固体物理学能带理论小结

合集下载

固体物理学能带理论小结

固体物理学能带理论小结

能带理论一、本章难易及掌握要求要求重点掌握:1)理解能带理论的基本假设和出发点;2)布洛赫定理的描述及证明;3)三维近自由电子近似的模型、求解及波函数讨论;4)紧束缚近似模型及几个典型的结构的计算;5)明白简约布里渊区的概念和能带的意义及应用;6)会计算能态密度。

本章难点:1)对能带理论的思想理解,以及由它衍生出来的的模型的应用。

比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。

了解内容:1)能带的成因及对称性;2)万尼尔函数概念;3)波函数的对称性。

二、基本内容1、三种近似在模型中它用到已经下假设:1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。

故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。

多体问题化为了多电子问题。

2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。

多电子问题化为单电子问题。

3)周期场近似:假定所有离子产生的势场和其它电子的平均势场是周期势场,其周期为晶格所具有的周期。

单电子在周期性场中。

2、周期场中的布洛赫定理1)定理的两种描述当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质:形式一:()()ni k R n r R e r ψψ⋅+= ,亦称布洛赫定理,反映了相邻原包之间的波函数相位差形式二:()()ik rr e u r ψ⋅= ,亦称布洛赫函数,反映了周期场的波函数可用受)(r u k 调制的平面波表示.其中()()n u r u r R =+ ,n R 取布拉维格子的所有格矢成立。

2)证明过程:a. 定义平移算符 T ,)()()()(332211321a T a T a T R T m m m m =b . 证明 T 与ˆH 的对易性。

ααHT H T = c.代入周期边界条件,求出 T 在 T 与ˆH 共同本征态下的本征值 λ。

能带理论--能带结构中部分概念的理解小结

能带理论--能带结构中部分概念的理解小结

本文是关于能带结构概念部分学习的小结,不保证理解准确,欢迎高中低手们批评指教,共同提高。

能带结构是目前采用第一性原理(从头算abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。

能带可分为价带、禁带和导带三部分,导带和价带之间的空隙称为能隙,基本概念如图1所示。

1. 如果能隙很小或为0,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。

一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。

因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。

2. 能带用来定性地阐明了晶体中电子运动的普遍特点。

价带(valence band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。

在导带(conduction band)中,电子的能量的范围高于价带(v alence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流。

对于半导体以及绝缘体而言,价带的上方有一个能隙(b andgap),能隙上方的能带则是传导带,电子进入传导带后才能再固体材料内自由移动,形成电流。

对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。

3. 费米能级(Fermi level)是绝对零度下电子的最高能级。

根据泡利不相容原理,一个量子态不能容纳两个或两个以上的费米子(电子),所以在绝对零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子能态的“费米海”。

“费米海”中每个电子的平均能量为(绝对零度下)为费米能级的3/5。

海平面即是费米能级。

一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。

成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。

4. 能量色散(dispersion of energy)。

固体物理学:能带理论(三)

固体物理学:能带理论(三)

k
y
k
x
dZ=2(k)(k空间中能量在E → E+dE两等能面间的体积)
V
2 8 3 Econst dSdk
和自由电子情形不同,这里的等能面 已经不是球面,需要根据等能面形状 具体积分才行。
因为:
dE kE dk
所以:
N ( E )
1 V
dZ dE
1
4 3
dS Econst k E(k )
电子的能量只在布里渊区边界附近偏离自由电子能量,在 布里渊区边界产生能隙。等能面在布里渊区边界面附近发 生畸变,形成向外突出的凸包 等能面几乎总是与布里渊区边界面垂直相交; 费米面所包围的总体积仅依赖于电子浓度,而不取决于电 子与晶格相互作用的细节; 周期场的影响使费米面上的尖锐角圆滑化。
证明:在一般情况下,等能面与布里渊区边界面垂直相交,
近代的能带计算也采用建立在密度泛函理论基础上的局域 密度近似(Local density approximation)方法,理论基础是 非均匀相互作用电子系统的基态能量唯一的由基态电子密度确 定,是基态电子密度 n(r) 的泛函。
其计算流程见下表,上面提到的几种模型都可以用来进行 密度泛函计算。
小结:
由此我们给出对近自由电子能态密度的估计:在能量没 有接近EA时,N(E)和自由电子的结果相差不多,随着能量的 增加,等能面一个比一个更加强烈地向外突出,态密度也超 过自由电子,在 EA处达到极大值,之后,等能面开始残破, 面积开始下降,态密度下降,直到 EC时为零。所以近自由 电子近似下的N(E)如图所示。
k
1 2
Gn
沿布里渊区边界面的法线方向上,
En k
1 2
Gn
En k

固体物理_第4章_能带理论

固体物理_第4章_能带理论

ik ( r R n ) u ( r Rn ) e u (r )
u ( r ) ,代入上式有:
(2 )
则:u (r Rn ) u (r )
即布洛赫波是振幅受到具有同晶格周期相同的周期性函数调制的平面 波。
ˆ ( R ) H HT ( R ) 0 ˆ ˆˆ T n n
根据量子力学知识可知:哈密顿量和平移算符有共同的本征态,可选 择哈密顿量的本征态 (r ) 为共同本征态。
采用波恩-卡曼周期性边界条件有: N ˆ ˆ ˆ ˆ (r ) (r N1a1 ) T ( N1a1 ) (r ) T (a1 )T (a1 )T (a1 ) (r ) 1 1 (r )
,而内层电子的变化较小,可以把内层电子和原子实近似看成离子实 这样价电子的等效势场包括离子实的势场,其他价电子的平均势场以 及电子波函数反对称性而带来的交换作用。 能带理论是单电子近似理论,即把每个电子的运动看成是独立的 在一个等效势场中的运动。单电子近似理论最早用于研究多电子原子
,又称为哈特里(Hartree)-福克(o )自洽场方法。 把多体问题简化为单电子问题需要进行多次简化。1、绝热近似: 原子核或者离子实的质量比电子大的多,离子的运动速度慢,在讨论 电子问题时可以认为离子是固定在瞬时位置上。这样多种粒子的多体 问题就简化为多电子问题;
能带理论取得相当的成功,但也有他的局限性。如过渡金属化 合物的价电子迁移率较小,相应的自由程和晶格常数相当,这时不 能把价电子看成共有化电子,周期场的描述失去意义,能带理论不 再适用。此外,从电子和晶格相互作用的强弱程度来看,在离子晶 体中的电子的运动会引起周围晶格畸变,电子是带着这种畸变一起 前进的,这些情况都不能简单看成周期场中单电子运动。

固体物理--能带理论

固体物理--能带理论

固体物理中关于能带理论的认识摘要:本文运用能带理论就晶体中的电子行为作一些讨论,以期对能带理论的概念更细致的把握。

关键词:能带理论电子共有化绝热近似平均场近似周期场假定引言能带理论(Energy band theory)是研究晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。

它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论,对于晶体中的价电子而言,等效势场包括原子核的势场、其他价电子的平均势场和考虑电子波函数反对称而带来的交换作用,是一种晶体周期性的势场。

能带理论认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动。

1 能带理论的假定能带理论是目前的固体电子理论中最重要的理论。

量子自由电子理论可作为一种零级近似而归入能带理论。

能带理论是一个近似理论,下面对该理论所作的假定作为一探讨。

实际晶体是由大量电子和原子核组成的多粒子体系。

如果不采用一些简化近似,从理论上研究固体的能级和波函数是极为困难的。

1.1 绝热近似考虑到电子与核的质量相差悬殊。

可以把核与电子的运动分开考虑,相当于忽略了电子——声子相互作用。

电子运动时,可以认为核是不动的。

电子是在固体不动的原子核产生的势场中运动。

1.2 平均场近似因为所有电子的运动是关联的。

可用一种平均场来代替价电子之间的相互作用,即假定每个电子所处的势场都相同。

使每个电子的电子间相互作用能仅与该电子的位置有关,而与其它电子的位置无关,在上述近似下,每个电子都处在同样的势场中运动,既所有电子都满足同样的薛定谔方程,只要解得方程,就可得晶体电子体系的电子状态和能量。

使多电子问题简化为一个单电子问题,所以上述近似也称单电子近似。

1.3 周期场假定薛定谔方程中势能项是原子实对电子的势能,具有与晶格相同的周期性。

代表一种平均势能,应是恒量。

因此,在单电子近似和晶格周期场假定下,就把多电子体系问题简化为在晶格周期势场的单电子定态问题,上述在单电子近似基础上的固体电子理论称能带论。

固体能带理论简介

固体能带理论简介

k ( x) eikxuk ( x)
uk ( x) 是周期等于晶格常数
a 的周期函数 uk ( x) uk ( x na)
9
这一结果称为布洛赫定理
证明布洛赫定理 势场具有周期结构,则电子概率密度具有相同的周期性,即
| k ( x) |2 | k ( x a) |2
则:
4
•隧道效应:
晶体是由大量原子有规则 地排列形成的,晶体中包含 着大量的离子,如正离子和 电子,它们之间存在着相互 作用。 离子实
u (r )
r0
f (r )
r
r0
单个正离子 的库仑势
r
各离子的库仑势场迭加形 成周期势场,这个势场是 由一系列势垒组成的。
各库仑势叠加
成的周期势
5
离子实
单个正离子 的库仑势
28
六. 固体能带与原子能级
设想组成晶体的N个原子原来都是孤立存在的,都处于某一能 级,具有相同的能量,当它们靠拢来形成晶体时,每个原子中 的电子不仅受到本身正离子或原子核的作用,还要受到其它正 离子或原子核的作用,这些相互作用都具有相应的能量,电子 原来(原子孤立时)的能量状态就发生了改变,原来的一个能 级就分裂为非常接近的N个。 原子能级分裂成能带。如图。 能带是从原子能级分裂(或 称展宽)而成的,因此表示能 带时常沿用分裂前原子能级的 名称,如 s, p, d , 带
正是能带论,导致了电子科学与技术学科的形成和发展。
1
“能带理论”:是一个近似的理论。在固体中存在着 大量的电子,它们的运动是相互关联着的,每个电 子的运动都要受其它电子运动的牵连,这种多电子 系统严格的解显然是不可能的。 “能带理论”:是单电子近似的理论,就是把每个电子 的运动看成是独立的在一个等效势场中的运动。

固体物理学:第四章 能带理论

固体物理学:第四章 能带理论
第三步简化 —— 周期性势场 所有离子势场和其它电子的平均场是周期性势场
能量本征值的计算 选取某个具有布洛赫函数形式的完全集合,晶体中
的电子的波函数按此函数集合展开。
将电子的波函数代入薛定谔方程,确定展开式中的 系数应满足的久期方程,求解久期方程得到能量本征 值。
电子波函数的计算
根据能量本征值确定电子波函数展开式中的系数, 得到具体的波函数。
能带理论是研究固体中电子运动的主要理论基础。 能带理论对固体中电子的状态进行了较为精确的物理 描述,成功地解释了固体的导电性,所以它一直是固 体物理学的核心部分之一。
(#) (#)中
能带理论是用量子力学研究固体中电子的运动规律,把原 本复杂的多体问题经过一定的近似处理后,转化为一个电子在 周期性势场中的运动,晶体中其它所有电荷的影响均可以用此 单电子的周期性势场来概括。有时也称能带理论为固体的单电 子理论。
这一能级分裂成由 N条能级组成的能带后,能 带最多能容纳 2N(2l +1)个电子。
例如,1s、2s能带,最多容纳 2N个电子。
2p、3p能带,最多容纳 6N个电子。
电子排布时,应从最低的能级排起。
能带理论强调了共有化的价电子以及在波矢 空间中的色散关系,在解释实验现象和预测物理 性质方面都取得了可观的成功。说明了导体、非 导体的区别,是研究半导体理论问题的基础,推 动了半导体技术的发展。
能带理论是一个近似理论,存在着一定的局限性。
注意:能带理论的局限性
1. 一些过渡金属化合物晶体 价电子的迁移率小, 自由程与晶格间距相当, 电
子不为原子所共有, 周期场失去意义,能带理论不适 用了。
2.非晶态固体 非晶态固体和液态金属只有短程有序,两种物质的电
子能谱显然不是长程序的周期场的结果。

(完整word版)能带理论

(完整word版)能带理论

能带理论能带理论是目前研究固体中电子运动的一个主要理论基础,它预言固体中电子能量会落在某些限定范围或“带”中,因此,这方面的理论称为能带理论。

对于晶体中的电子,由于电子和周围势场的相互作用,晶体电子并不是自由的,因而其能量与波失间的关系E(k)较为复杂,而这个关系的描述这是能带理论的主要内容。

本章采用一些近似讨论能带的形成,并通过典型的模型介绍能带理论的一些基本结论和概念。

一、三个近似绝热近似:电子质量远小于离子质量,电子运动速度远高于离子运动速度,故相对于电子的运动,可以认为离子不动,考察电子运动时,可以不考虑离子运动的影响,取系统中的离子实部分的哈密顿量为零。

平均场近似:让其余电子对一个电子的相互作用等价为一个不随时间变化的平均场。

周期场近似: 无论电子之间相互作用的形式如何,都可以假定电子所感受到的势场具有平移对称性。

原本哈密顿量是一个非常复杂的多体问题,若不简化求解是相当困难的,但 经过三个近似处理后使复杂的多体问题成为周期场下的单电子问题,从而本章的中心任务就是求解晶体周期势场中单电子的薛定谔方程,即其中二、两个模型(1)近自由电子模型1、模型概述在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动能要比其势能的绝对值大得多时,电子的运动就几乎是自由的。

因此,我们可以把自由电子看成是它的零级近似,而将周期场的影响看成小的微扰来求解。

(也称为弱周期场近似) (222U m ∇+)()(r U R r U n =+2、怎样得到近自由电子模型近自由电子近似是晶体电子仅受晶体势场很弱的作用,E(K)是连续的能级。

由于周期性势场的微扰 E(K)在布里渊区边界产生分裂、突变形成禁带,连续的能级形成能带,这时晶体电子行为与自由电子相差不大,因而可以用自由电子波函数来描写今天电子行为。

3、近自由电子近似的主要结果1) 存在能带和禁带:在零级近似下,电子被看成自由粒子,能量本征值 E K0 作为 k 的函数具有抛物线形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能带理论一、本章难易及掌握要求要求重点掌握:1)理解能带理论的基本假设和出发点;2)布洛赫定理的描述及证明;3)三维近自由电子近似的模型、求解及波函数讨论;4)紧束缚近似模型及几个典型的结构的计算;5)明白简约布里渊区的概念和能带的意义及应用;6)会计算能态密度。

本章难点:1)对能带理论的思想理解,以及由它衍生出来的的模型的应用。

比如将能带理论应用于区分绝缘体,导体,半导体;2)对三种模型的证明推导。

了解容:1)能带的成因及对称性;2)万尼尔函数概念;3)波函数的对称性。

二、基本容1、三种近似在模型中它用到已经下假设:1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。

故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。

多体问题化为了多电子问题。

2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。

多电子问题化为单电子问题。

3)期场近似:假定所有离子产生的势场和其它电子的平均势场是期势场,其期为晶格所具有的期。

单电子在期性场中。

2、期场中的布洛赫定理1)定理的两种描述当晶体势场具有晶格期性时,电子波动程的解具有以下性质: 形式一:()()nik R n r R e r ψψ⋅+=,亦称布洛赫定理,反映了相邻原包之间的波函数相位差形式二:()()ik r r e u r ψ⋅=,亦称布洛赫函数,反映了期场的波函数可用受)(r u k 调制的平面波表示.其中()()n u r u r R =+,n R取布拉维格子的所有格矢成立。

2)证明过程:a.定义平移算符T ,)()()()(332211321a T a T a T R T m m m m=b . 证明T 与ˆH 的对易性。

ααHT H T = c.代入期边界条件,求出T 在T 与ˆH 共同本征态下的本征值 λ。

即⎪⎩⎪⎨⎧+=+=+=)()()()()()(332211a N r r a N r r a N r rψψψψψψ321321,,a k i a k i a k i ee e⋅⋅⋅===λλλd. 将λ代入T 的本征程中,注意T 定义,可得布洛赫定理。

)()(321321r R r m m m m ψλλλψ=+)()(332211r ea m a m a m k i ψ++⋅=)()(r u e r k rk i⋅=!3) 波矢k 的取值及其物理意义333222111b N l b N l b N l k++= (2)2j j j N l N ≤<-,k 是第一布里渊区的波失,称简约波矢。

其是平移算符本征值量子数,而)()()(m m R r r R T +=ψψ)(r e mR k i ψ⋅=反映了元胞之间电子波函数位相的变化。

同时也可以得出如果一个势场是期场,那么可以把其波函数设为布洛赫函数。

3、 近自由电子近似1)思想:假设将期场的期起伏看作自由电子稳定势场的微扰 2)条件要求:原子的动能大于势能以使电子可以自由运动,势函数的的起伏很小,以满足微扰论适用,外层电子以满足电子可以自由运动。

3)模型建立过程:首先,在零级近似下,考虑到期性边界条件得到了波矢的允取值,推出了能量的准连续性;其次,由于考虑到二级微扰,而推出能量在布区边界处分裂,且发生了能级间的“排斥作用”,于是形成能带和带隙。

A 、非简并情况下1)由假设1>,2>可得系统的哈密顿量和薛定谔程:'0H H H +=,2202H V m=-∇+,微扰项:V V x V H ∆=-=)(',满足的程式: ψψE H =.2)利用微扰论法有设:.)2()1(0 +++=k k k k E E E E ,其中:V m k E k +=2220,0|'|)1(>==<k H k E k ,∑-><=''02)2(|'|'k k k k E E k H k E (K K ≠') 设:.)()()()1(0 ++=x x x k k k ψψψ 其中:ikx k e Lx 1)(0=ψ, 0'''0)1(|'|'k k k k k E E k H k ψψ∑-><= (K K ≠') 4)结论:能量本征值:∑+-++=nnk an k k m V V m kE ])2([2'22222220π 波函数:xani nnikx ikx k e ank k m V e Le Lx ππψ2222])2([211)(∑+-+=5)波函数的意义:第一项是波矢为k 的前进的平面波,第二项是平面波受到期性势场作用产生的散射波 再令xani nnk e ank k m V x u ππ2222])2([21)(∑+-+= ,则有)(1)(x u e Lx k ikx k =ψ具有布洛赫函数形式,其中用到)()(x u ma x u k k =+B 、简并情况下1)n k k V E E >>-0'0此时波矢k 离an π-较远,k 状态的能量和状态k ’差别较大得20'00'200'n k k k n k k k V E E E E V E E E ±⎧+⎪-⎪=⎨⎪-⎪-⎩ 由于能级间“排斥作用”,量子力学中微扰作用下,两个相互影响的能级总是原来较高的能量提高了,原来较低的能量降低了2)n k k V E E <<-0'0时,波矢k 非常接近an π-,k 状态的能量和k ’能量差别很小得00200''()1{2}24k k k k n nE E E E E V V ±-=+±+ 代入相应的 0k E ,0'k E 得222(1)2(1)n n n n n n n n n n T V T V T V E T V T V T V ±⎧+++∆+⎪⎪=⎨⎪+--∆-⎪⎩ 22)(2an m T n π =可得如下结论两个相互影响的状态k 和k ’微扰后,能量变为E+和E-,原来能量高的状态能量提高,原来能量低的状态能量降低。

期性 ()()n n n E k E k G =+ [期为倒格矢,由晶格平移对称性决定] 反演对称性 ()()n n E k E k =-[()n E k 是个偶函数 ]宏观对称性 ()()n n E k E k α= [ α为晶体的一个点群对称操作]C 、能带的性质简约波矢的取值被限制在简约布里渊区,要标志一个状态需要表明:1)它属于哪一个能带(能带标号) 2)它的简约波矢 k 是什么?3) 能带底部,能量向上弯曲;能带顶部,能量向下弯曲 2) 禁带出现在波矢空间倒格矢的中点处 3) 禁带的宽度n g V V V V E 2,2,2,2321 =4)各能带之间是禁带, 在完整的晶体中,禁带没有允的能级 5)计入自旋,每个能带中包含2N 个量子态 4、紧束缚近似1)紧束缚近似的假设:电子在原子附近,主要受该原子势场作用,其它原子势场视为微扰作用。

故此时不能用自由电子波函数,而用所有原子的同一电子波函数的线性组合来表示。

不考虑不同原子态间的作用。

它一般要求原子之间的距离较大。

2)模型实现对于简单格子电子在格矢332211a m a m a m R m++=处原子附近运动)(rψ满足的薛定谔程:)()()](2[22r E r r U mψψ=+∇- )(r U是晶体的期性势场___所有原子的势场之和。

对程进行变换有)()()]()([)()](2[22r E r R r V r U r R r V m m m ψψψ=--+-+∇-)()(m R r V r U--即是微扰作用。

设晶体中电子的波函数∑-=mm i m R r a r )()(ϕψ(此法的本质),代入上得:∑∑-=---+mm i m mm i m i m R r a E R r R r V r U a )()()]()([ ϕϕε考虑到当原子间距比原子半径大时,不同格点的)(m i R r-ϕ重叠很有 ,nm n i m i r d R r R r δϕϕ=--⎰)()(*用)(*n i R r-ϕ左乘上面程5*,得到 ∑⎰-=----mni m i m n i m a E r d R r R r V r U R r a )()()]()()[(*εϕϕ)()()]()()][([*m n i m n iR R J d V U R R--=---⎰ξξϕξξξϕ 则得∑-=--m n i m n m a E R R J a )()(ε,考虑到期性的势场,应有mR k i m Cea ⋅=,(k 是任意常数矢量),则有∑⋅--=-sR k i s i s e R J E )(ε,m n s R R R-=利用归一化条件则得:晶体中电子的波函数∑-=⋅mm i R k i k R r eNr m)(1)(ϕψ考虑用简约波失表示有])([1)()(∑-=-⋅-⋅mm i R r k i r k i k R r e e N r mϕψ,由此可得 对于确定k ,∑⋅--=sRk i s i s e R J k E )()(ε,而且实现了N 个晶体中的电子波函数与束缚态的波函数的幺正变换换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅)()()(,,,12121222121211121N ii i R k i R k i R k i R k i R k i R k i R k i R k i R k i k k k R r R r R r e e eee e e e e N NN N N N N Nϕϕϕψψψ 3)模型简化:考虑ξξϕξξξϕ d V U R R J i s i s })()]()()[()(*⎰--=-的化简:当)()(*ξϕξϕi s iR 和-有重叠时,积分不为0。

a 最完全的重叠0=-=m n s R R R,得ξξξξϕd V U J i ⎰--=)]()([)(20b 其次考虑近邻格点的格矢s R,得∑=⋅---=NearestR Rk i s i s s e R J J k E )()(0ε。

6*能带底部电子的有效质量212*2a J m =,能带顶部电子的有效质量212*2a J m -=. 4)能级与能带的对应A 计算简单立晶格中由原子s 态形成的能带 s 态的波函数是球对称的,在各个向重叠积分相同。

相关文档
最新文档