2009~2013年深圳市中考数学各题归类分析01方程与不等式

合集下载

2009~2013年深圳市中考数学真题归类分析07统计与概率

2009~2013年深圳市中考数学真题归类分析07统计与概率

2009-2010学年初三数学第二轮复习(12)《函数与函数图象》复习目标:掌握一次函数(正比例函数)、反比例函数、二次函数的图象和性质。

1. 抛物线y=-x 2+(m -1)x+m 与y 轴交于(0,3)点,(1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标;(3)x 取什么值时,抛物线在x 轴上方?(4)x 取什么值时,y 的值随x 的增大而减小?2.果农黄大伯进城卖菠萝,他先按某一价格卖出了一部分菠萝后,把剩下的菠萝全部降价卖完,卖出的菠萝的吨数x 和他收入的钱数y (万元)的关系如图所示,结合图象回答下列问题:(1)降价前每千克菠萝的价格是多少元?(2)若降价后每千克菠萝的价格是1.6元,他这次卖菠萝的总收入是2万元,问他一共卖了多少吨菠萝?3.甲、乙两人进行百米赛跑,甲比乙跑得快.如果两人同时起跑,甲肯定赢.现在甲让乙先跑若干米.图中12l l ,分别表示两人的路程s (米)与时间t (秒)的关系. (1)哪条线表示甲的路程与时间的关系? (2)甲让乙先跑了多少米? (3)谁先到达终点?8 2 1.92()y 万元()x 吨O1020 35 40 60 80 5 10 15 t /秒s /米 1l 2lO C BAV (km/h )(h )t 352010304.据某气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度V (km/h )与时间t (h )的函数图象如图所示,过线段OC 上一点T (t,O )作横轴的垂线L ,梯形OABC 在直线L 左侧部分的面积即为t (h )内沙尘暴所经过的路程S (km ). (1)当t=4时,求S 的值;(2)将S 随t 变化的规律用数学关系式表示出来; (3)若N 城位于M 地正南方向,且距M 地 650km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将 侵袭到N 城?如果不会,请说明理由。

2009~2013年深圳市中考数学真题归类分析06四边形

2009~2013年深圳市中考数学真题归类分析06四边形

2009-2010学年初三数学第二轮复习(13)《函数与函数图象》复习目标:会解各种函数的应用题。

1. 某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,构筑成一条临时便道.木板对地面的压强()Pa p 是木板面积()2m S 的反比例函数,其图象如下图所示.(1)请直接写出这一函数表达式和自变量取值范围;(2)当木板面积为20.2m 时,压强是多少?(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?2.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB 时,宽20cm ,水位上升3m 就达到警戒线CD ,这时水面宽度为10cm.(1)在如图所示的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到达拱桥桥顶?3.有一个抛物线形的桥洞,桥洞离水面的最大高度BM 为3米,跨度OA 为6米,以OA 所在直线为x 轴,O 为原点建立直角坐标系(如图所示).(1)请你直接写出O 、A 、M 三点的坐标;(2)一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面同一平面)?/Pa p 0 200 40600 ()1.5400A ,2/m S 1 2 3图4D C B A 25m4.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为xm ,绿化带的面积为ym ².(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 为何值时,满足条件的绿化带的面积最大?5.为了鼓励居民节约用水,我市某地水费按下表规定收取:每户每月用水量不超过10吨(含10吨) 超过..10..吨的部...分. 水费单价 1.30元/吨 2.00元/吨(1)若某户用水量为x 吨,需付水费为y 元,则水费y (元)与用水量x (吨)之间的函数关系式是:(010)(10).x y x ⎧=⎨>⎩; ≤≤ (2)若小华家四月份付水费17元,问他家四月份用水多少吨?(3)已知某住宅小区100户居民五月份交水费共1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多可能有多少户?6.正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN ,求此时x 的值.D B AM C N。

09-13年广东中考数学试卷分析

09-13年广东中考数学试卷分析

题型题号2009年分值2010年分值1算术平方根3相反数32有理数的乘方:幂运算3对顶角相等,内错角互补33三视图:主视图3中位数和众数3 4科学计数法3三视图:俯视图3 5解一元二次方程3计算二次根式3 6因式分解4科学计数法4 7利用正弦计算边长4化简:因式分解4 8计算4利用正余弦求边长49概率问题4利用二元一次方程组求交解变量410找规律问题4找规律问题411计算:绝对值;二次根式;正弦;幂运算6计算:二次根式;幂运算;余弦612解一元二次方程6解一元二次方程613做垂线;证等腰6在平面直角坐标系中平移、旋转614利用Δ证明实根数量;解一元二次方程6利用三角函数、切线和三角形内角和求角度;利用三角函数求弦长615利用一元一次方程和三角函数解答问题6利用解的个数和Δ求未知数;建立二元一次方程组解未知数616利用一元二次方程解答问题7概率问题717概率和统计曲线7利用两点求二次函数;分析函数图象718利用面积相等算距离;过切点的半径与切线垂直7证明直角三角形全等;利用平行且相等证明四边形为平行四边形719勾股定理; 推理找规律7解不等式组; 找最优方案709-选择题填空题解答题(一)解答题(二)20证明全等三角形9证等腰三角形;找角:假设是梯形求高问题921按要求作答;解一元二次方程9推理规律922证明三角形全等;梯形面积;求一元二次方程;找点:利用相似求解9利用中线证平行推相似;求点:根据已知要求解答;求最值问题9解答题(三)2011年分值2012年分值题型倒数3绝对值3科学记数法3科学记数法3几何图形的放缩3众数3概率问题3三视图:主视图3多边形的内角3三角形三边关系3反比例函数4因式分解4二次根式的定义域4解一元一次不等式4按条件计算4圆周角定理4计算角度:切线性质,三角形内角和,等腰三角形性质4非负数的性质:算术平方根;非负数的性质:绝对值4推理计算4扇形面积的计算;平行四边形的性质4计算:幂运算;二次根式;三角函数;6实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值6求解一元一次不等式组;数轴6整式的混合运算—化简求值6证明线段相等:利用平行证全等6解二元一次方程组6在平面直角坐标系中平移,判断两圆的位置关系;求面积6作图—基本作图;等腰三角形的性质6利用交点的个数和Δ求未知数;象限问题6平行四边形的判定;全等三角形的判定与性质6利用一元一次方程解答7一元二次方程的应用7利用三角函数求解距离问题7反比例函数综合题7直方图和概率问题7解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题7求角度:1、利用等腰三角形、三角形内角和;求边长:利用三角函数7规律型:数字的变化类709-13年广东省高考数学试卷考点分析选择题填空题解答题(一)推理计算:等差数列9列表法与树状图法;分式有意义的条件;分式的化简求值9相似问题;根据相似列关系式;求点问题:根据已知条件9翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质;解直角三角形9求直线函数关系式;根据已知条件列关系式;求点:根据已知条件9二次函数综合题9解答题(三)解答题(二)题号2013年分值1相反数3 2三视图:俯视图3 3科学记数法3 4比较大小3 5中位数3 6同位角相等3 7幂运算3 8解一元一次不等式39轴对称图形3 10一次函数和反比例函数3 11因式分解412按条件计算4 13内角和4 14直角三角形的角边关系4 15图形的旋转4 16扇形面积公式4 17解二元一次方程组518按条件计算:平方和公式,平方差公式519做图-基本做图;全等三角形的性质520直方图和概率问题8 21增长率822直角三角形的面积;相似三角形的判定899923 24 25解一元二次方程;解抛物线的顶点坐标和与坐标轴的交点坐标;两点距离线段最短同弧所对圆周角相等;相似三角形性质;圆上一点的切线解直角三角形。

深圳深圳市中考数学 2009年广东省深圳市中考数学试卷(含解析版)

深圳深圳市中考数学 2009年广东省深圳市中考数学试卷(含解析版)

2009年广东省深圳市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的倒数是( )A.﹣3B.C.﹣D.32.(3分)经公安部交管局统计,今年5月份全国因道路交通事故造成伤亡共25591人.这个数据用科学记数法可以表示为( )A.2.5591×105B.25.591×103C.2.5591×104D.2.5591×106 3.(3分)如图,平放在台面上的圆锥体的主视图是( )A.B.C.D.4.(3分)下列图形中既是轴对称图形,又是中心对称图形的是( )A.B.C.D.5.(3分)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( )A.1万件B.19万件C.15万件D.20万件6.(3分)化简的结果是( )A.B.C.D.7.(3分)班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付( )A.45元B.90元C.10元D.100元8.(3分)二次函数y=ax2+bx+c的图象如图所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是( )A.y1<y2B.y1=y2C.y1>y2D.不能确定9.(3分)不等式组的整数解是( )A.1,2B.1,2,3C.D.0,1,2 10.(3分)如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则DE的长度是( )A.3B.5C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:(y3)2÷y5= .12.(3分)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是 .13.(3分)为了准备毕业联欢的抽奖活动,小华准备了10个白球,2个红球,8个黄球,每个球除颜色外都相同,把它们放入不透明的口袋中搅匀,规定每位同学每次抽奖,只能从袋中摸出一个球,记下颜色后放回,摸到红球可获钢笔一支.那么小亮抽奖一次得到钢笔的概率是 .14.(3分)如图,小明利用升旗用的绳子测量学校旗杆BC的高度,他发现绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A点并与地面形成30°角时,绳子末端D距A点还有1米,那么旗杆BC的高度为 米.15.(3分)下面是按一定规律摆放的图案,按此规律,第2010个图案与第1~4个图案中相同的是第 个.(只填数字).16.(3分)如图,在Rt△ABC中,∠C=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .三、解答题(共7小题,满分52分)17.(5分)计算:.18.(6分)解分式方程:.19.(6分)随着网络的普及,越来越多的人喜欢到网上购物.某公司对某个网站2005年到2008年网上商店的数量和购物顾客人次进行了调查.根据调查结果,将四年来该网站网上商店的数量和每个网上商店年平均购物顾客人次分别制成了折线统计图(如图a)和条形统计图(如图b).请你根据统计图提供的信息完成下列填空:(1)2005年该网站共有网上商店 个;(2)2008年该网站网上购物顾客共有 万人次;(3)这4年该网站平均每年网上购物顾客有 万人次.20.(8分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:△ABE≌△CBF;(2)若∠ABE=50°,求∠EGC的大小.21.(8分)如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠BAD;(2)若sin∠BEC=,求DC的长.22.(9分)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装,生产开始后,调研部分发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?23.(10分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.2009年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的倒数是( )A.﹣3B.C.﹣D.3【考点】17:倒数.【分析】根据乘积是1的两个数互为倒数计算即可得解.【解答】解:∵3×=1,∴3的倒数是.故选:B.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)经公安部交管局统计,今年5月份全国因道路交通事故造成伤亡共25591人.这个数据用科学记数法可以表示为( )A.2.5591×105B.25.591×103C.2.5591×104D.2.5591×106【考点】1I:科学记数法—表示较大的数.【专题】12:应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将25 591用科学记数法表示为2.5591×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,平放在台面上的圆锥体的主视图是( )A.B.C.D.【考点】U1:简单几何体的三视图.【分析】找到从正面看得到的平面图形的即可.【解答】解:从正面看得到的平面图形为一个等腰三角形,故选A.【点评】考查圆锥给定位置的主视图,注意主视图是从物体正面看得到的平面图形.4.(3分)下列图形中既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为( )A.1万件B.19万件C.15万件D.20万件【考点】V5:用样本估计总体.【分析】先计算出100件样本中合格品的百分比,约等于这20万件的合格率,再估计该厂这20万件产品中合格品.【解答】解:(100﹣5)÷100×100%×20=19(万件),故选B.【点评】考查用样本估计总体的方法,总体合格率约等于样本合格率.6.(3分)化简的结果是( )A.B.C.D.【考点】66:约分.【分析】先对分子分母进行因式分解,然后再约分即可.【解答】解:原式==;故选:D.【点评】对分式进行化简时,应先将分子、分母中能够分解因式的部分进行分解因式,然后进行约分.7.(3分)班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付( )A.45元B.90元C.10元D.100元【考点】1C:有理数的乘法.【专题】12:应用题.【分析】根据九折可以知道实际售价为2×0.9=1.8元,一共买50张,则需付款1.8×50=90元.【解答】解:班长应付款为:2×0.9×50=90(元).故选:B.【点评】本题主要考查有理数的乘法运算,同学们只要明白九折表示原价的0.9倍,即可得解.8.(3分)二次函数y=ax2+bx+c的图象如图所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是( )A.y1<y2B.y1=y2C.y1>y2D.不能确定【考点】H5:二次函数图象上点的坐标特征.【专题】16:压轴题.【分析】利用二次函数的性质即可解答.【解答】解:从题中给出的图象可以看出,对称轴为直线x=﹣3,a<0,又点A、B位于对称轴右侧,y随x的增大而减小,则y1>y2.故选:C.【点评】本题考查了二次函数图象上点的坐标特征,学会比较图象上点的坐标的大小.9.(3分)不等式组的整数解是( )A.1,2B.1,2,3C.D.0,1,2【考点】CC:一元一次不等式组的整数解.【专题】16:压轴题.【分析】先求出不等式组的解集,再求出其整数解.【解答】解:,由①得,x<3,由②得,x>,不等式的解集为<x<3,其整数解是1,2.故选:A.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.(3分)如图,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3,且AC=10,则DE的长度是( )A.3B.5C.D.【考点】LB:矩形的性质.【专题】16:压轴题.【分析】根据∠EDC:∠EDA=1:3,可得∠EDC=22.5°,∠EDA=67.5°,再由AC=10,求得DE.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=10,OA=OC=AC=5,OB=OD=BD=5,∴OC=OD,∴∠ODC=∠OCD,∵∠EDC:∠EDA=1:3,∠EDC+∠EDA=90°,∴∠EDC=22.5°,∠EDA=67.5°,∵DE⊥AC,∴∠DEC=90°,∴∠DCE=90°﹣∠EDC=67.5°,∴∠ODC=∠OCD=67.5°,∴∠ODC+∠OCD+∠DOC=180°,∴∠COD=45°,∴OE=DE,∵OE2+DE2=OD2,∴2DE2=OD2=25,∴DE=,故选:D.【点评】本题主要考查了勾股定理和矩形的性质,是一道中等题.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:(y3)2÷y5= y .【考点】47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减的运算性质计算即可.【解答】解:(y3)2÷y5,=y6÷y5,=y.【点评】本题主要考查幂的乘方,同底数幂的除法的性质,熟练掌握运算性质是解题的关键.12.(3分)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是 3 .【考点】G5:反比例函数系数k的几何意义.【专题】31:数形结合.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【解答】解:点A为反比例函数y=的图象在第二象限上的任一点,则矩形ABOC的面积S=|k|=3.故答案为:3.【点评】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.13.(3分)为了准备毕业联欢的抽奖活动,小华准备了10个白球,2个红球,8个黄球,每个球除颜色外都相同,把它们放入不透明的口袋中搅匀,规定每位同学每次抽奖,只能从袋中摸出一个球,记下颜色后放回,摸到红球可获钢笔一支.那么小亮抽奖一次得到钢笔的概率是 .【考点】X4:概率公式.【分析】先求出球的总个数,找出符合条件的球的总数,再根据概率公式求解即可.【解答】解:∵小华准备了10个白球,2个红球,8个黄球,∴球的总个数为10+2+8=20个,∴随机摸一个摸到红球的概率是=,∵摸到红球可获钢笔一支,∴小亮抽奖一次得到钢笔的概率是.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.14.(3分)如图,小明利用升旗用的绳子测量学校旗杆BC的高度,他发现绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A点并与地面形成30°角时,绳子末端D距A点还有1米,那么旗杆BC的高度为 10 米.【考点】KU:勾股定理的应用.【分析】如图,根据已知条件知AB+1﹣BC=11米,再由,∠BAC=30°,得到BC=AB,接着就可以求出旗杆BC的高度.【解答】解:如图,依题意得AB+1﹣BC=11米,而在Rt△ABC中,∠BAC=30°,∴BC=AB,∴BC=10米.故填空答案:10.【点评】此题比较简单,直接利用直角三角形中30°的角所对的边等于斜边的一半就可以求出结果.15.(3分)下面是按一定规律摆放的图案,按此规律,第2010个图案与第1~4个图案中相同的是第 2 个.(只填数字).【考点】38:规律型:图形的变化类.【专题】16:压轴题;2A:规律型.【分析】本题的关键是要找出4个图形一循环,然后再求2010被4整除后余数是2,从而确定是第2个图形.【解答】解:根据题意可知箭头是1、2、3、4即4个一循环,又因为2010÷4=502…2,所以是第2个图形.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.16.(3分)如图,在Rt△ABC中,∠C=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .【考点】KQ:勾股定理.【专题】16:压轴题.【分析】设出AC、CD的长,由勾股定理列方程组求出AC、CD的长.【解答】解:设AC=x,CD=y,由勾股定理得:,消去x,得:(y+5)2﹣y2=39,整理,得:10y=14,即y=,故CD的长为.【点评】此题主要考查了勾股定理和二元二次方程组的解法,难度适中.三、解答题(共7小题,满分52分)17.(5分)计算:.【考点】2C:实数的运算.【专题】11:计算题.【分析】本题涉及绝对值、零指数幂、负指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)解分式方程:.【考点】B3:解分式方程.【专题】11:计算题.【分析】本题考查解分式方程的能力,因为1﹣x=﹣(x﹣1),所以最简公分母为(x﹣1).【解答】解:(1)方程两边同乘(x﹣1),得:x+3=3x﹣3,解得x=3.经检验x=3是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时要注意符号的变化.19.(6分)随着网络的普及,越来越多的人喜欢到网上购物.某公司对某个网站2005年到2008年网上商店的数量和购物顾客人次进行了调查.根据调查结果,将四年来该网站网上商店的数量和每个网上商店年平均购物顾客人次分别制成了折线统计图(如图a)和条形统计图(如图b).请你根据统计图提供的信息完成下列填空:(1)2005年该网站共有网上商店 20 个;(2)2008年该网站网上购物顾客共有 3600 万人次;(3)这4年该网站平均每年网上购物顾客有 1250 万人次.【考点】VC:条形统计图;VD:折线统计图;W2:加权平均数.【专题】21:阅读型;27:图表型.【分析】(1)分析折线图,易得答案;(2)分析折线图和扇形图可知,2008年有80个网店,每个网上商店平均45万人购物,则可求得结果;(3)根据平均数公式计算求解.【解答】解:(1)分析折线图可得:2005年该网站共有网上商店20个;(2)80×45=3600万人次;(3)平均每年网上购物顾客=(20×5+30×10+50×20+80×45)÷4=1250万人次.【点评】本题考查折线统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20.(8分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:△ABE≌△CBF;(2)若∠ABE=50°,求∠EGC的大小.【考点】KB:全等三角形的判定;LE:正方形的性质.【专题】11:计算题;16:压轴题.【分析】(1)证全等三角形由AB=BC,BE=BF,∠ABE+∠EBC=∠CBF+∠EBC⇒∠BAE=∠CBF,可证的全等.(2)因为BE=BF再根据(1)可得∠EFB=∠BEF=45°,∠EGC=∠EBG+∠BEF=45°+40°=85°【解答】(1)证明:∵四边形ABCD是正方形,BE⊥BF∴AB=CB,∠ABC=∠EBF=90°(1分)∴∠ABC﹣∠EBC=∠EBF﹣∠EBC即∠ABE=∠CBF(2分)又BE=BF(3分)∴△ABE≌△CBF;(4分)(2)解:∵BE=BF,∠EBF=90°∴∠BEF=45°(5分)又∠EBG=∠ABC﹣∠ABE=40°(6分)∴∠EGC=∠EBG+∠BEF=85°.(8分)(注:其它方法酌情给分)【点评】本题关键在于全等三角形的证明以及等腰三角形性质的运用,等腰三角形两底角相等.21.(8分)如图,AB是⊙O的直径,AB=10,DC切⊙O于点C,AD⊥DC,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠BAD;(2)若sin∠BEC=,求DC的长.【考点】MC:切线的性质.【专题】11:计算题;14:证明题.【分析】(1)连接OC,易证AD∥OC,则∠DAC=∠ACO,则只要证明∠CAO=∠ACO,根据等边对等角即可证明;(2)∠BEC=∠BAC,则直角△ABC中即可求得∠ABC,根据三角函数即可求得AB、AC的长,而∠DCA=∠CBA,在直角△ACD中即可利用三角函数求得CD 的长.【解答】(1)证明:连接OC,由DC是切线得OC⊥DC;又AD⊥DC,∴AD∥OC,∴∠DAC=∠ACO.又由OA=OC得∠BAC=∠ACO,∴∠DAC=∠BAC.即AC平分∠BAD.(2)解:方法一:∵AB为直径,∴∠ACB=90°又∵∠BAC=∠BEC,∴BC=AB•sin∠BAC=AB•sin∠BEC=6.∴AC=.又∵∠DAC=∠BAC=∠BEC,且AD⊥DC,∴CD=AC•sin∠DAC=AC•sin∠BEC=.方法二:∵AB为直径,∴∠ACB=90°.又∵∠BAC=∠BEC,∴BC=AB•sin∠BAC=AB•sin∠BEC=6.∴.又∵∠DAC=∠BAC,∠D=∠ACB=90°,∴△ADC∽△ACB,,即,解得.【点评】本题考查了圆的切线的性质及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.22.(9分)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装,生产开始后,调研部分发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?【考点】9A:二元一次方程组的应用;FH:一次函数的应用.【专题】12:应用题;521:一次方程(组)及应用;533:一次函数及其应用.【分析】(1)设熟练工和新工人每月分别可以安装x辆和y辆汽车,根据题意列出方程组,解出方程组即是所求;(2)设需熟练工人数为m,根据题意列出方程,分析m取各值时,n的数值是多少;(3)根据工资总额=熟练工的工资×人数+新员工的工资×人数,可得出W关于n的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设每名熟练工和新工人每月分别可以安装x辆和y辆汽车,根据题意得:,解得:.答:每名熟练工和新工人每月分别可以安装4辆和2辆汽车.(2)设需熟练工m名,根据题意得:2n×12+4m×12=240,∴n=10﹣2m.∵0<n<10,∴0<m<5.当m=1时,n=8;当m=2时,n=6;当m=3时,n=4;当m=4时,n=2.∴共有四种方案:①需要1名熟练工人,另招聘8名新工人;②需要2名熟练工人,另招聘6名新工人;③需要3名熟练工人,另招聘4名新工人;④需要4名熟练工人,另招聘2名新工人.(3)根据题意得:W=1200n+(5﹣n)×2000=200n+10000.∵要使新工人数量多于熟练工,∴n=4、6、8.∵200>0,∴当n=4时,W取最小值,最小值为10800.【点评】本题考查了一次函数的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程;(3)根据各数量之间的关系,找出W关于n的函数关系式.23.(10分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.【考点】H7:二次函数的最值;H8:待定系数法求二次函数解析式;HF:二次函数综合题;ID:两点间的距离;K3:三角形的面积;KH:等腰三角形的性质.【专题】16:压轴题.【分析】(1)由Rt△ABC中,CO⊥AB可证△AOC∽△COB,由相似比得OC2=OA•OB,设OA的长为x,则OB=5﹣x,代入可求OA,OB的长,确定A,B,C三点坐标,求抛物线解析式;(2)根据△BDE为等腰三角形,分为DE=EB,EB=BD,DE=BD三种情况,分别求E点坐标;(3)作辅助线,将求△CDP的面积问题转化.方法一:如图1,连接OP,根据S△CDP=S四边形CODP﹣S△COD=S△COP+S△ODP﹣S△COD,表示△CDP的面积;方法二:过点P作PE⊥x轴于点F,则S△CDP=S梯形COFP﹣S△COD﹣S△DFP,表示△CDP的面积;再利用二次函数的性质求出△CDP的最大面积和此时点P的坐标.【解答】解:(1)设OA的长为x,则OB=5﹣x;∵OC=2,AB=5,∠BOC=∠AOC=90°,∠OAC=∠OCB;∴△AOC∽△COB,∴OC2=OA•OB∴22=x(5﹣x)…(1分)解得:x1=1,x2=4,∵OA<OB,∴OA=1,OB=4;…(2分)∴点A、B、C的坐标分别是:A(﹣1,0),B(4,0),C(0,2);(注:直接用射影定理的,不扣分)方法一:设经过点A、B、C的抛物线的关系式为:y=ax2+bx+2,将A、B、C三点的坐标代入得…(3分)解得:a=,b=,c=2所以这个二次函数的表达式为:…(4分)方法二:设过点A、B、C的抛物线的关系式为:y=a(x+1)(x﹣4)…(3分)将C点的坐标代入得:a=所以这个二次函数的表达式为:…(4分)(注:表达式的最终结果用三种形式中的任一种都不扣分)(2)①当△BDE是等腰三角形时,点E的坐标分别是:,,.…1+1+(1分)(注:符合条件的E点共有三个,其坐标,写对一个给1分)②如图1,连接OP,S△CDP=S四边形CODP﹣S△COD=S△COP+S△ODP﹣S△COD…(8分)==m+n﹣2==…(9分)∴当m=时,△CDP的面积最大.此时P点的坐标为(,),S△CDP的最大值是.…(10分)另解:如图2、图3,过点P作PF⊥x轴于点F,则S△CDP=S梯形COFP﹣S△COD﹣S△DFP…(8分)==m+n﹣2==…(9分)∴当m=时,△CDP的面积最大.此时P点的坐标为(,),S△CDP的最大值是.(注:只回答有最大面积,而没有说明理由的,不给分;点P的坐标,或最大面积计算错误的,扣(1分);其他解法只要合理,酌情给分.)【点评】本题考查了二次函数的综合运用.关键是根据直角三角形中斜边上的高分得的两个三角形相似,利用相似比求A、B两点坐标,确定抛物线解析式,根据等腰三角形的性质求E点坐标,利用作辅助线的方法表示△CDP的面积,由二次函数的性质求三角形面积的最大值.。

深圳中考数学不等式-方程(组)函数应用题(附答案)

深圳中考数学不等式-方程(组)函数应用题(附答案)

第二节不等式,方程(组)与函数应用题【例题经典】例1 近年来,由于土地沙化日渐加剧,沙尘暴频繁,严重影响国民生活.•为了解某(1y (万亩)与x(年数)之间的关系式;并计算到第20年时该地区的沙漠面积.(2)为了防沙治沙,政府决定投入资金,鼓励农民植树种草.经测算,植树1亩需资金200元,种草1亩需资金100元.某组农民计划在一年内完成2400亩绿化任务,在实施中,由于实际情况所限,植树完成了计划的90%,种草超额完成了计划的20%,恰好完成了计划的绿化任务.那么所节余的资金还能植树多少亩?【点评】培养学生一次函数的建模能力、解决问题的能力.例2(2006年深圳市)工艺商场按标价销售某种工艺品时,每件可获利45元;•按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别为多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?【点评】二次函数的常规应用题,要注意探究二次函数关系式.【考点精练】1.(2006年常德市)某电器经营业主计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需要资金17400元,若购进10台空调和30台电风扇,需要资金22500元.(1)求挂式空调和电风扇每台的采购价各是多少元?(2)该经营业主计划购进这两种电器共70台,而可用于购买这两种电器的资金不超过30000元,根据市场行情,销售一台这样的空调可获利200元,•销售一台这样的电风扇可获利30元.该业主希望当这种电器销售完时,所获得的利润不少于3500元,•试写出该经营业主有哪几种进货方案?哪种方案获利最大?最大利润是多少?2.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍一付定价60元,乒乓球每盒定价10元.今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买一付乒乓球拍赠两盒乒乓球;乙商店规定所有商品9折优惠.•某校乒乓球队需要买2付乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商店在甲商店购买需用y1元,在乙商店购买需用y2元.(1)请分别写出y1、y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜.(3)若该校要买2付乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.3.(2006年绵阳市)某产品每件的成本是120元,为了解市场规律,•试销阶段按两种方案进行销售,结果如下:方案甲:保持每件150元的售价不变,此时日销售量为50件;方案乙:不断地调整售价,此时发现日销售量y(件)是售价x(元)的一次函数,•(1销售总利润大?(2)分析两种方案,为获得最大日销售利润,每件产品的售价应定为多少元?此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量)4.在黄州服装批发市场,某种品牌的时装当季节即将来临时,价格呈上升趋势,•设这种时装开始定价为20元,并且每周(7天)涨价2元,从第6周开始保持30•元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售.(1)试建立销售价y与周次x之间的函数关系式;(2)若这种时装每件进价Z与周次x之间的关系为Z=-0.125(x-8)2+12,1≤x•≤16,且x为整数,试问该服装第几周出售时,每件销售利润最大?最大利润是多少?5.(2006年河北省)利达经销店某工厂代销一种建筑材料(•这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.•综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其他费用100元.•设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.6.心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强,•中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力y•随时间t变化规律有如下关系式:y=24100(010) 240(1020)7380(2040) t t ttt t-++<≤⎧⎪<≤⎨⎪-+<≤⎩(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,•何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?7.(2006年盐城市)国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度.某市根据本地的实际情况,•制定了纳入医疗保险的农民医疗费用报销规定,享受医保的农民可以定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:(1)y元,试求y与x的函数关系式;(2)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费为多少元?(3)若某农民一年内自付医疗费不少于4100元,则该农民当年实际医疗费至少为多少元?8.(2006年哈尔滨市)2006年春,我市为美化市容,开展城市绿化活动,•要种植一种新品种树苗.甲、乙两处育苗基地均以每株4元的价格出售这种树苗,•并对一次性购买该种树苗不低于1000株的用户均实行优惠:•甲处的优惠政府是每株树苗按原价的八折出售;乙处的优惠政府是免收所购树苗中150株的费用,•其余树苗按原价的九折出售.(1)规定购买该种树苗只能在甲、乙两处中的一处购买,•设一次性购买x(•x•≥1000且x为整数)株该种树苗,若在甲处育苗基地购买,所花的费用为y1元,写出y1与x 之间的函数关系式;若在乙处育苗基地购买所花的费用为y2元,写出y2与x•之间的函数关系式.(两个函数关系式均不要求写出自变量x的取值范围)(2)若在甲、乙两处分别一次性购买1500株该种树苗,在哪一处购买所花的费用少?为什么?(3)若在甲育苗基地以相应的优惠方式购买一批该种树苗,又在乙育苗基地以相应的优惠方式购买另一批该种树苗,两批树苗共2500株,购买这2500株树苗所花的费用至少需要多少元?这时应在甲、乙两处分别购买该种树苗多少株?答案:例题经典例1.(1)y=90+0.2(x-1),当x=20时,y=93.8(2)80亩例2:解:(1)•设工艺品每件的进价是x元,则标价为(x+45)元,根据题意,得(x+45)×85%×8-8x=(x+45-35)×12-12x ,解得x=155(元),x+45=200(元),故该工艺品每件的进价、•标价分别是155元、200元(2)设每件工艺品应降低x 元出售,每天获得的利润为y 元.•根据题意,得y=(45-x )(100+4x )=-4x 2+80x+4500=-4(x-10)2+4900.•故每件工艺品降价10元出售,每天获得的利润最大,获得的最大利润是4900元. 考点精练1.(1)设挂式空调每台x 元,电风扇每台y 元,∴820174001800103022500150x y x x y y +==⎧⎧⎨⎨+==⎩⎩,解之得, 即空调1800元/台,电风扇150元/台 (2)设空调x 台,则电扇(70-x )台,则1800(70)150********(70)303500x x x x +-≤⎧⎨+-≥⎩, 解之得8.2≤x ≤11.8,∴x 取9,10,11设利润为W=200x+(70-x )∴k=170>0,•∴x 取最大11,W=3970元2.(1)y 1=10(x-4)+60×2=10x+80,y 2=0.9(10x+60×2)=9x+108 •(2)当x>28时,选乙商店;当x=28时,甲、乙一样;当4≤x<28时,选甲店(3)最佳方案:到甲店购买2付乒乓球拍,获赠4盒乒乓球;到乙店买16盒乒乓球.3.(1)y=kx+b ,13070115050200k b k k b b +==-⎧⎧⎨⎨+==⎩⎩,解之得, ∴y=-x+200,∴第4天,第5天180元时,各售出20件,∴设利润为W ,∴W 甲=(150-120)×50×5=7500元, W 乙=(130-120)×70+(150-120)×50+(160-120)×40+(180-120)×20×2=6200元,∴W 甲>W 乙,∴甲方案利润大.(2)W=(x-120)y=(x-120)(-x+200),•W=-x 2+320x-24000,x=-2b a=160元, W 最大=1600元.方案甲每天获利1500元,∴应定价为160元,利润最大.4.(1)y=218(16)30(611)252(1216)x x x x x +≤≤⎧⎪≤≤⎨⎪-+≤≤⎩(2)设销售利润为W=222114(16)81226(611)81428(1216)8x xx x xx x x⎧+≤≤⎪⎪⎪-+≤≤⎨⎪⎪-+≤≤⎪⎩,∴当x=11时,W最大=191 85.分析:此类二次函数应用题为中考常见题型.分析题中销售量与售价间的关系,从而构建函数模型,•利用函数性质,求解利润最大问题.解:(1)45+26024010-×7.5=60(吨)(2)y=(x-100)(45+26010x-×7.5),化简得:y=-34x2+315x-24000.(3)y=-34x2+315x-24000=-34(x-210)2+9075.•利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对,理由:方法一:当月利润最大时,x为210元,而对于月销售额W=x(45+26010x-×7.5)=-34(x-160)2+19200•来说,当x为160元时,月销售额W最大,∴当x为210元时,月销售额W不是最大,•∴小静说的不对.方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x•为200元时,月销售额为18000元.∵17325<18000,当月利润最大时,月销售额W不是最大,∴小静说的不对6.(1)第25分钟比第5分钟更集中(2)开课10分钟后,学生注意力最集中,最持续10分钟,可以(3)可以7.(1)y=710(x-500)(500<x≤10000(2)•设该农民一年内实际医疗费为x元,则当x≤500时,不合题意,当500<x≤10000时,有500+(x-500)×0.3=2600,解之得:x=7500(元).答略(3)设该农民一年内实际医疗费为x元,∵500+(10000-500)×0.3=3350<4100,∴x>10000.根据题意有:500+(10000-500)×0.3+(x-10000)×0.2≥4100,解之得:x≥13750(元).答:略8.分析:解答(3)时,可设在乙处购买a株该种树苗,所花钱数为W元,可列出W与a 的函数关系式,•再根据题意列出关于a的不等式组,求a的范围,然后利用一次函数的性质进行解答.解:(1)y1=0.8×4x,y1=3.2x;y2=0.9×4(x-150),y2=3.6x-540(2)•应在甲处育苗基地购买所花的费用少.当x=1500时,y1=3.2×1500=4800;y2=3.6×1500-540=4860,∵y1<y2,∴在甲处购买所花的费用少(3)设在乙处购买a株该种树苗,所花钱数为W元,W=3.2(2500-a)+3.6a-540=0.4a+7460,∵10002500, 100025002500aa≤≤⎧⎨≤-≤⎩,∴1000≤a≤1500,且a为整数,∵0.4>0,∴W随a的增大而增大,∴a=1000时,W=7860.2500-1000=1500(株),答:至少需要花费7860元,应在甲处购买1500株,在乙处购买100株.。

十年深圳中考数学各题知识点汇总分析

十年深圳中考数学各题知识点汇总分析

2015年深圳中考数学考纲要求及近九年中考真题考点一中考数学题型:选择题和非选择题选择题:12小题,每小题3分,共36分填空题:4小题,每小题3分,共12分解答题: 7题,分5类,共52分1.计算2题11-13分2.概率1题7-8分3.几何1-2题6-16分4.应用题 1题8-9分5抛物线1-2题9-19分考点归纳总结:1. 数与式(20分)a实数b科学记数法c代数式求值d整式、分式、二次根式的有关概念和运算e因式分解2. 方程与不等式(15分)a一次方程/方程组/分式方程b一元二次方程c不等式性质和解法d列方程不等式混合组等3. 函数(25分)a平面直角坐标系b基本函数图像的计算c二次函数求极值d待定系数法有函数解析式e运用函数解决实际问题等4. 几何(27分)a图像变化及三视图b相交、平行线性质和判定c勾股定理及逆定理d全等/相似三角形的判定和运用e特殊三角函数值解直角三角形f特殊四边形的性质和判定g圆的相关线段及角的性质5. 统计和其他(13分)a总体、个体、样本等相关概念b,统计图表的制作和阅读c,平均数,中位数,方差,极差求法d,生活中的概率实例归纳,猜想,分类二:深圳2015年中考数学考纲知识点各分值一数与式代数式部分,要抓准定义和原理,如:相反数、倒数、绝对值、分母有理化、幂的运算、因式分解、分式的化简。

数与式部分考查的重点还是基础知识,基本计算,难度较低。

分值在20分左右。

这部分是所有学生都应该做对的。

二、方程与不等式组方程与不等式的复习,要以基础为主,不要只研究难题,要注重过程以及方法的总结。

从试卷这部分考题来看,难度都不大,关键是学生能否有明确的思路,良好的解题过程。

因此我们在复习的时候,加强对以下内容的复习:一元一次方程、二元一次方程组、一元一次不等式、不等式组、一元二次方程。

注意整体思想,换元法的训练。

方程(组)与不等式(组)部分考查方程和方程组的解法及一元二次方程的根的判断,还有方程在应用题中的应用。

2013年广东省深圳市中考数学试卷解析

2013年广东省深圳市中考数学试卷解析

2013年广东省深圳市中考数学试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)(2014•白银)﹣3的绝对值是()A.3 B.﹣3 C.﹣D.【考点】M113 绝对值【难度】容易题【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号,则﹣3的绝对值是3.故选:A.【解答】A.【点评】此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•深圳)下列计算正确的是()A.(a+b)2=a2+b2B.(ab)2=ab2C.(a3)2=a5D.a•a2=a3【考点】M11G 整式运算M11K 因式分解M11O 指数幂M11O 乘方【难度】容易题【分析】A、原式利用完全平方公式展开得到结果a2+2ab+b2,故本选项错误;B、原式利用积的乘方运算法则计算得到结果a2b2,故本选项错误;C、原式利用幂的乘方运算法则计算得到结果a6,故本选项错误;D、原式利用同底数幂的乘法法则计算得到结果a3,故本选项正确.故选D.【解答】D.【点评】此题考查了完全平方公式,合并同类项,去括号与添括号,以及同底数幂的除法,熟练掌握公式及法则是解本题的关键.3.(3分)(2013•深圳)某活动中,共募得捐款32000000元,将32000000用科学记数法表示为()A.0.32×108B.3.2×106C.3.2×107D.32×106【考点】M11D 科学记数法【难度】容易题【分析】科学记数法的表示较大数的形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.则在本题中a为3.2,n为7,所以32 000 000=3.2×107,故选:C.【解答】C.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•深圳)如图,是轴对称图形但不是中心对称图形的是()A.B. C.D.【考点】M411 图形的对称【难度】容易题【分析】根据轴对称及中心对称概念,结合选项即可得A、是轴对称图形,也是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选B.【解答】B.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.5.(3分)(2013•深圳)某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A.最高分B.中位数C.极差 D.平均数【考点】M214 中位数、众数M212 平均数、方差和标准差M215 频数、频率、极差【难度】容易题【分析】由于有21名同学参加百米竞赛,要取前11名参加决赛,所以小颖需要知道自己的成绩是否进入前11应考虑中位数的大小,故选:B【解答】B.【点评】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)(2013•深圳)分式的值为0,则()A.x=﹣2 B.x=±2 C.x=2 D.x=0【考点】M11K 因式分解M11L 分式及其相关概念【难度】容易题【分析】分式的值为零:分子等于零,且分母不等于零;由题意,得x2﹣4=0,且x+2≠0,解得x=2.故选:C.【解答】C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.(3分)(2013•深圳)在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7【考点】M137 不同位置的点的坐标的特征【难度】中等题【分析】点P(﹣20,a)与点Q(b,13)关于原点对称,先根据关于原点对称的点的坐标特点:横坐标与纵坐标都互为相反数,求出a=﹣13,b=20,,再代入计算即a+b=﹣13+20=7.故选:D.【解答】D.【点评】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.8.(3分)(2013•深圳)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.【考点】M11H 代数式M12D 分式方程的应用【难度】容易题【分析】首先表示出爸爸和小朱的速度,再根据题意可得等量关系:小朱走1440米的时间=爸爸走1440米的时间+10分钟,根据等量关系,表示出爸爸和小朱的时间,根据时间关系列出方程=+10,即:=+10,故选:B.【解答】B.【点评】此题主要考查了由实际问题抽象出分式方程,关键是分析题意,表示出爸爸和小朱的时间各走1440米所用时间,再由时间关系找出相等关系,列出方程.9.(3分)(2013•深圳)如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()A.8或B.10或C.10或D.8或【考点】M323 三角形的中位线M32B 勾股定理M332 平行四边形的性质与判定M333 矩形的性质与判定M338 四边形的面积、周长M414 剪纸问题M329 直角三角形性质与判定【难度】中等题【分析】由题意可得:AB=2,∵∠C=30°,则在⊿ABC中根据30°角所对直角边是斜边的一半得BC=4,由勾股定理得AC=2,∵图中所示的中位线剪开,∴CD=AD=,CF=BF=2,DF=1,如图1所示:拼成一个矩形,矩形周长为:1+1+2++=4+2;如图2所示,可以拼成一个平行四边形,周长为:2+2+2+2=8,故选:D.【解答】D.【点评】此题属于剪纸拼接问题,涉及到三角形的中位线,平行四边形的性质与判定,矩形的性质与判定,四边形的面积、周长等知识点,注意解题的突破口为:在⊿ABC中根据30°角所对直角边是斜边的一半得BC=4,由勾股定理得AC=2,关键是根据画出图形,可拼成矩形、平行四边形,不要漏解.10.(3分)(2013•深圳)下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A..1个 B.2个C.3个D.4个【考点】M31C 平行线的判定及性质M32A 全等三角形性质与判定M333 矩形的性质与判定M34A 垂径定理及其推论M511 命题、定理和证明M31B 相交线(对顶角、邻补角、同位角、同旁内角、内错角、)【难度】容易题【分析】根据有关的定理和定义作出判断即可得①对顶角相等正确,是真命题;②两直线平行,内错角相等正确,是真命题;③两个锐角对应相等的两个直角三角形应该是相似,而不是全等,原命题错误,是假命题;④有三个角是直角的四边形是矩形,正确,是真命题;⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,原命题错误,是假命题,故选:C.【解答】解:①对顶角相等正确,是真命题;②两直线平行,内错角相等正确,是真命题;③两个锐角对应相等的两个直角三角形应该是相似,而不是全等,原命题错误,是假命题;④有三个角是直角的四边形是矩形,正确,是真命题;⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,原命题错误,是假命题,故选:C.【点评】本题考查了命题与定理的知识,涉及平行线的判定及性质,全等三角形性质与判定,矩形的性质与判定,垂径定理及其推论,对顶角相等等知识;注意:在判断一个命题正误的时候可以举出反例.11.(3分)(2013•深圳)已知二次函数y=a(x﹣1)2﹣c的图象如图所示,则一次函数y=ax+c的大致图象可能是()A. B.C.D.【考点】M142 一次函数的的图象、性质M154 二次函数的的图象、性质M161 二次函数的关系式【难度】中等题【分析】根据二次函数开口向上则a>0,根据﹣c是二次函数顶点坐标的纵坐标,得出c>0,故一次函数y=ax+c的大致图象经过一、二、三象限,故选:A.【解答】A.【点评】此题属于一、二次函数的综合题,主要考查了二次函数的图象以及一次函数的性质,根据已知得出a,c的值是解题关键.12.(3分)(2013•深圳)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.【考点】M31J 两平行线的距离M327 等腰三角形性质与判定M329 直角三角形性质与判定M32A 全等三角形性质与判定M32B 勾股定理M32C 锐角三角函数【难度】较难题【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,再根据等腰直角三角形斜边等于直角边的倍求出AB,然后利用锐角的正弦等于对边比斜边列式计算即可得解.具体如下:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,在Rt△ACD中,AC===,在等腰直角△ABC中,AB=AC=×=,∴sinα==.故选:D.【解答】D.【点评】本题属于压轴题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)(2013•深圳)分解因式:4x2﹣8x+4=.【考点】M11K 因式分解【专题】因式分解.【难度】容易题【分析】先提取公因式4,再根据完全平方公式进行分解即可,则4x2﹣8x+4=4(x2﹣2x+1)=4(x﹣1)2.故答案为:4(x﹣1)2.【解答】4(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.(3分)(2013•深圳)写有“中国”、“美国”、“英国”、“韩国”的四张卡片,从中随机抽取一张,抽到卡片所对应的国家为亚洲的概率是.【考点】M222 概率的计算【难度】容易题【分析】由有“中国”、“美国”、“英国”、“韩国”的四张卡片,卡片所对应的国家为亚洲的有“中国”、“韩国”,利用概率公式求解即可求得抽到卡片所对应的国家为亚洲的概率是:=.故答案为:.【解答】.【点评】此题考查了概率公式的应用,属于中考常考题;注意掌握概率=所求情况数与总情况数之比.15.(3分)(2013•深圳)某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.【考点】M124 一元一次方程的应用【难度】容易题【分析】设空调的标价为x元,根据销售问题的数量关系利润=售价﹣进价=进价×利润率建立方程80%x﹣2000=2000×10%,解得:x=2750.故答案为:2750.【解答】2750.【点评】本题是一道关于销售问题的运用题,考查了利润=售价﹣进价=进价×利润率在实际问题中的运用,解答时根据销售问题的数量关系建立方程是关键.16.(3分)(2013•深圳)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形…按这样的规律下去,第7幅图中有个正方形.【考点】M612 规律型题【难度】较难题【分析】观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…第n个有:n(n+1)(2n+1)个正方形,第7个有1+4+9+16+25+36+49=140个正方形,故答案为:140.【解答】140.【点评】本题考查了图形的变化类问题,解题的关键是仔细关系图形并找到规律,注意:本题采用了穷举法.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)(2013•深圳)计算:|﹣|+﹣4sin45°﹣.【考点】M113 绝对值M11A 实数的混合运算M11O 指数幂M32D 特殊角三角函数的值【难度】容易题【分析】本题涉及绝对值、负指数幂、特殊角的三角函数值、0指数幂等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=|﹣2|+﹣4×﹣1 (3)=2+3﹣2﹣1=2. (5)【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握绝对值、负指数幂、特殊角的三角函数值、0指数幂等考点的运算.18.(6分)(2013•深圳)解下等式组:,并写出其整数解.【考点】M12I 一元一次不等式(组)的解及解集M12J 解一元一次不等式(组)M12K 一元一次不等式(组)的应用【难度】中等题【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:∵解不等式①得:x<2, (2)解不等式②得:x>﹣, (4)∴不等式组的解集为:﹣<x<2,即不等式组的整数解为:0、1. (6)【点评】本题考查了解一元一次不等式(组),一元一次不等式组的整数解的应用,属于中考必考题型,关键是能根据不等式的解集找出不等式组的解集.19.(7分)(2013•深圳)2013年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款100元”、“穿绿马甲维护交通”.如图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)实施首日,该片区行人闯红灯违法受处罚一共人;(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是%;(3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图;(4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于度.【考点】M211 总体、个体、样本、容量M213 普查、调查M216 统计图(扇形、条形、折线)M343 圆心角与圆周角【难度】容易题【分析】(1)根据罚款100元的有10人,占的比例是5%,即可求得调查的总人数;(2)百分比的定义即可求解;(3)求得先“罚款20元”人数是“罚款50元”人数的和,然后根据“罚款20元”人数是“罚款50元”人数的2倍,即可求得各自的人数,从而作出统计图;(4)利用360度乘以对应的比例即可求得.【解答】解:(1)10÷5%=200(人).故答案是:200; (1)(2)×100%=65%,故答案是:65; (2)(3)“罚款20元”人数是“罚款50元”人数的和是:200﹣10﹣130=60(人),则罚款20元”人数是40人,“罚款50元”人数是20. (3); (5)(4)“罚款20元”所在扇形的圆心角等于360×=72°.故答案是:72. (7)【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2013•深圳)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE.(1)求证:BD=DE.(2)若AC⊥BD,AD=3,S ABCD=16,求AB的长.【考点】M327 等腰三角形性质与判定M329 直角三角形性质与判定M32B 勾股定理M32H 相似三角形性质与判定M332 平行四边形的性质与判定M337 等腰梯形的性质与判定【难度】中等题【分析】(1)由AD∥BC,CE=AD,可得四边形ACED是平行四边形,即可证得AC=DE,又由等腰梯形的性质,可得AC=BD,即可证得结论;此问简单(2)首先过点D作DF⊥BC于点F,可证得△BDE是等腰直角三角形,由S ABCD=16,可求得BD的长,继而求得答案.此问中等【解答】(1)证明:∵AD∥BC,CE=AD,∴四边形ACED是平行四边形,∴AC=DE, (2)∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,∴AC=BD,∴BD=DE. (4)(2)解:过点D作DF⊥BC于点F,∵四边形ACED是平行四边形,∴CE=AD=3,AC∥DE,∵AC⊥BD,∴BD⊥DE,∵BD=DE, (6)∴S△BDE=BD•DE=BD2=BE•DF=(BC+CE)•DF=(BC+AD)•DF=S梯形ABCD=16,∴BD=4,∴BE=BD=8,∴DF=BF=EF=BE=4,∴CF=EF﹣CE=1,∴由勾股定理得AB=CD==. (8)【点评】此题考查了等腰三角形的性质、等腰直角三角形的性质与判定、平行四边形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21.(8分)(2013•深圳)如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.【考点】M32B 勾股定理M32H 相似三角形性质与判定M32I 相似图形的应用M34A 垂径定理及其推论【难度】中等题【分析】根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.【解答】解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m, (1)∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m. (2)如图,设小桥的圆心为O,连接OM、OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m. (4)在Rt△OGM中,由勾股定理得:∴OG2=OM2+42,∴r2=(r﹣2)2+16, (6)解得:r=5,答:小桥所在圆的半径为5m. (8)【点评】此题主要考查了垂径定理以及勾股定理的应用,难度不大,注意:根据已知得出关于r的等式是解题关键.22.(9分)(2013•深圳)如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(),抛物线的表达式为;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.【考点】M133 结合图像对函数关系进行分析M134 用待定系数法求函数关系式M136 函数图像的交点问题M154 二次函数的的图象、性质M162 二次函数的应用M32A 全等三角形性质与判定M32B 勾股定理M34A 垂径定理及其推论【难度】较难题【分析】(1)如答图1,作辅助线,证明△AOC≌△CEB,由此得到点B的坐标;再由点C、B的坐标,利用待定系数法求出抛物线的表达式;此问中等(2)如答图2,作辅助线,求出△BCD三边的长度,再利用勾股定理的逆定理判定其为直角三角形,从而问题得证;此问较难(3)如答图3,利用勾股定理依次求出CQ、CF、AF的长度,然后利用垂径定理AP=2AF 求出AP的长度.此问较难【解答】(1)解:如答图1所示,过点B作BE⊥x轴于点E.∵AC⊥BC,∴∠ACO+∠BCE=90°,∵∠ACO+∠OAC=90°,∠BCE+∠CBE=90°,∴∠OAC=∠BCE,∠ACO=∠CBE.∵在△AOC与△CEB中,∴△AOC≌△CEB(ASA). (1)∴CE=OA=4,BE=OC=2,∴OE=OC+CE=6.∴B点坐标为(6,2).∵点C(2,0),B(6,2)在抛物线y=x2+bx+c上,∴,解得b=,c=﹣7. (2)∴抛物线的表达式为:y=x2+x﹣7. (3)(2)证明:在抛物线表达式y=x2+x﹣7中,令y=0,即x2+x﹣7=0,解得x=2或x=7,∴D(7,0). (4)如答图2所示,过点B作BE⊥x轴于点E,则DE=OD﹣OE=1,CD=OD﹣OC=5.在Rt△BDE中,由勾股定理得:BD===;在Rt△BCE中,由勾股定理得:BC===. (5)在△BCD中,BD=,BC=,CD=5,∵BD2+BC2=CD2∴△BCD为直角三角形,∠CBD=90°,∴∠CBD=∠ACB=90°,∴AC∥BD. (6)(3)解:如答图3所示:由(2)知AC=BC=,又AQ=5,则在Rt△ACQ中,由勾股定理得:CQ===. (7)过点C作CF⊥PQ于点F,∵S△ACQ=AC•CQ=AQ•CF,∴CF===2. (8)在Rt△ACF中,由勾股定理得:AF===4.由垂径定理可知,AP=2AF,∴AP=8. (9)【点评】本题是二次函数综合题型,考查了二次函数的图象与性质、待定系数法、全等三角形、勾股定理、勾股定理的逆定理、垂径定理等知识点.本题设计考点清晰,层次合理:第(1)问主要考查全等三角形和待定系数法,第(2)问主要考查勾股定理及其逆定理,第(3)问主要考查垂径定理与勾股定理.23.(9分)(2013•深圳)如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1)m为何值时,△OAB面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数的图象与直线AB相交于C、D两点,若,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).【考点】M133 结合图像对函数关系进行分析M134 用待定系数法求函数关系式M135 动点问题的函数图像M136 函数图像的交点问题M152 反比例函数的的图象、性质M154 反比例函数的应用M325 三角形的面积M32J 相似多边形和相似比M32H 相似三角形性质与判定M611 数学综合与实践M154 二次函数的的图象、性质M162 二次函数的应用【难度】较难题【分析】(1)由A(m,0),B(0,n),可以表示出OA=m,OB=n,由三角形的面积公式就可以求出结论;此问简单(2)由(1)的结论可以求出点A点B的坐标,就可以求出直线AB的解析式,根据双曲线的对称性就可以求出S△OBD=S△OAC的值,再由三角形的面积公式就可以求出其值;此问中等(3)根据平移的性质可以求得△O′C′D′∽△O′CD,再由相似三角形的性质就可以求出就可以求出S△O′C′D′和S△O′CD的面积关系,从而可以求出S与运动时间t之间的函数关系式.此问较难【解答】解:(1)∵A(m,0),B(0,n),∴OA=m,OB=n.∴S△AOB=. (1)∵m+n=20,∴n=20﹣m,∴S△AOB==m2+10m=﹣(m﹣10)2+50 (2)∵a=﹣<0,∴抛物线的开口向下,∴m=10时,S最大=50; (3)(2)∵m=10,m+n=20,∴n=10,∴A(10,0),B(0,10),设AB的解析式为y=kx+b,由图象,得,解得:,y=﹣x+10. (4),∴设S△OCD=8a.则S△OAC=a,∴S△OBD=S△OAC=a,∴S△AOB=10a,∴10a=50,∴a=5, (5)∴S△OAC=5,∴OA•y=5,∴y=1.1=﹣x+10,x=9∴C(9,1),∴1=,∴k=9; (6)(3)∵C(9,1),移动后重合的部分的面积是△O′C′D′,t秒后点O的坐标为O′(t,0),O′A=10﹣t,O′E=10.∵C′D′∥CD,∴△O′C′D′∽△O′CD, (7)∴,∴ (8)S=40•,∴(0<t<10). (9)【点评】本题主要考查了二次函数的最值的运用,反比例函数的图象的对称性的运用,相似三角形的相似比与面积之比的关系的运用,动点问题直线问题的运用,综合性较强,属于中考压轴题,注意:解答时求出函数的解析式及交点坐标是解答本题的关键.。

2009-2013年深圳中考试题(含答案)

2009-2013年深圳中考试题(含答案)

2009-2013年深圳中考题(含参考答案) 深圳市2013年初中毕业生学业考试数学试卷第一部分:选择题一、填空题(共12小题,每小题3分,满分36分) 1、3-的绝对值是( ) A .3B . 3-C .13-D .132、下列算式正确的是( ) A .222()a b a b +=+; B .22()ab ab = C .325()a a =D .23a a a ∙=3、某活动中共募集捐款32000000元,将数据32000000用科学计数法表示为( ) A .80.3210⨯B .63.210⨯C .73.210⨯D .63210⨯4、如下图,其中是轴对称图形但不是中心对称图形的是( )5、某校有21名同学参加比赛,预赛成绩各不相同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需再知道这21名同学成绩的( ) A .最高分B . 中位数C .极差D .平均数6、分式242x x -+的值为0,则x 的取值是( )A .2x =-B .2x =±C .2x =D .0x =7、在平面直角坐标系中,点(20,)P a -与点(,13)Q b 关于原点对称,则a b +的值为( ) A .33B .33-C .7-D .78、小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他。

已知爸爸比小朱的速度快100米/分,求小朱的速度。

若设小朱的速度是x 米/分,则根据题意所列方程正确的是( )A .1440144010100x x -=-B .1440144010100x x =++C .1440144010100x x =+-D .1440144010100x x-=+A. 线段B. 等边三角形C .正方形D. 圆30°图19、如图1,有一张一个角为30,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是( ) A .8或23B .10或423+C .10或23D .8或423+10、下列命题是真命题的有( )①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧 A .1个B . 2个C .3个D .4个11、已知二次函数2(1)y a x c =--的图像如图2所示,则一次函数y ax c =+的大致图像可能是( ) 12、如图3,已知直线1l ∥2l ∥3l ,相邻两条平行线间的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009-2010学年初三数学第二轮复习(6)不等式(组)的解法知识梳理1、不等式、不等式组的有关概念(不等式的解和解集、不等式组的解集);2、不等式的基本性质;3、一元一次不等式、一元一次不等式组的解法及其解集在数轴上的表示和确定。

一、填空题:1、如果a <b ,-3a_____-3b ; ;a -b_______0.2、如果a <b <0,则4a_______4b ; |a|________|b|.3、不等式-2x >-11的正整数解是__________________. 4.不等式2-3x>0的解集是 .5.不等式组100x x -<⎧⎨>⎩的解是____________.二、选择题: 6.不等式组1030x x +<->⎧⎨⎩,的解集是 ( )A. 3x >B.1x <-C.3x < D.13x -<<7. 不等式组240,10x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )A .B .C .D .8.不等式组2030x x -<⎧⎨-≥⎩的正整数解的个数是( )A .1个B .2个C .3个D .4个9. 如果关于x 的不等式 (a +1) x >a +1的解集为x <1,那么a 的取值范围是( )A. a >0B. a <0C. a >-1D. a <-110、若不等式组{148-<+>x x mx 的解集是x >3,则m 的取值范围是( )° .2- 1 0° 2-1. .2-1 . 0 ° °2 -1(A)m >3 (B)m ≥3 (C)m ≤3 (D)m <3 三、解答题: 11.解不等式()1122<---x x ,并把它的解集在数轴上表示出来。

12.解不等式组:()315216x xx x +>-⎧⎨+-<⎩,并把解集在数轴上表示出来.13.解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.14.x 取哪些正整数时,不等式 x +3>6 与 2x -1<10 都成立?15.已知关于 x 、y 的方程组 x +y =a5x +3y =15 的解都是正数,求 a 的取值范围。

2009-2010学年初三数学第二轮复习(7)不等式(组的应用)知识梳理不等式、不等式组的应用1.求不等式组2752312x x x x -<-⎧⎪⎨++>⎪⎩的整数解。

2.某校住校生若干人,住若干间宿舍,,若每间住4人,则余20人无宿舍若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数。

3.一个维修队原定在10 天内至少要检修线路60km,在前两天共完成了12km 后,又要求提前 2 天完成检修任务,问以后几天内,平均每天至少要检修多少km?4.一人10点10分离家去赶11点整的火车,已知他家离车站10千米,他离家后先以3千米/小时的速度走了5分钟,然后乘公共汽车去车站,问公共汽车每小时至少走多少千米才能不误当次火车?5.设关于x 的不等式组2x-m>2无解,求m 的取值范围。

3x-2m<-16.某校三年级五班班主任带领该班学生去东山旅游,甲旅行社说:“如果班主任买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括班主任在内全部按全票价的 6 折优惠”,若全票为每张240 元。

①问学生多少人时,甲、乙两家旅行社收费一样多?②就学生数讨论哪一旅行社更合算。

7、某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙同种工种各招聘多少人时,可使得每月所付的工资最少?8.某城市平均每天产生垃圾700吨,由于甲、乙两个处理厂处理。

已知甲厂每小时可处理55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用495元。

(1)甲、乙两厂同时处理该城市的垃圾,每天需几小时完成?(2)如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少需要多少小时?9.海门市三星镇的叠石桥国际家纺城是全国最大的家纺专业市场,年销售额突破百亿元.2009年5月20日,该家纺城的羽绒被和羊毛被这两种产品的销售价如下表:品 名 规格(米) 销售价(元/条) 羽绒被 2×2.3 415 羊毛被2×2.3150现购买这两种产品共80条,付款总额不超过2万元.问最多可购买羽绒被多少条?10.某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题:(1)该采购员最多可购进篮球多少只?(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?2009-2010学年初三数学第二轮复习(8)品名 厂家批发价(元/只) 商场零售价(元/只) 篮球130160排球100 120三角函数与解直角三角形知识梳理:1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________或已知___________________. 3.如图(1)解直角三角形的公式:(1)三边关系:__________________. (2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______. cosB=____,tanA=_____ ,tanB=_____.4.如图(2)仰角是____________,俯角是____________.5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(1)(2) (3) (4) 习题:1,Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c,则当a=5、c=13 时,有SinA= ,CosA= 。

2.在Rt △ABC 中,∠C =90°,a =2,b =3,则cos A = ,sin B = ,tan B = 。

3.已知tan α=125,α是锐角,则sin α=4.如图1,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为 米(结果用含α的三角比表示).5、如右图,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米。

6.已知1sin 2A =,且∠A 为锐角,则∠A=( ) A.30° B.45° C.60° D.75°7. 在ΔABC 中,∠C=90°,AB=15,sinA=31,则BC 等于( )A 、45B 、5C 、51D 、4518.在Rt ABC ∆中, 90=∠C ,如果2=AB ,1=BC ,那么B sin 的值是( ) A.21B.23 C.33 D.3 45︒南北西东60︒AD C B70︒O αab cαAC B OA B C c b a AC B 图1αACB9.如图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠OBA=75°,⊙O 的半径为1,则OC 的长等于 A 、32 B 、22C 、233D 、2 10.如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=53,则BC 的长是( ) A 、4cm B 、6cm C 、8cmD 、10cm11. 如图,P 是∠α的边OA 上一点,且点P 的坐标为(3,4), 则sin α= ( )A . 35B . 45C . 34D . 4312.Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他量.12. 如图,已知AC=1,求BD 。

13.大楼AD 的高为10米,远处有一塔BC ,某人在楼底A 处测得踏顶B 处的仰角为60º,爬到楼顶D 点测得塔顶B 点的仰角为30º,求塔BC 的高度。

14.如图,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45°°和60°,且A 、B 、E 三点在一条直线上,若BE=15米,求这块广告牌的高度.(取3≈1.73,计算结DA CBDCBNACDM第10题A果保留整数)15.如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行,请你根据图中数据计算回答:小敏身高1.78米,她乘电梯会有碰头危险吗?姚明身高2.29米,他乘电梯会有碰头危险吗?(可能用到的参考数值:sin 270.45=,cos 270.89=,tan 270.51=)16.(8分)如图,小明想测量塔BC 的高度.他在楼底A 处测得塔顶B 的仰角为60;爬到楼顶D 处测得大楼AD 的高度为18米,同时测得塔顶B 的仰角为30,求塔BC 的高度.17.如图11所示,点P 表示广场上的一盏照明灯.(1)请你在图中画出小敏在照明灯P 照射下的影子(用线段表示);(2)若小丽到灯柱MO 的距离为4.5米,照明灯P 到灯柱的距离为1.5米,小丽目测照明灯P 的仰角为55°,她的目高QB 为1.6米,试求照明灯P 到地面的距离(结果精确到0.1米). (参考数据:tan 55 1.428≈°,sin 550.819≈°,cos550.574≈°)二楼 一楼 4mA 4m4mB 27°CMP。

相关文档
最新文档