2013年哈尔滨市中考数学市模后最新27、28题(15)

合集下载

2013年黑龙江省哈尔滨市初中升学考试数学试卷含答案

2013年黑龙江省哈尔滨市初中升学考试数学试卷含答案

哈尔滨市2013年初中升学考试数学试卷解析一、选择题1. ( 2013哈尔滨)—扌的倒数是(). 1 1 (A)3 (B) — 3 (C) -- (D)-33考点:倒数.分析:一个数的倒数就是把这个数的分子、分母颠倒位置即可得到. 解答:一1的倒数是一3 = _3 .31故选B.2. (2013哈尔滨)下列计算正确的是().23 2 5 3 2 6 2 3 6a x 2 a (A)a +a =a (B)a •a =a (C)(a) =a (D)() 2 2考点:幕的乘方与积的乘方;合并同类项;同底数幕的乘法。

分析:分别根据合并同类项、同底数幕的乘法、幕的乘方与积的乘方法则对 各选项进行逐一计算即可解答:解:A 、a 2和a 3不是同类项,不能合并,故此选项错误;B 、 a 3a 2=a 3+2=a 5,故此选项错误;C 、 (a 2) 3=a 6,故此选项正确;2D、(2)2迁故此选项错误;故选:C .3. (2013哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()考点:轴对称图形与中心对称图形分析:题考查了中心对称图形.掌握好中心对称图形与轴对称图形的概念.轴 对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形 是要寻找对称中心,旋转180度后两部分重合.解答:A.是轴对称图形,不是中心对称图形;B.是中心对称图形,不是轴对 称图形.;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,又是中心对称等边三角瑶(A)平行四边形 (B) 正五边形 (C) 正六边形(D)图形;故选D.4. (2013哈尔滨)如图所示的几何体是由一些正方体组合而成的立体图形,贝U这个几何体的俯视图是().田由(A) (B)书(C)出(U)正面考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.5. (2013哈尔滨)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位, 所得到的抛物线是().(A)y=(x+2) 2+2 (B)y=(x+2) 2-2 (C)y=x 2+2 (D)y=x 2-2考点:抛物线的平移分析:根据平移概念,图形平移变换,图形上每一点移动规律都是一样的,也可用抛物线顶点移动.即(-1,0) ( 0,—2).解答:根据点的坐标是平面直角坐标系中的平移规律:“左加右减,上加下减•”故选D.1 —2k6. -------------------------------------------------- (2013哈尔滨)反比例函数厂的图象经过点(-2 ,3),则k的值为().x(A)6 (B)-6 (C) - (D) -72 2考点:反比例函数的图象上的点的坐标.分析:点在曲线上,贝U点的坐标满足曲线解析式,反之亦然解答:反比例函数y二匕空的图象经过点(-2,3),表明在解析式y二匕空x x 当x = -2 时,y = 3,所以1-2k= xy= 3X (—2) = 一6.,解得k= —2 故选C7. (2013哈尔滨)如图,在Y ABCDK AD=2AB CE平分/ BCD交AD边于点E, 且AE=3则AB的长为().5(A)4 (B)3 (C) 5(D)22考点:平行四边形的性质及等腰三角形判定.分析:本题主要考查了平行四边形的性质: 平边四边形的对边平行且相等;等腰 三角形判定,两直线平行内错角相等;综合运用这三个性质是解题的关键解答:根据 CECE 平分/ BCD 寻/ BCE M ECD,AD/ BC 得/ BCE " DEC 从而△DCE 为等腰三角形,ED=DC=AB,2AB=AD=AE+ED=3+?A S , AB=3 故选B8. (2013哈尔滨)在一个不透明的袋子中,有 2个白球和2个红球,它们只有 颜色上的区别,从袋子中随机地摸出一个球记下颜色放回•再随机地摸出一个 球•则两次都摸到白球的概率为(). 考点:求概率,列表法与树状图法分析:概率的计算一般是利用树状图或列表把所有等可能性的情况列出, 然后再 计算某一事件的概率•其关键是找出所有的等可能性的结果解答:解:画树状图得:4个球,白球记为1、2黑球记为3、4•••共有16种等可能的结果,两次都摸到白球的只有 4种情况,•••两次都摸到黑球的概率是'.4故选C .9. (2013哈尔滨) 如图,在厶ABC 中, M N 分别是边 AB AC 的中点,则厶AMN的面积与四边形MBCN 勺面积比为()•1 1 12 (A )丄(B )丄(C )丄(D )-2343考点:相似三角形的性质。

黑龙江省哈尔滨市2013年中考数学试卷(解析版)

黑龙江省哈尔滨市2013年中考数学试卷(解析版)

省市2013年中考数学试卷一、选择题1.(2013)13-的倒数是( ).(A)3 (B)一3 (C)13- (D)13考点:倒数.分析:一个数的倒数就是把这个数的分子、分母颠倒位置即可得到.解答:13-的倒数是331-=-.故选B.2.(2013)下列计算正确的是( )..(A)a3+a2=a5 (B)a3·a2=a6 (C)(a2)3=a6 (D)22 ()22 a a=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。

分析:分别根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可解答:解:A、a2和a3不是同类项,不能合并,故此选项错误;B、a3a2=a3+2=a5,故此选项错误;C、(a2)3=a6,故此选项正确;D、22()24a a=故此选项错误;故选:C.3.(2013)下列图形中,既是轴对称图形又是中心对称图形的是( ).考点:轴对称图形与中心对称图形.分析:题考查了中心对称图形.掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.解答: A.是轴对称图形,不是中心对称图形;B. 是中心对称图形,不是轴对称图形.;C.是轴对称图形,不是中心对称图形;D. 是轴对称图形,又是中心对称图形;故选D.4.(2013)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( ).考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.5.(2013)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x2+2 (D)y=x2-2考点:抛物线的平移分析:根据平移概念,图形平移变换,图形上每一点移动规律都是一样的,也可用抛物线顶点移动.即(-1,0)—→(0,-2).解答:根据点的坐标是平面直角坐标系中的平移规律:“左加右减,上加下减.”故选D.6.(2013)反比例函数12kyx-=的图象经过点(-2,3),则k的值为( ).(A)6 (B)-6 (C) 72(D)72-考点:反比例函数的图象上的点的坐标.分析:点在曲线上,则点的坐标满足曲线解析式,反之亦然解答:反比例函数12kyx-=的图象经过点(-2,3),表明在解析式12kyx-=,当x=-2时,y=3,所以1-2k=xy=3×(-2)=-6.,解得k=7 2故选C7.(2013)如图,在ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( ).(A)4 (B)3 (C) 52(D)2考点:平行四边形的性质及等腰三角形判定.分析:本题主要考查了平行四边形的性质:平边四边形的对边平行且相等;等腰三角形判定,两直线平行错角相等;综合运用这三个性质是解题的关键解答:根据CECE平分∠BCD得∠BCE=∠ECD,AD∥BC得∠BCE=∠DEC从而△DCE 为等腰三角形,ED=DC=AB,2AB=AD=AE+ED=3+AB,解得AB=3故选B8.(2013)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).(A)116(B)18(C)14(D)12考点:求概率,列表法与树状图法。

黑龙江省哈尔滨市第一零九中学2013年中考数学模拟试题4 新人教版

黑龙江省哈尔滨市第一零九中学2013年中考数学模拟试题4 新人教版

第3题图EC2013中考数学模拟试题一、填空题(每小题3分,共30分)1.我国不断加强对消费者权益的保护,2013年 3月16日,大众汽车声明实施主动召回以解决DSG 问题,此次召回的车辆共计86890辆。

用科学记数法表示86890为辆(保留三个有效数字)。

2.函数y =21-x 中自变量x 的取值X 围是.3.如图,□ABCD 中,E 、F 分别为BC 、AD 边上的点,要使BF DE =,需添加一个条件:.(只填一个即可)4.如图,是由四个直角边分别为3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是_________.5.符号c b d a表示运算ac-bd ,对于整数a,b,c,d ,已知1<41bd <3,则b+d 的值是____________.6.如图,AB 是⊙O 的直径,点C 、D 在圆上,其中OD 与AC 交于E 点,且OD ⊥AC .若OE=4,ED=2,则BC 的长度为. 7.若关于x 的分式方程211=--x m 的解为非负数,则m 的取值X 围是 ____ 。

8.在△ABC 中,∠B =30°,AB =2,AC =ACB 的度数为________。

9.某商品按进价提高35%,然后打出“九折酬宾,外送50元礼品”的广告,结果每件商品仍盈利208元,则每件商品的进价是元.C第6题图第4题图10.如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形 ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1s 为1,按上述方法所作的正方形的面积依次为2s ,3s …n s (n 为正整数),那么第8个正方形的面积8s =。

二、选择题(每小题3分,共30分) 11.下列计算正确的是()A.x x x 236⋅=B.235222x x x += C.()x x 238=D.()x y x y +=+222412.以下五家银行行标中,既是中心对称图形又是轴对称图形的有()A.4个 B.3个 C.2个 D.1个 13.如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则 ( )A .123S S S <<B .123S S S >>C . 123S S S =>D .123S S S =<14.一些完全相同的小正方体搭成一个几何体,这个几何体从正面和左面看所得的平面图形均为右图所示,小正方体的块数最多有()A.11块 B.12块 C.13块 D.14块 15.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:第14题图第16题图第10题图第13题图月用水量(吨)4 5 6 9 户数3421则关于这10户家庭的月用水量,下列说法错误..的是( ) A .中位数是5吨 B .众数是5吨16.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。

2013学年黑龙江省哈尔滨中考数学年试题

2013学年黑龙江省哈尔滨中考数学年试题

2.【答案】C【解析】解答:A .2a 和3a 不是同类项,不能合并,故此选项错误;B .32325a a a a +==,故此选项错误;C .236()a a =,故此选项正确;D .224a a ⎛⎫ ⎪⎝⎭=故此选项错误;故选:C . 【提示】分别根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可 【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法3.【答案】D【解析】解答:A .是轴对称图形,不是中心对称图形;B .是中心对称图形,不是轴对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,又是中心对称图形;故选D .【提示】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合【考点】轴对称图形与中心对称图形4.【答案】A【解析】解:从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体,故选A【提示】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可【考点】简单组合体的三视图5.【答案】D【解析】解:抛物线2(1)y x =+的顶点坐标为(1,0)-,∵向下平移2个单位,∴纵坐标变为2-,∵向右平移1个单位,∴横坐标变为110-+=,∴平移后的抛物线顶点坐标为(0,2)-,∴所得到的抛物线是22y x =-.故选D .【提示】先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可【考点】二次函数图象,几何变换【提示】点在曲线上,则点的坐标满足曲线解析式,反之亦然【考点】反比例函数的图象上的点的坐标特征7.【答案】B【解析】∵四边形ABCD 是平行四边形,∴AB DC =,AD C B ∥,∴DEC BCE ∠=∠,∵CE 平分DCB ∠,∴DCE BCE ∠=∠,∴DEC BCE ∠=∠,∴DE DC AB ==,∵22AD AB CD ==,CD DE =,∴2AD DE =,∴3AE DE ==,∴3DC AB DE ===,故选B .【提示】平边四边形的对边平行且相等,等腰三角形判定,两直线平行内错角相等,综合运用这三个性质是解题的关键【考点】平行四边形的性质及等腰三角形判定与性质【提示】概率的计算一般是利用树状图或列表把所有等可能性的情况列出,然后再计算某一事件的概率,其关键是找出所有的等可能性的结果【考点】求概率,列表法与树状图法故选B .【提示】利用相似三角形的判定和性质是解题的关键【考点】相似三角形的判定与性质;三角形中位线定理10.【答案】D【解析】解答:由010x ≤≤时,付款5y x =相应千克数,得数量不超过10千克时,销售价格为5元/千克①是正确;当30x =代入 2.525y x =+,100y =,故②是正确;由(2)10x >时,付款 2.525y x =+相应千克数,得每千克2.5元,故③是正确;当40x =代入 2.525y x =+,125y =,当20x =代入 2.52575y x =+=,两次共150元,两种相差25元,故④是正确;四个选项都正确,故选D .【提示】得到超过10千克的费用的计算方式是解决本题的关键点,010x ≤≤时,付款5y x =相应千克数;数量不超过10千克时,销售价格为5元/千克;(2)10x >时,付款 2.525y x =+相应千克数,超过10千克的那部分种子的价格 【考点】一次函数的应用第Ⅱ卷二、填空题11.【答案】49.810⨯【解析】将98000用科学记数法表示为49.810⨯故答案为:49.810⨯【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数【考点】科学记数法——表示较大的数12.【答案】3x ≠-【解析】式子3x y x =+在实数范围内有意义,∴30x +≠,解得3x ≠- 【提示】根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可【考点】分式意义的条件13.【解析】原式==【提示】先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变【考点】二次根式的运算 14.【答案】21x -≤<【解析】解:312x -<①由①得,1x <,31x +≥②得2x ≥-故此不等式组的解集为:21x -≤<.故答案为:21x -≤< 【提示】熟知同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解答此题的关键,分别求出各不等式的解集,再求出其公共解集.【考点】解一元一次不等式组15.【答案】(2)(2)a x y x y +-【解析】22224(4)(2)(2)ax ay a x y a x y x y -=-=+-【提示】先提取公因式法然后考虑应用公式法来因式分解【考点】提取公因式法和应用公式法因式分解16.【答案】6【解析】设底面半径为cm r ,36ππ12r =⨯,解得3cm r =底面圆的直径为2236cm r =⨯=,故答案为:6.【提示】根据题意作出辅助线,构造出直角三角形是解答此题的关键【考点】垂径定理,勾股定理,切线的性质18.【答案】20%【解析】设平均每次降价的百分率为x ,根据题意得:2125(1)80x -=,解得10.120%x ==,2 1.8x =-(不合题意,舍去).故答案为:20%【提示】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解.【考点】一元二次方程的应用19.【解析】当点D 与C 在AB 同侧,BD AB ==,作CE BD ⊥于E ,CD BD ==,ED由勾股定理CD =D 与C 在AB 异侧,BD AB ==135∠=︒BDC ,作DE BC ⊥于E ,2BE ED ==,3EC =,由勾股定理CD 【提示】双解问题,画等腰直角三角形ABD ,使90∠︒=ABD ,分两种情况,点D 与C 在AB 同侧,点D 与C 在AB 异侧,考虑要全面【考点】解直角三角形,钝角三角形的高20.【答案】3【提示】本题利用三角形的面积计算此题考查了矩形的性质、垂直平分线的性质以及勾股定理及解直角三角形,注意数形结合思想的应用,此题综合性较强,难度较大.2(1)12a a -+=223-=∴原式12a + 【提示】利用除式的分子利用完全平方公式分解因式,除法变乘法的法则,同分母分式的减法法则计算,再利用特殊角的三角函数值求出a 的值代入进行计算即可,考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键【考点】①分式的通分,分式的约分,除法变乘法的法则,完全平方公式,特殊角22.【答案】(1)【解析】(1)正确画图【提示】根据轴对称图形的性质,利用轴对称的作图方法来作图,利用勾股定理求出AB 、BC 、CD 、AD 四条线段的长度,然后求和即可最【考点】轴对称图形,勾股定理,网格作图23.【答案】(1)5名(2)264名【解析】(1)解:()11(18161%5)100++÷-=(名).501118165---=(名)∴在这次调查中,最喜欢新闻类电视节目的学生有5名补全条形图如图所示11【考点】条形统计图,用样本估计总体24.【答案】(1)14a = 21511154224OB DF OB CE +=⨯⨯【提示】首先得出B 点的坐标,进而利用待定系数法求出a 继而得二次函数解析式,首先得出C 点的坐标,再由对称性得D 点的坐标,由 BCD BOD BOC S S S =+△△△求出【考点】二次函数综合题25.【答案】(1)证明:连接CD 、BE ∵BC 为半圆O 的直径.∴10AB =∴6AD AB BD =-=【提示】连接CD 、BE ,利用直径所对圆周角90︒、证明ADC AEB △≌△得AB AC =,利用OBD ABC △∽△得BD BO BC AB=得4BC =再求10AB =从而6AD AB BD =-=此题利用相似三角形的判定与性质、全等三角形的判定与性质以及直角三角形的性质等知识.此题综合性较强,难度适中,注意数形结合思想的应用【考点】圆周角定理,全等三角形的性质,相似三角形的判定26.【答案】(1)甲队单独完成此项任务需30天,乙队单独完成此项任务需20天【考点】分式方程的应用,一元一次不等式的应用.27.【答案】(1)BC=(2)13m t=+,(03)t<<''∠BE F ∴GE GA '=QE BE '=QE GA '=∴12∠=∠∵EF OC ∥BF BE BC BO =,333BF m =,3332BF m ==+,313322BC CF -=-,CP 3133322633t CF t CP CB CA --=== ∵FCP BCA ∠=∠∴FCP BCA △∽△PF CP AB CA =,32t PF -=∵2BQ PF QG -= ∴33312332322t t t -⎛⎫-=⨯- ⎪⎝⎭∴t ∴当1t =时,332BQ PF QG -= 30=∠=︒OBC 由此CO OB AB ===【考点】等边三角形判定与性质,相似三角形判定与性质,直角三角形的判定,三角形内角和,等腰三角形判定,一元一次方程28.【答案】(1)证明:如图1连接FE、FC∵点F在线段EC的垂直平分线上【考点】三角形全等的判断和性质,相似三角形的判断和性质,平行线分线段成比例定理,轴对称性质,三角形四边形内角和,线段的垂直平分线性质。

2013年哈尔滨市中考数学模拟试题(香坊区二模及答案)

2013年哈尔滨市中考数学模拟试题(香坊区二模及答案)

2013年香坊区初中毕业学年调研测试(二)数学试卷答案一、选择题:1.C 2.C 3.B 4.D 5.A 6.D 7.B 8.B 9.A 10.B 二、填空题:11.5.7510⨯12. 13. a(a-1)2 14. 12x <- 15.a 16.12 17.10% 18.3219.1120.三、解答题: 21.原式=22(1)1(1)(1)1aa a a a a a +-⋅-=-++-+…………2分 当a=tan60°-2cos60°122⨯1时…………………………………………2分原式=21a -+==2分22.(1)图形规范正确每题3分.(图形正确,没有按要求写字母或字母写错扣1分)(2)4+23.解:(1)60÷20%=300(人) …………………………………2分 ∴在这次调查中,参与调查活动的学生共有300人.(2)300-120-60-30=90(人)…………………………………1分902000300⨯=600(人)……………………………2分∴若该校有2000名学生,估计喜欢足球的学生共600人. ………………………1分24 .解:(1)∵234y x x =-++ 当y=0时 2340x x -++= 解得11x =- 24x =∴A (-1,0) B (4,0)………………………2分 ∴AB=5……………………1分(2) 点C (m,m+1)在第一象限的抛物线上 ∴2134m m m +=-++ 解得11m =- 23m =∴C (3,4) ……………………1分 过C 作CH ⊥AB 于H ∴CH=4C 1B 1A 1∴11541022S AB CH =⋅=⨯⨯=……………………2分 25.解:(1)连接OM 交BC 于点Q∴OM ⊥MP ∠OMP=90°……………………………1分 ∴∠PMN=90°-∠OMD ∵∠PNM=∠OND=90°-∠ODM ……………………………1 ∵OD=OM ∴∠OMD=∠ODM …………………………1分 ∴∠PMN=∠PNM ……………………………1分 (2)由(1)∠OMP=90° ∵MP ∥BC ∴OM ⊥BC BC=3 ∴BQ=32………………1分∵∠BOM+∠MOP=90°∠P+∠MOP=90° ∴∠BOM =∠P ∴sin ∠BOQ =sin ∠P ………………1分∴BQ OM BO OP =………………1分∵OB=OM=OA ∴OP=OA+35BO= 85BO ∴3285OBBO OB = ∴ OB=125 ………………1分26.解:(1)设甲单独完成需x 天,则乙单独完成需要1.5x 天,依题意得:59911.5x x x++=…………………………2分 解得:x=20 经检验x=20是原分式方程的解. …………1分 ∴甲单独完成需20天,则乙单独完成需要30天…………1分. (2) 设甲工程队施工a 天, 依题意得:1204000200070000130aa -+⋅≤………………………2分解得:10a ≤. …………1分∴甲工程队最多施工10天. …………1分 27. 解:(1) ∵y=-x+4 令x=0 ∴y=4 ∴B(0,4) ∵ABC S ∆=28 ∴ABC S ∆=1142822AC OB AC ⋅=⋅⋅= ∴AC=14 ∴OC=10 ∴C(-10,0) ………1分.设直线BC 的解析式为y=kx+b∴1004k b b -+==⎧⎨⎩∴254k b ==⎧⎪⎨⎪⎩, ∴直线BC 的解析式为y=25x+4……1分(2)连接EG 并延长交直线CF 于点Q ∵CQ ∥MG ∥AE ME=MF ∴EG=QG 在△GCQ 和△GAE中∠CGQ= ∠AGE ∠GCQ= ∠EAG ∴△GCQ ≅△GAE ………1分 ∴CG=AG ………1分∴GA 17AC == ∴OG=GA-OA=7-4=3 ………1分∴5BG ==………1HC分(3) ①当P 在G 点左侧时∵∠BGA= ∠PBG+∠BPG ∠BGA=2∠PBG ∴∠BPG=∠PBG ∴PG=BG=5……1分 ∴OP=8∴P(-8,0) ……1分 ②当P 1在G 点右侧时∵∠BGA=2∠P 1BG ∠BGA=2∠PBG ∴∠P 1BG=∠PBG ∴∠BGA=∠PB P 1∵tan ∠BGA=43BO OG = tan ∠BP P 1=4182BO PO == ∴tan ∠ PB P 1=43在Rt △POB 中BP === ……1分过P 1作P 1H ⊥BH 于H 设P 1H=4a 则BH=3a PH=8a BP=11a P 1P= ∴11a= ∴P 1P=8011∴O P 1=OP-PP 1=8-8011=811∴P 1 (-811,0) ……1分②另解: ∵ ∠B P 1G= ∠B P 1G ∠BG P 1= ∠PB P 1 ∴2111PB PG PP =⋅ ∵22211PB OB OP =+ ……1分设1OP =x ∴22(3)(8)4x x x --=+ ∴811x = ∴P 1 (-811,0) ……1分28.证明:(1)过D 作DP ∥AC 交BC 于点P ∵DP ∥AC DF ∥BC ∴四边形FDPC 是平行四边形 ……………1分 ∴FC=DP ∠C= ∠DPH ……………1分 在△ABD 与△PBD 中 ∠ABD= ∠CBD ∠BAD= ∠DPB BD=BD ∴△ABD ≅△PBD ……………2分 ∴AD=DP=FC …………1分 (2) DF=78GC ……………1分 ∵∠BDH=∠ABD+∠BAD ∠BEA=∠EBC+∠BCA ∠ABD=∠EBC ∠BAD=∠BCA∴∠AED= ∠BDH=∠BHD = ∠ADE ∠ABD=∠HAC=∠DBH ∴AD=AE∵DF ∥BC ∴∠EDF=∠EBC=∠DAE ∵∠DFE= ∠DFE ∴△FDE ∽△FAD∴2DF EF AF =⋅ DE EFAD DF =…………1分 设AE=12a EF=4a ∴AD=FC=12a 224(124)64DF a a a a =⋅+= ∴DF=8a ∴4128DE aa a=∴DE=6a …………1分 ∵DF ∥BC ∴DFEFBC EC =EFDEFC BD =∴8416aaBC a =4612aaa BD=∴BC=32a BD=18a 延长DF 交BG 延长线于点Q ∴∠Q=∠QBC=∠QBD ∴BD=DQ=18a ∴QF=DQ-DF=18a-8a=10a ∵∠BGC=∠FGQ ∴△FGQ ∽△CGB …………1分 QF FG FC GC BC GC GC -== ∴101232a a GC a GC -= ∴GC=647a ∴778648DF GC =⨯= ∴DF=78GC …………1分P HDCFEAB(以上各解答题如有不同解法并且正确,请按相应步骤给分)CA。

哈尔滨市中考数学试题及答案(解析版)

哈尔滨市中考数学试题及答案(解析版)

哈尔滨市2013年初中升学考试数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(2013·哈尔滨)13-的倒数是( ).(A)3 (B)一3 (C)13-(D)13考点:倒数.分析:一个数的倒数就是把这个数的分子、分母颠倒位置即可得到.解答:13-的倒数是331-=-.故选B.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2013·哈尔滨)下列计算正确的是( )..(A)a3+a2=a5(B)a3·a2=a6(C)(a2)3=a6(D)22 ()22 a a=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。

分析:分别根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可解答:解:A、a2和a3不是同类项,不能合并,故此选项错误;B、a3a2=a3+2=a5,故此选项错误;C、(a2)3=a6,故此选项正确;D、22()24a a=故此选项错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.(2013·哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是( ).考点:轴对称图形与中心对称图形.分析:题考查了中心对称图形.掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.解答:A.是轴对称图形,不是中心对称图形;B. 是中心对称图形,不是轴对称图形.;C.是轴对称图形,不是中心对称图形;D. 是轴对称图形,又是中心对称图形;故选D.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.(2013·哈尔滨)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( ).考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(2013·哈尔滨)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x2+2 (D)y=x2-2考点:二次函数图象与几何变换.分析:先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可.解答:解:抛物线y=(x+1)2的顶点坐标为(-1,0),∵向下平移2个单位,∴纵坐标变为-2,∵向右平移1个单位,∴横坐标变为-1+1=0,∴平移后的抛物线顶点坐标为(0,-2),∴所得到的抛物线是y=x2-2.故选D.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定函数图象的变化求解更加简便,且容易理解.6.(2013·哈尔滨)反比例函数12kyx-=的图象经过点(-2,3),则k的值为( ).(A)6 (B)-6 (C) 72(D)72-考点:反比例函数的图象上的点的坐标特征.分析:点在曲线上,则点的坐标满足曲线解析式,反之亦然解答:反比例函数12kyx-=的图象经过点(-2,3),表明在解析式12kyx-=,当x=-2时,y=3,所以1-2k=xy=3×(-2)=-6.,解得k=7 2故选C点评:本题主要考查反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.7.(2013·哈尔滨)如图,在ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( ).(A)4 (B)3 (C) 52(D)2考点:平行四边形的性质及等腰三角形判定与性质.分析:本题主要考查了平行四边形的性质:平边四边形的对边平行且相等;等腰三角形判定,两直线平行内错角相等;综合运用这三个性质是解题的关键解答:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.点评:本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.8.(2013·哈尔滨)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).(A)116(B)18(C)14(D)12考点:求概率,列表法与树状图法。

哈尔滨市2013年初中毕业学年调研测试数学试卷和答案

哈尔滨市2013年初中毕业学年调研测试数学试卷和答案

哈尔滨市2013年初中毕业学年调研测试数学试卷第1卷选择题(共30分)一、选择题(每小题3分.共计30分)1在2.5,-2.5.0,3这四个数巾,最小的数是( )(A)2 .5 (B)0 (C)-2 5 (D)32下列计算正确的是( ).(A)a+a=a2(B)(2a)3=6a3 (C)(a-1)2=a2-1 (D)(-ab)5÷(-ab)2=-a3b3 3下列图形中.是中心对称图形.但不是轴对称图形的是( )4已知抛物线的解析式为v=(x-2)2+l,则抛物线的顶点坐标是( ) (A)(-2,1) (B)(2,1) (C)(2,-l) (D)(1,2)5如图是某个几何体的三视用.则陵几何体足( )(A)长方体 (B)正方体 (C)圆柱 (D)三棱柱图象上的是( ).6下列各点中,在反比例函数y=8x(A)(-1,8) (B)(2,4) (C)(1,7) (D)(-2,4)7.如图,在菱形ABCD中,对角线AC、BD相交于点O.点E为边AB 的中点,且OE=2,则菱形ABCD的周长为( ).(A)32 (B)24 (C)16 (D)88如图,矩形纸片ABCD中,AD=8.折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )(A)3 (B)4 (C)5 (D)69.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人.则选出的恰为一男一女的概率是( )(A)15 (B)13(C)35(D)2510.甲乙两人在一个400米的环形跑道上练习跑步.两人同时、同向出发,两人之间的距离s(单位:米)与两人跑步的时问t(单位:分)之间的函数关系图象如图所示.下列四种说法:①l5分时两人之间距离为50米;②跑步过程中两人休息了5分;③20~30分之间一个人的速度始终是另一个人速度的2倍;③40分时一个人比另一个人多跑了400米.其中一定正确的个数是( )(A)1个 (B)2个 (C)3个 (D)4个第ll卷非选择题(共90分)二、填空题(每小题3分.共计30分)11.2012年伦敦奥运会火炬传递路线全长约为l2 800千米.数字12800用科学记数法表示为 .= .12.13把多项式22-分解因式的结果是 .28m n14.不等式组2x-1<0,x+1>0的解集是 ..15.如同,在△ABC中.∠B=900,∠BAC=300.AB=9cm,D是BC延长线上一点.且AC=DC.则AD= cm.16.已知母线长为2的圆锥的侧面展开图是一个圆心角为900的扇形.则此扇形的面积为 . (结果保留π).17.某超市今年一月份的营业额为50万元.三月份的营业额为72万元.则二、三两个月平均每月营业额的增长率是 .18.如图,AB是⊙0的直径,AC是弦.∠BAC=400.过圆心O作OD⊥AC交AC于点D.连接DC.则∠DCA= 度.19.在△ABC中,AB=4,BC=6.△ABC的面积为.则△ABC的度数为 .度.20.如图,在△ABC与△AEF中,∠AFE=900,AB=,, AE=AC,延长FA交BC于点D,若∠ADC=∠CAE.则EF的长为 .三、解答题(其中21—24题各6分.25~26题各8分.27~28题各l0分.共计60分)21.(本题6分)先化简,再求代数式2121()111aa a a--÷+-+的值,其中tan602sin30a=+22 (本题6分1如图.在每个小正方形的边长均为1个单位长度的方格纸中有一个△ABC,△ABC的三个顶点均与小正方形的顶点重台(1)在图中画线段AD.使AD∥BC(点D在小正方形的顶点上);(2)连接CD.请直接写出四边形ABCD的周长.23.(本题6分)为提高返乡农民工再就业能力.某地劳动和社会保障部门对400名返乡农民工进行了某项专业技能培训为了解培训的效果.培训结束后随机抽取了部分参加培训人员进行技能测试.测试结果划分成“不合格”、“合格”、“良好“、“优秀”四个等级。

黑龙江省哈尔滨市第一零九中学2013年中考模拟数学试题(3)

黑龙江省哈尔滨市第一零九中学2013年中考模拟数学试题(3)

2013年中考数学模拟2013-4-24一、选择题(每小题3分,共计30分) 1.-3的相反数是( )A.3B.3C.31D.-31 2.下列运算中,正确的是( ). A .x 2+x 2=x4B . x 2÷x=x 2C . x 3-x 2=xD . x·x 2=x 33.下列图形中,是轴对称图形,又是中心对称图形的是( ).4.二次函数y=(x-1)2+2的最小值是( )A.2B.1C.-1D.-2 5. 某物体的三视图是如图所示的三个图形,那么该物体形状是( ) A.圆锥 B.圆柱 C.三棱锥 D.三棱柱6. 反比例函数y =x3-k 的图象,当x >0时,y 随x 的增大而增大,则k 的取值范围( ). A. k <3 B. k ≤3 C. k >3 D. k ≥37. 某班共有50名学生,数学模拟测试有8人不及格,教师随机请1名学生回答问题,请到不及格学生的概率是( ) A.2521 B.254 C.54 D.501 8.如图,一个小球由地面沿着坡度i=1∶2的坡面向上前进了10m ,此时小球距离地面的高度为( )m.A. 35B. 5C. 5D. 52(第8题图)9.如图,在△ABC 中,∠B=35°,将△ABC 绕点A 逆时针旋转至在△ADE 处,使得点B 落在BC 的延长线上的D 点处,则∠BDE 的度数为( ) A.90° B.60° C.70° D.35°10. 甲、乙两人分别骑自行车、摩托车从A 城到B 城,他们离开的距离(千米)与行驶时间(小时)的关系如图所示,根据这一图象小敏给出如下的说法:①自行车和摩托车同时出发;②两城之间的距离为80千米;③自行车中途休息了1小时;④摩托车匀速到达B 城.小敏的说法中正确的是( ) A.①②B.③④C.①②③D.②③④二、填空题(每小题3分,共计30分)11.将数字28400吨用科学记数法表示为 吨.12. 计算12551⨯=__________. 13.分解因式:4b 2-4= .14.不等式组⎩⎨⎧>+≤0312x x 的解集为 .15.如图, 平行四边形ABCD ,E 是AB 延长线上一点 ,DE 交BC 于点F ,若BE ︰AB=2︰3,S△BEF=4,则S △CDF =_________.(第9题图)(第20题图)B AED CF(第15题图)(第16题图)(第18题图)16. 从一个直径为4米的圆形铁皮中剪出一个圆心角为90°的扇形,并用剪出的扇形围成一个圆锥,则围成的这个圆锥底面半径是_________.17.某种商品的价格标签已经看不清,售货员只知道这种商品的进价为1000元,打八折售出后,仍可获利20%,你来帮助售货员重新填好价格标签应为_____________元. 18.如图,⊙O 是△ABC 的外接圆,⊙O 的半径为2,sin ∠B=43,则弦AC 的长为________________.19.等腰三角形一腰上的高与另一腰的夹角为46°,则此等腰三角形的顶角的度数为____度.20如图,在正方形ABCD 中,直角∠EAF 的顶点与A 重合,角的两边与CB 的延长线、CD 分别交于E 、F 两点,连接BF,直线BF 与直线AE 和对角线AC 分别交于P 、Q 两点,若四边形AECF 的面积为9,AF=10,则PQ=___________三、解答题(其中21-24题各6分,25-26题各8分,27-28题各10分,共计60分)21.先化简,再求代数式(1-23+x )÷212+-x x 的值,其中x=4sin45°-2cos60°.22. △ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC绕点O顺时针旋转90°后的△A1B1C1,并写出C1点的坐标;(2)直接写出点C旋转到C1所经过的路线长.23. 某中学为了丰富校园文化生活.校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加.且只能参加一项比赛.围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查.将调查问卷适当整理后绘制成如图所示的不完整的条形统计图.其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1:3.请你根据以上信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)如果全校有680名学生,请你估计这680名学生中参加演讲比赛的学生有多少名?24. 在体育测试时,九年级的一名高个子男同学推铅球,已知铅球所经过的路线是如图所示的抛物线,此抛物线的解析式为y=-21212++x x . (1)求出该同学体育测试中,铅球飞行最远距离.(2)求此铅球飞行的最大高度.(参考公式:二次函数y=ax 2+bx+c,当x=-ab2时,y 最大(小)值=ab ac 442-)25.如图,已知AB 是半⊙O 的直径,过O 作弦AC 的垂线交半⊙O 于D ,交切线AE 于E ,连接BD 、CD. (1)求证:∠BDC=∠E ;(2) ⊙O 半径为5,AC=8,求切线长AE.26. 一车在相距360千米的两地间往返,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时. (1)求去时和回来时的速度.(2)若该车回来时按返回的速度先行驶60千米后,遇突发事件停了20分钟,又继续行驶,若要保证不迟到,停后继续行驶速度至少是多少?27.如图,在平面直角坐标系中,矩形纸片ABCD的顶点坐标是A(0,0),C(6,4),E(5,0).将矩形纸片沿直线l折叠,设A′是点A落在矩形CD边上的对应点,点A′的横坐标为2.直线l与x轴、y轴的交点分别为E、F.(1)求直线l的解析式;(2)点P从点E出发,沿射线EF运动,速度为5个单位每秒,点Q从点O出发,沿OE 向终点E运动,速度为1个单位每秒,当点Q停止时点P也随之停止运动.设运动时间为t,在P、Q运动的过程中,当直线PQ∥A′E时,求此时PQ的长;(3)在(2)的条件下,∠PQC=90°,若能,请求出t值;若不能,请说明理由.28.已知:Rt△ABC中,∠C=90°,∠A=30°,点D在AC上,满足CD=12AD,动点F在直线BC上,且∠EDF=120°.(1)当点E在线段AB上时,求证:∠DFE+∠ABC=90°;(2)当点E在AB的延长线上时,设DE交BC于M,G为EF的中点,连接DG交直线BC 于H,若CM=BE,请你探究线段DH和线段MF的数量关系,并证明你的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档