
5
①y=2x-1;②y=- ;③y=x2+8x-2;
3
1x
a
④y= x2 ; ⑤y= 2x ; ⑥y= x .
导引:根据反比例函数的定义进行判断,看它是否满足反比例函数的三种
表现形式.①y=2x-1是一次函数;②y=- 5 是反比例函数;③y
3
x
=反=比xa2+例,8函x当-数a2≠关是0系时二;是次⑤反函y比数=例;2函1④x数y是=,反没x比2有例,此函y条与数件x,2成则可反不以比一写例定成,是y但反=y比与12x例x;不函⑥是y
(k≠0)的图象上,则k的值是( D )
A.10 B.5 C.-5 D.-10
3 若y与x-2成反比例,且当x=-1时,y=3,则y
与x之间的关系是( D )
A.正比例函数
人教版九年级数学下册 《反比例函数》反比例函数PPT教学课件

下列关系中是反比例函数的是( ) B
第十三页,共二十六页。
已知 y 是 x 的反比函数,并且当x=2时,y=6. (1)写出 y 关于 x 的函数解析式;
(2)当 x=4 时,求 y 的值.
【解析】
第十四页,共二十六页。
归纳
求反比例函数解析式的步骤: ①设:设反比例函数的解析式为
人教版九年级数学下册 《反比例函数》反比例函数PPT教学课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
反比例函数
第一页,共二十六页。
知识回顾
1.什么是函数?
在某变化过程中有两个变量 x,y,按照某个对应法则,对于给 定的 x,有唯一确定的 y 与之对应,那么 y 就叫做 x 的函 数.其中 x 叫自变量,y 叫因变量. 2.正比例函数的一般形式是____y__=_k__x_(__k_≠__0_)____. 它的图象是一条过____原__点___的_____直__线__. 3.一次函数的一般形式是____y_=__k__x_+__b_(___k_≠__0_). 它的图象是一条____直___线__.
第二页,共二十六页。
思考 下列问题中,变量间的对应关系可以用怎样的函数关系表示?
1.京沪铁路全程为1 463km,某次列车的平均速度 v(km/h)随此 次列车的全程运行时间t(h)的变化而变化.
第三页,共二十六页。
思考
下列问题中,变量间的对应关系可以用怎样的函数关系表示?
第四页,共二十六页。
思考
②代:把满足条件的x,y代入 ③求:求出k的值 ④写:写出反比例函数解析式
口诀:一设二代,三求四写.
第十五页,共二十六页。
反比例函数的解析式 怎么求反比例函数的解析式?
九年级数学------反比例函数K值几何意义教学设计与反思

《反比例函数K值几何意义》教学设计以顺利进行的前提条件。
本节课的教学设计是从学生已有知识经验出发,首先带领学生回顾反比例函数的定义以及表达形式,因为在探索矩形、三角形面积过程中需要用坐标表示线段长度,因此理清K 值与坐标之间的关系是很有必要的。
其次,本节课设计了两个探究活动,分别通过从特殊到一般的过程归纳K 值面积不变性,而在每一个探究活动后都附上几道具有典型代表性的习题,让学生会运用知识的同时又能发现该类题目的易错点,以及常用的解题思路。
再次,考虑到对学生思想方法的培养是一个长期的过程,在本节课的教学过程中除用归纳的思想方法提高学生的合情推理能力外,还让学生充分体会到了转化、数形结合思想的运用,同时设置了能力提升环节,通过变式题目让学生感受到知识、方法的灵活运用,提升学生综合运用能力最后,分层设计了本节课的验收落实,通过一个小测了解学生对知识的掌握情况。
本节课教学过程的进行既有收获也有遗憾。
优点:①对知识的讲解较细致、到位,能够照顾到大多数学生的实际情况;②PPT 设计比较生动,有助于学生对知识的理解;③变式习题设计灵活,涵盖考点,注重对中考的把握;④本节课渗透了归纳、转化、数形结合思想,关注学生对思想方法的体会;⑤注重对优生的培养,重视学生综合能力的提高。
不足:①在题目的选择上还可以更丰富一些;②能力提升环节中没有照顾到基础较弱的学生;③教学语言的组织还有待进一步提升。
反比例函数k 值的几何意义(A,B 层)1. 如图1,反比例函数图像上一点A 与坐标轴围成的矩形ABOC 的面积是8,则该反比例函数的解析式为2.如图2,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 10、P 2A 20、P 3A 30,设它们的面积分别是S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 1<S 3<S 2D .S 1=S 2=S 33.如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C . (1)若点A 的坐标为(-10,8),求△AOC 的面积。
九年级数学下册 反比例函数知识点总结

九年级数学下册反比例函数知识点总结反比例函数是数学中常见的一种函数形式。
在反比例函数中,当自变量的值增大时,因变量的值会减小;当自变量的值减小时,因变量的值会增大。
下面是九年级数学下册关于反比例函数的知识点总结:1.反比例函数的定义:反比例函数是指一个函数,其方程形式为y = k/x,其中k是常数,x是自变量,y是因变量。
2.反比例函数的特点:当x为正数且逐渐增大,y的值会逐渐减小。
当x为正数且逐渐减小,y的值会逐渐增大。
如果x等于0,函数的值为无穷大或无穷小。
反比例函数的图像通常是一个曲线,经过原点,并且关于y轴和x轴都对称。
3.反比例函数的图像:反比例函数的图像通常是一个双曲线的一支。
当k为正数时,双曲线的开口朝上。
当k为负数时,双曲线的开口朝下。
当k的绝对值变大时,双曲线的形状越陡峭。
4.反比例函数的应用:反比例函数在实际生活中有许多应用,例如:速度与时间的关系:当行驶的时间增加时,速度会减小。
工作的时间与人数的关系:当完成工作的时间减少时,需要的人数会增加。
投资的金额与收益的关系:当投资的金额增加时,收益会减少。
5.反比例函数的求解:给定反比例函数的方程,可以通过代入不同的自变量的值来计算相应的因变量的值。
给定一组包含自变量和因变量的数值对,可以通过取自变量与因变量的乘积的比值来求解反比例函数的常数k。
以上是九年级数学下册关于反比例函数的知识点总结。
反比例函数在数学中扮演着重要的角色,并在实际生活中有许多应用。
通过理解这些知识点,可以更好地应用和解决与反比例函数相关的问题。
人教版数学九年级下册第26章《反比例函数》复习课件

ab x
真题专练
(2015安徽21题12分)如图,已知反比例函数y
k1 与
x
一次函数y=k2x+b的图象交于A(1,8),B(-4,m).源自(1)求k1、k2、b的值;
(2)求△AOB的面积;
y= k
K>0
K<0
x
图 象
当k>0时,函数图象的两 当k<0时,函数图象的两
性 质
个分支分别在第一、三象 个分支分别在第二、四象
限,在每个象限内,y随x 限,在每个象限内,y随x
的增大而减小.
的增大而增大.
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
(1)求p与S之间的函数关系式;
用 (2)求当S=0.5m2时物体承受的压强p ;
(3)求当p=2500Pa时物体的受力面积S.
p(Pa)
4000 3000 2000
A(0.25,1000)
1000
O 0.1 0.2 0.3 0.4 S(m2)
【及时归纳】 求反比例函数解析式的步骤
(1)设出反比例函数解析式 y = k ; x
反比例函数的图象及性质(常考)
函数的图象经过点
A(1,-2),则k的值为
()
A. 1
2
B. 1 C. 2
2
D. -2
反比例函数解析式的确定(常考)
点P(1,a)在反比例函数的图象上,它关于y 轴的对称点在一次函数y=2x+4的图象上,求
此反比例函数的解析式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:反比例函数1.反比例函数:(1)反比例函数:,三个量x,y,k均不为。
(2)每两个变量的乘积都是一个,即一个变量可以表示为非零常数除以另一个变量的形式。
(3)给定一个变量的值,相应的就确定了。
(4)形如、、的函数都是反比例函数。
2.反比例函数的表达式:。
(1)用待定系数法求反比例函数表达式的步骤:①;②;③;④。
(2)求实际问题中的反比例函数表达式:①;②。
3.反比例函数的图像与性质(1)反比例函数的图像:反比例函数的图像是由组成的。
当时,两支曲线分别位于,当时,两支曲线分别位于。
双曲线是对称图形,对称抽有条,分别是和;同时也是对称图形,对称中心是。
所以一个点P(a、b)在双曲线的一支上,那么点P关于原点O成中心对称的点必在双曲线的另一支上,其坐标为。
(2)反比例函数图像的画法:①;②;③。
(3)反比例函数图像的性质(4)k的几何意义:①过双曲线上任意一点做x轴、y轴的垂线,则两条垂线和x轴、y轴所围成的矩形面积为;②过双曲线上任意一点做x轴(或y轴)的垂线,并连接原点,则这条垂线与原点的连线、x轴(或y轴)所围成的三角形为。
4、反比例函数的实际应用(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.(4)用反比例函数解决实际问题的步骤:1);1.反比例函数的定义0P、OQ,求△OPQ的面积.过点M、A的一次函数解析式.欧姆时,电流I=2安培。
(1)求I 与R 之间的函数关系式(2)当电流I=0.5安培时,求电阻R 的值;、一封闭电路中,当电压是6V 时,回答下列问题:(1)写出电路中的电流I(A)与电阻R(Ω)之间的函数关系式。
(2)画出该函数的图像。
(3)如果一个用电器的电阻是5Ω,其最大允许通过的电流为1A ,那么只把这个用电器接在这个封闭电路中,会不会烧坏?试通过计算说明理由。
2、已知一次函数6+-=x y 和反比例函数x ky =(k ≠0)(1)k 满足什么条件时这两个函数在同一坐标系xoy 中图象有两个公共交点。
(2)设(1)中的两个公共点为A ,B ,则∠AOB 是锐角还是钝角。
3、如图,Rt △ABO 的顶点A 是双曲线x ky =与直线)1(+--=k x y AB ⊥x 轴于B 且S △ABO=23(1)求这两个函数的解析式(2)求直线与双曲线的两个交点A ,C 的坐标和△AOC4、如图,一次函数的图像与反比例函数的图像相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围(2001江苏苏州) 度近视眼镜镜片的焦距为2、 (2008•宜昌)某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m2)之间的函数关系如图所示,这一函数表达式为? ..下列函数中,图象经过点(11)-,的反比例函数解析式是() A .1y x =B .1y x -=C .2y x =D .2y x -=2.反比例函数2k y x =-(k 为常数,0k ≠)的图象位于( ) A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限3.已知反比例函数y =x 2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <2 4.反比例函数x ky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( )(A)2 (B)-2 (C)4 (D)-4 5.对于反比例函数2y x =,下列说法不正确的是()A .点(21)--,在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小6.反比例函数22)12(--=m xm y ,当x >0时,y 随x 的增大而增大,则m 的值时()A 、±1B 、小于21的实数 C 、-1 D 、17.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P1A1O 、P2A2O 、P3A3O ,设它们的面积分别是S1、S2、S3,则()。
A 、S1<S2<S3B 、S2<S1<S3C 、S3<S1<S2D 、S1=S2=S3 8.在同一直角坐标系中,函数x y 2-=与x y 2=图象的交点个数为( )A .3B .2C .1D .09.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是()10.如图,直线y=mx 与双曲线y=x k交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( ) A .2 B 、m-2 C 、m D 、411.u 与t 成反比,且当u =6时,81=t ,这个函数解析式为 ;12.函数2x y -=和函数x y 2=的图像有 个交点; 13.反比例函数x ky =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;14.若反比列函数1232)12(---=k kx k y 的图像经过二、四象限,则k = _______15.已知2-y 与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ; 16.已知正比例函数kx y =与反比例函数3y x =的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ;17.设有反比例函数y k x =+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________ 18.右图是反比例函数x ky =的图象,则k 与0的大小关系是k 0. 19.反比例函数()0>=k x ky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 20.()7225---=m m xm y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ;11.如图,已知双曲线k y x =(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,求k 的值.12.若一次函数y =2x -1和反比例函数y =2kx 的图象都经过点(1,1).(1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;13.如图正方形OABC 的面积为4,点O 为坐标原点,点B 在函数ky x =(0,0)k x << 的图象上,点P(m ,n)是函数ky x =(0,0)k x <<的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .(1)设矩形OEPF 的面积为Sl ,判断Sl 与点P 的位置是否有关(不必说理由).(2)从矩形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余面积记为S2,写出S2与m 的函14. 如图,一次函数y =ax +b 的图象与反比例函数y =mx 的图象交于A 、B 两点,与x 轴交于点C ,与y 轴交于点D .已知OA tan ∠AOC =12,点B 的坐标为(12,-4).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.15、面积一定的梯形,其上底长是下底长的31,设上底长为xcm ,高为ycm ,且当x=5cm ,y=6cm , (1)求y 与x 的函数关系式; (2)求当y=4cm 时,下底长多少?16、(2006•莱芜)如图,在△ABC 中,AB=AC=1,点D ,E 在直线BC 上运动.设BD=x ,CE=y .(1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y 与x 之间的函数关系式还成立?试说明理由.17、如图所示是某个函数图像的一部分,根据图像回答下列问题:1)、这个函数图像所反映的两个变量之间是怎样的函数关系? 2)、请你根据所给出的图像,举出一个合乎情理且符合图像所给出的情形的实际例子。
3)、写出你所举的例子中两个变量的函数关系式,并指出自变量的取值范围。
4)、说出图像中A 点在你所举例子中的实际意义。