(完整版)九年级数学:反比例函数复习专题教案
人教版九年级数学下册第二十六章反比例函数复习教学设计

3.鼓励学生提出疑问,针对学生的疑问进行解答,巩固所学知识。
4.布置课后作业,要求学生运用所学知识解决实际问题,提高学生的数学素养。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,重点掌握反比例函数的定义、性质和图像特点。
3.讲解反比例函数在实际问题中的应用,如速度与时间、物体在水平面上的运动等。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,针对反比例函数的性质、图像和应用进行讨论。
2.各小组分享自己的观点,讨论如何利用反比例函数解决实际问题。
3.教师巡回指导,针对学生的疑问进行解答,引导学生运用所学知识分析问题。
针对九年级学生,他们在之前的学习中已经掌握了函数的基本概念、一次函数、二次函数的性质和应用。在此基础上,学生对反比例函数的学习具备了一定的基础。然而,反比例函数作为函数学习的重要组成部分,其图像、性质和实际应用方面仍存在一定的难度。因此,在本章节的教学过程中,需要关注以下几点:
1.学生在理解反比例函数图像和性质时可能遇到困难,如对双曲线、渐近线等概念的理解。
5.针对课堂所学内容,编写一道反比例函数的应用题,要求题目具有一定的挑战性和趣味性。
6.阅读教材中关于反比例函数的相关内容,总结反比例函数的性质、图像和应用,形成自己的学习笔记。
2.自主探究,合作交流
-引导学生回顾一次函数、二次函数的性质,自主发现反比例函数的性质,组织学生进行小组讨论,共同总结反比例函数的图像特点及其应用。
3.精讲精练,突破难点
-对反比例函数的图像、性质进行详细讲解,结合具体例子,使学生深入理解双曲线、渐近线等概念。
反比例函数复习教案

反比例函数复习优秀教案一、教学目标:1. 知识与技能:(1)理解反比例函数的定义及其性质;(2)掌握反比例函数图象的特点及应用;(3)能够运用反比例函数解决实际问题。
2. 过程与方法:(1)通过复习,加深对反比例函数知识的理解;(2)培养学生的数学思维能力,提高解决问题的能力。
3. 情感态度与价值观:二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其性质;(2)反比例函数图象的特点及应用。
2. 教学难点:(1)反比例函数图象的绘制;(2)反比例函数在实际问题中的应用。
三、教学过程:1. 导入:通过复习反比例函数的定义及性质,引导学生回顾已学知识,为新课的学习做好铺垫。
2. 课堂讲解:(1)讲解反比例函数的定义:y = k/x(k为常数,k≠0);(2)分析反比例函数的性质:as x changes, y changes in the opposite direction;(3)展示反比例函数图象的特点:经过原点,双曲线形状,两分支分别趋向于x轴和y轴;(4)讲解反比例函数在实际问题中的应用:通过实例分析,让学生掌握反比例函数在实际问题中的解题方法。
3. 课堂练习:布置一些有关反比例函数的练习题,让学生在课堂上完成,检测学生对反比例函数知识的掌握程度。
四、课后作业:2. 绘制一个反比例函数的图象,并描述其特点;3. 选择一道实际问题,运用反比例函数解决。
五、教学反思:本节课通过复习反比例函数的知识,使学生巩固了反比例函数的定义、性质及应用。
在课堂讲解过程中,注重培养学生的数学思维能力,提高解决问题的能力。
通过课堂练习和课后作业,检测学生对反比例函数知识的掌握程度。
在今后的教学中,要继续关注学生的学习情况,针对性地进行辅导,提高教学质量。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究反比例函数的性质;2. 通过多媒体演示反比例函数图象的特点,增强学生的直观感受;3. 利用实际例子,让学生学会将反比例函数应用于解决实际问题;4. 注重个体差异,给予学生充分的思考时间和空间,鼓励学生提出问题;5. 采用小组合作学习的方式,培养学生的团队合作意识。
反比例函数复习课教案

反比例函数复习课教案第一章:反比例函数的定义及性质1.1 反比例函数的定义引导学生回顾反比例函数的定义:形如y = k/x (k 为常数,k ≠0) 的函数,称为反比例函数。
强调反比例函数中x 和y 成反比例关系,即xy = k。
1.2 反比例函数的性质分析反比例函数的图像特征:反比例函数的图像是一条通过原点的曲线,称为双曲线。
探讨反比例函数的渐近线:当x 趋向于正无穷或负无穷时,y 趋向于0,x 轴和y 轴是反比例函数的渐近线。
讲解反比例函数的单调性:在第一象限和第三象限,反比例函数是减函数;在第二象限和第四象限,反比例函数是增函数。
第二章:反比例函数的图像与几何意义2.1 反比例函数的图像利用图形软件绘制反比例函数的图像,引导学生观察图像的形状和特点。
引导学生理解反比例函数图像的四个象限特点:当k > 0 时,图像位于第一象限和第三象限;当k < 0 时,图像位于第二象限和第四象限。
2.2 反比例函数的几何意义解释反比例函数表示的是点(x, y) 在坐标平面上的分布情况,且这些点满足xy = k。
引导学生思考反比例函数与面积的关系:反比例函数图像与坐标轴围成的封闭区域的面积等于k 的绝对值。
第三章:反比例函数的性质与应用3.1 反比例函数的性质引导学生利用反比例函数的性质解决问题,如判断两个函数是否为反比例函数、确定反比例函数的单调区间等。
3.2 反比例函数的应用举例说明反比例函数在实际问题中的应用,如物理学中的电流与电压的关系、化学中的浓度与体积的关系等。
引导学生运用反比例函数解决实际问题,培养学生的数学应用能力。
第四章:反比例函数的运算4.1 反比例函数的基本运算复习反比例函数的基本运算规则,如反比例函数的加减乘除、乘积和商的运算。
4.2 反比例函数的复合运算讲解反比例函数的复合运算,如反比例函数与一次函数、二次函数的复合运算。
引导学生运用反比例函数解决复合运算问题,提高学生的数学运算能力。
人教版九年级数学下册《反比例函数》章节复习教案

第26章-反比例函数复习教案一、【教材分析】
二、【教学流程】
2.双曲线y1、y2在第一象限的图象如
3.病人按规定的剂量服用某种药物,得服药后2小时,每毫升血液中的含药量达到最大值为4 毫克.已知服药后,2 小时前每毫升血液中的含药量y(单位:毫克)与时间x(单位:小时
2.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主
三、【板书设计】
四、【教后反思】
通过本节课的复习,有成功的地方,也有不足之处.
成功之处:
一、定位较准,立足于本校学情。
由于是复习课,学生对知识点的掌握相对而言就稍微轻松些。
我目的是落实知识点和掌握一些基本的题型.
二、习题设计合理,立足于思维训练。
本节课每个知识点都设计了针对性的变式练习,通过练习,学生的解题技巧、方法、思维都得到了一定训练.
三、注重了数学思想方法的渗透。
在复习反比例函数的性质时,我紧紧抓住关键词语,突破难点.性质强调“在同一象限内”,几何意义强调k的绝对值,而我们学生往往忽略这些问题,对此,采用讨论的观点,结合图像观察,让学生不仅看到还要理解到.这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结.这样来渗透数学思想方法:分类讨论和数形结合的思想方法.
不足之处:
一、讲的太多。
这主要体现在知识点回顾时,本来打算一点而过,结果学生的回答偏离了我的预想,让学生讲解我总怕学生不会,自己来讲从而浪费了学生练习的时间。
不能大胆放心把课堂交还给学生.
二、对学生的情感关注太少.在教学过程中对少数同学的回答能及时给予表扬和激励,对大部分学生关注太少.不能激大部分发学生的兴趣,坚定他们学习的信心.。
(完整版)九年级数学:反比例函数复习专题教案

《反比例函数》复习教学设计横龙中学朱利艳复习目标1.知识与技能理解反比例函数定义、图象及其主要性质,能根据所给信息确定反比例函数表达式,能利用反比例函数的图象和性质解决问题,体会函数的应用价值。
.函数的相交问题,主要探究函数相交的交点个数及如何计算交点坐标,并进一步探究x取何值时,一次函数与反比例函数值的大小比较、相交时所围成的三角形的面积问题。
2.过程与方法利用回顾反比例函数的概念、性质、图象的过程,把数学与实际问题相结合,渗透数形结合思想。
3.情感、态度与价值观进一步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
复习重点、难点【复习重点】能根据所给信息确定反比例函数表达式,掌握反比例函数的图象特点及性质,利用反比例函数的图象及性质解决问题;反比例函数中面积问题涉及题型的掌握。
【复习难点】对反比例函数图像及性质的理解和一次函数的综合应用,利用反比例函数解决实际问题。
反比例函数与一次函数结合出现的面积问题所涉及的解题方法的归纳。
复习过程一、知识梳理1.反比例函数的定义:一般地,形如y=kx (1y kx xy k或)(k为常数,k____0)的函数叫做反比例函数.2.反比例函数的性质:反比例函数y=kx(k≠0)的图象是___ ___.当k>0时,两分支分别位于第__ ___象限内,且在每个象限内,y随x的增大而_______;当k<0时,两分支分别位于第_______象限内,且在每个象限内,y随x的增大而_______.3.反比例函数的图象是中心对称图形,其对称中心为_______;反比例函数还是_______图形,它有两条_______,分别是直线__ _____.4.在双曲线y =kx上任取一点P 向两坐标轴作垂线,与两坐标轴围成的矩形的面积等于_______.5.因在反比例函数的关系式y =kx(k ≠0)中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数的关系式,因而一般只要给出一组x 、y 的值或图象上任意一点的坐标,然后代入y =k x中即可求出_______的值,进而确定出反比例函数的关系式.6.利用反比例函数中|k|的几何意义求解与面积有关的问题。
北师大版数学九年级上册第六章反比例函数复习教案

(2)反比例函数在实际问题中的应用:学生在将反比例函数应用于实际问题中时,往往难以正确设定变量和建立模型。
突破方法:通过典型例题的讲解和练习,引导学生如何从问题中抽象出反比例关系,并建立数学模型。
(3)反比例函数与其他函数的区分:学生容易混淆反比例函数与其他函数的性质和图像。
同学们,今天我们将要复习的是《反比例函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过路程不变,速度与时间成反比的情况?”(如:固定距离,速度越快,所需时间越短)这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
另外,学生在将反比例函数应用于实际问题中时,有时会感到困惑,不知道如何从问题中抽象出反比例关系。针对这个问题,我计划在接下来的教学中,设计更多具有实际背景的问题,引导学生逐步学会如何从问题中提炼出反比例函数模型,提高他们解决实际问题的能力。
在小组讨论环节,我发现学生们积极参与,讨论氛围浓厚,但部分小组在分享成果时,表达不够清晰。为了提高学生的表达能力,我打算在今后的教学中,多给予他们展示和表达的机会,并适时给予指导和鼓励,帮助他们更好地展示比例函数复习教案
一、教学内容
本节课为北师大版数学九年级上册第六章“反比例函数”的复习教案。教学内容主要包括以下几部分:
1.反比例函数的定义与性质:回顾反比例函数的定义,即y=k/x(k为常数,k≠0),以及其性质,如图像关于原点对称、在每个象限内的符号等。
2.反比例函数的图像:复习反比例函数图像的特点,如曲线在第一、三象限单调递减,在第二、四象限单调递增,以及图像与坐标轴无交点等。
九年级《反比例函数》复习教案

九年级 反比例函数 复习课高台中学 教师 何光银一.要点回顾:1.反比例函数的概念 反比例函数y=k x 中的k x 是一个分式,自变量x ≠0,函数与x 轴、y 轴无交点,y=k x也可写成y=kx -1(k ≠0), 反比例函数表达式还可以变形为xy= k,它表明在反比例函数中自变量x 与对应的函数值y 之积总等于比例系数k2.反比例函数的图象 (1)对于反比例函数xky =)0(≠k ,当k >0时,函数图象的两个分支分别位于第一、三象限内,在每一个象限内.......,y 随x 的增大而减小;当k <0时,函数图象的两个分支分别位于第二、四象限内,在每一个象限内.......,y 随x 的增大而增大.(2)双曲线两个分支关于原点成中心对称.(3) 在反比例函数xky =)0(≠k 的图象上任取一点, 过这一点分别作x 轴、y 轴的平行线,与两坐标轴围成的矩形面积总等于常量k .(如图:k S O BAC =矩形 AOB S ∆=k S AOC 21=∆)教学方法:通过教师的引导,使学生对反比例函数的概念、图象和性质有了更加全面的认识,再通过题目的层层设置,让学生主动参与到整个教学活动中来,多观察、多练习,调动学生的积极性.在教学过程中渗透数学思想和方法及解题策略。
二.中考热点突破1.反比例函数的图象例1 函数y=1x-(x>0)的图象大致是( )y xyy O xyOx点评:本题特别注意的是y=1x-中的限制条件(x>0), 即双曲线的横坐标为正. 例2 函数y=kx+1与函数y=kx在同一坐标系中的大致图象是( )分析:明确一次函数y=kx+1中的k 的含义与函数y=kx中k 的含义是解题的关键. (一) 反比例函数的比例系数k 的几何意义: you1. (2013.六盘水)下列图形中阴影部分的面积最大的是( )2.(2012福建)如图,点A 在双曲线xy 2=(x >0)上, 点B 在双曲线xy 4=(x >0)上,且AB ∥y 轴,点P 是y 轴上的任意一点,则△PAB 的面积为 。
九年级中考数学一轮复习教案:反比例函数复习精选全文

精选全文完整版(可编辑修改)《反比例函数》复习课简案【教学目标】1.熟练掌握反比例函数的定义,能应用其图像与性质解决相关问题,会用待定系数法求一次函数的表达式;2. 通过反比例函数知识的整理、归纳,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括、运用的能力;3. 通过学生自主设计问题、教师引导的方式,提高学生自主分析问题、解决问题的能力,培养学生独立思考、合作交流的意识,提升学生学习数学的基本素养.【教学重难点】教学重点:能用反比例函数的图像与性质解决问题,会用待定系数法求反比例函数的表达式; 教学难点:能用反比例函数的知识解决综合问题,提高学生分析问题、解决问题的能力.【教学过程】一、 自主建构,梳理知识1、 反比例函数的定义:2、 反比例函数的图像:3、 反比例函数的图像特征:二、 自主设计,合作交流问题一:已知反比例函数的图像经过3(,4)2Q --(1)写出这个函数表达式;(2)若点Q (-1,m )在这个图像上,写出m 的值;(3)若P (-2,y 1) ,Q (3,y 2) 在这个图像上,你能比较y 1 ,y 2 的大小吗?(4)若P (x 1,y 1) , Q (x 2,y 2) 在这个图像上,且120x x <<,你还能比较y 1、y 2的大小吗?(5)如图,点P 是这个图像上任意一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,你能求出矩形OAPB 的面积吗?在第(5)问的基础上你还能提出哪些问题?一轮复习研讨课三、 变题研究,提高能力 变式1:如图,A 、B 两点在双曲线6y x =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2= .变式2:如图,过点P (4,5)分别作PC ⊥x 轴于点C ,PD ⊥y 轴 于点D ,PC 、PD 分别交反比例函数6y x =(x >0)的图象于点 A 、B ,则四边形BOAP 的面积为 .变式3:如图,A 、B 是双曲线6y x=上的两点,过A 点作 AC⊥x 轴,交OB 于D 点,垂足为C.若D 为OB 的中点,则△ADO 的面积为 .四、总结反思,提升素养问题二:1、如图,直线y kx =与反比例函数6y x =的图像交于P 、Q 两点. (1)若P(1,6),你能说出点Q 的坐标吗?(2)在(1)的条件下,结合图像,你能写出方程6kx x =的解吗? 你能写出不等式6kx x >中x 的取值范围吗?2、已知A (3,2)、B (-2,﹣3)两点是一次函数y kx b =+ 和反比例函数m y x =图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《反比例函数》复习教学设计
横龙中学朱利艳
复习目标
1.知识与技能
理解反比例函数定义、图象及其主要性质,能根据所给信息确定反比例函数表达式,能利用反比例函数的图象和性质解决问题,体会函数的应用价值。
.函数的相交问题,主要探究函数相交的交点个数及如何计算交点坐标,并进一步探究x取何值时,一次函数与反比例函数值的大小比较、相交时所围成的三角形的面积问题。
2.过程与方法
利用回顾反比例函数的概念、性质、图象的过程,把数学与实际问题相结合,渗透数形结合思想。
3.情感、态度与价值观
进一步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
复习重点、难点
【复习重点】
能根据所给信息确定反比例函数表达式,掌握反比例函数的图象特点及性质,利用反比例函数的图象及性质解决问题;反比例函数中面积问题涉及题型的掌握。
【复习难点】
对反比例函数图像及性质的理解和一次函数的综合应用,利用反比例函数解决实际问题。
反比例函数与一次函数结合出现的面积问题所涉及的解题方法的归纳。
复习过程
一、知识梳理
1.反比例函数的定义:一般地,形如y=k
x
(1
y kx xy k
-
==
或)(k为常数,k____0)的
函数叫做反比例函数.
2.反比例函数的性质:反比例函数y=k
x
(k≠0)的图象是___ ___.当k>0时,两分
支分别位于第__ ___象限内,且在每个象限内,y随x的增大而_______;当k<0时,两分支分别位于第_______象限内,且在每个象限内,y随x的增大而_______.
3.反比例函数的图象是中心对称图形,其对称中心为_______;反比例函数还是_______图形,它有两条_______,分别是直线__ _____. 4.在双曲线y =
k x 上任取一点P 向两坐标轴作垂线,与两坐标轴围成的矩形的面积等于_______.
5.因在反比例函数的关系式y =k x
(k ≠0)中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数的关系式,因而一般只要给出一组x 、y 的值或图象上任意一点的坐标,然后代入y =k x
中即可求出_______的值,进而确定出反比例函数的关系式. 6.利用反比例函数中|k|的几何意义求解与面积有关的问题。
设P 为双曲线k y x
=上任意一点,过点P 作x 轴、y 轴的垂线PM 、PN ,垂足分别为M 、N ,则两垂线段与坐标轴所围成的的矩形PMON 的面积为S=|PM|×|PN|=|y|×|x|=|xy| ,,k y xy k s k x
=∴==。
从而得: 【结论1】:过双曲线上任意一点作x 轴、y 轴的垂线,所得矩形的面积S 为定值|k|。
对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:
【结论2】:在直角三角形ABO 中,面积S=2
k 。
【结论3】:在直角三角形ACB 中,面积为S=2|k|。
【结论4】:在三角形AMB 中,面积为S=|k|。
二、自主探究
题第1完成第1—4题 完成后学生讲解
1.(丽水)已知反比例函数x k y =
的图象如图所示,则一次函数k kx y +=的图象经过( )
A.第一、二、三象限
B.第二、三、四象限
C.第一、二、四象限
D.第一、三、四象限
第4题
2.(莱芜)已知反比例函数 ,下列结论不正确( ) A .图象必经过点(-1,2) B .y 随x 的增大而增大
C .图象在第二、四象限内
D .若x >1,则y >-2
3.(台州)反比例函数y =6x 图象上有三个点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),
其中x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是( )
A .y 1<y 2<y 3
B .y 2<y 1<y 3
C .y 3<y 1<y 2
D .y 3<y 2<y 1
4.(锦阳)如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x 上,且AB ∥x 轴,
C ,
D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.
三、例题精析
题型归类:
题型一:已知面积,求反比例函数的解析式(或比例系数k )
【例题1】
x y 2-=
【题干】如图,直线OA 与反比例函数(0)k y k x =≠的图象在第一象限交于A 点,AB ⊥x 轴于点B ,△OAB 的面积为2,则k = .
【例题2】
【题干】如图,已知双曲线(0)k y k x
=≠(x>0)经过矩形OABC 的边AB ,BC 的中点F 、E ,且四边形OEBF 的面积为2,则k = .
题型二:已知反比例函数解析式,求图形的面积
【例题3】
【题干】在反比例函数4y x
=的图象中,阴影部分的面积不等于4的是( )
A .
B .
C .
D .
题型三:利用数形结合思想求点的坐标,注意分类讨论
【例题4】
【题干】已知一次函数y=kx+b(k≠o)和反比例函数y=
2k x
的图象交于点A(1,1). (1)求两个函数的解析式;
(2)若点B 是x 轴上一点,且△AOB 是直角三角形,求B 点的坐标.
例4题图 例5题图
【例题5】
【题干】如图,一次函数y=ax+b 的图象与反比例函数k y x =
的图象交于M 、N 两点. (1)求反比例函数和一次函数的函数关系式;
(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.
题型四:利用点的坐标及面积公式求图形的面积
【例题6】
【题干】如图,已知(4,),(2,4)A n B --是一次函数y kx b =+的图像和反比例函数m y x
=的图像的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB 与x 轴的交点C 的坐标及三角形AOB 的面积.
四、课堂总结
谈谈你本堂课的收获(解题方法,数学思想……)
五、复习专题作业----一品中考P55-56。