概率统计第二章离散型随机变量及其分布1,2节
概率论与数理统计教案第2章 随机变量及其分布

概率论与数理统计教学教案 第2章 随机变量及其分布授课序号01教 学 基 本 内 容一.随机变量1. 随机变量:设E 是随机试验,样本空间为S ,如果对随机试验的每一个结果ω,都有一个实数()X ω与之对应,那么把这个定义在S 上的单值实值函数()X X ω=称为随机变量.随机变量一般用大写字母,,X Y Z ,…表示.2.随机变量的两种常见类型:离散型随机变量和连续型随机变量. 二.分布函数1. 分布函数:设X 是一个随机变量,x 是任意实数,称函数{}(),F x P X x x =≤-∞<<∞为随机变量X 的分布函数,显然,()F x 是一个定义在实数域R 上,取值于[0,1]的函数.2.几何意义:在数轴上,将X 看成随机点的坐标,则分布函数()F x 表示随机点X 落在阴影部分(即X x ≤)内的概率,如下图.3.对任意的实数,,()a b c a b <,都有:授课序号02(,)B n p ,其中在二项分(1,)B p X 服从(0-1)分布是二项分布的特例,简记0,1,2,...,其中λ为大于()P λ.在一次试验中出现的概率为(12,kk nnC p p -.)说明:泊松定理表明,泊松分布为二项分布的极限分布,即在试验次数很大,而n np 不太大时,()G p.)说明:几何分布描述的是试验首次成功的次数次才取得第一次成功,前)超几何分布:若随机变量X的分布律为H n N(,,件不合格,从产品中不放回)超几何分布与二项分布之间的区别:超几何分布是不放回抽取,二项分布是放回抽取,因此,二项两个分布之间也有联系,当总体的容量授课序号03(,)U a b .内的任一个子区间()E λ.1,0,xe x λ-⎧->⎪⎨⎪⎩其它.)定理:(指数分布的无记忆性)设随机变量()E λ,则对于任意的正数{}{P X s t t P X >+>=为连续型随机变量,若概率密度为2(,N μσ处取到最大值,并且对于同样长度(iii )当参数μ固定时,σ的值越大,()f x 的图形就越平缓;σ的值越小,()f x 的图形就越尖狭,由此可见参数σ的变化能改变图形的形状,称σ为形状参数.(iv )当参数σ固定时,随着μ值的变化,()f x 图形的形状不改变,位置发生左右平移,由此可见参数μ的变化能改变图形的位置,称μ为位置参数.(4)标准正态分布(0,1)XN(i )概率密度221(),2x x e x ϕπ-=-∞<<∞(ii )分布函数221(),.2t xx e dt x π--∞Φ=-∞<<∞⎰(iii )根据概率密度()x ϕ的对称性,有()1().x x Φ-=-Φ (5)定理:(标准化定理)若2(,)XN μσ,则(0,1).X Z N μσ-=(6)标准化定理的应用:设,,()x a b a b <为任意实数,则(){}{}{}(),X x x x F x P X x P P Z μμμμσσσσ----=≤=≤=≤=Φ{}{}()().a X b b a P a X b P μμμμμσσσσσ-----<≤=<≤=Φ-Φ6.“3σ”法则:设2(,)XN μσ,则{33}(3)(3)2(3)10.997,P X μσμσ-<<+=Φ-Φ-=Φ-≈即正态分布2(,)N μσ的随机变量以99.7%的概率落在以μ为中心、3σ为半径的区间内,落在区间以外的概率非常小,可以忽略不计,这就是“3σ”法则. 三.例题讲解例1.车流中的“时间间隔”是指一辆车通过一个固定地点与下一辆车开始通过该点之间的时间长度.设X 表示在大流量期间,高速公路上相邻两辆车的时间间隔,X 的概率密度描述了高速公路上的交通流量规律,其表达式为:0.15(0.5)0.15,0.5,()0,x e x f x --⎧≥⎪=⎨⎪⎩其它.概率密度()f x 的图形如下图,求时间间隔不大于5秒的概率.例2.设随机变量X 表示桥梁的动力荷载的大小(单位:N ),其概率密度为13,02;()880,x x f x ⎧+≤≤⎪=⎨⎪⎩其它.求:(1)分布函数()F x ;(2)概率{1 1.5}P X ≤≤及{1}P X >.例3.某食品厂生产一种产品,规定其重量的误差不能超过3克,即随机误差X 服从(-3,3)上的均匀分布.现任取出一件产品进行称重,求误差在-1~2之间的概率.例4.设随机变量X 在(1,4)上服从均匀分布,对X 进行三次独立的观察,求至少有两次观察值大于2的概率.例5.设随机变量X 表示某餐馆从开门营业起到第一个顾客到达的等待时间(单位:min ),则X 服从指数分布,其概率密度为0.40.4,0,()0,xex f x -⎧>⎪=⎨⎪⎩其它.求等待至多5分钟的概率以及等待3至4分钟的概率.例6.汽车驾驶员在减速时,对信号灯做出反应所需的时间对于帮助避免追尾碰撞至关重要.有研究表明,驾驶员在行车过程中对信号灯发出制动信号的反应时间服从正态分布,其中μ=1.25秒,σ=0.46秒.求驾驶员的制动反应时间在1秒至1.75秒之间的概率?如果2秒是一个非常长的反应时间,那么实际的制动反应时间超过这个值的概率是多少?例7.设某公司制造绳索的抗断强度服从正态分布,其中μ=300千克,σ=24千克.求常数a ,使抗断强度以不小于95%的概率大于a .授课序号0450。
2.2离散型随机变量及其概率分布

8
5
k
24
小结
离 散 型 随 机 变 量 的 分 布
二项分布 泊松分布
两点分布
两点分布
n1
二项分布
n 10, p 0.1, np
泊松分布
25
二项分布与 (0 1) 分布、泊松分布之间的 关系 .
二项分布是 (0 1) 分 布 的 推 广 , 对 于n 次 独 立重复伯努利试验 ,每 次 试 验 成 功 的 概 率 为 p, 设 , 1, 若 第 i 次 试 验 成 功 Xi ( i 1,2, , n) . 0, 若 第 i 次 试 验 失 败 它们都服从 (0 1) 分 布 并 且 相 互 独 立 , 那末 X X1 X 2 X n 服 从 二 项 分 布 , 参 数 为( n, p).
定义2 如果随机变量 X 只有两个可能取 值,其概率分布为
P{ X x1 } P , P{ X x2 } q 1 p(0 p 1, p q 1)
则称X服从 x1 , x2 处参数为p的两点分布. 特别,若X服从
x1 1, x 0 处参数为p的两点分布,即
p
k 1
5
k
1
1 a . 15
5
关于分布律的说明:
若已知一个离散型随机变量X的概率分布 X P x1 p1 x2 p2 ... ... xn ... pn ...
则可以求X所生成的任何事件的概率,特别地:
P{a X b} P{ { X xi }} pi
a xi b a xi b
26
以 n, p ( np ) 为参数的二项分布 ,当 n 时趋 于以 为参数的泊松分布 ,即
概率论与数理统计答案 第二章1-2节

关键词: 随机变量 离散型随机变量、分布律 连续型随机变量、概率密度 概率分布函数 重伯努利实验、二项分布、泊松分布 均匀分布、正态分布、指数分布 随机变量的函数的分布
1
§1 随机变量
定义
2 3
例1: 将一枚硬币抛掷3次. 关心3次抛掷中, 出现 H的总次数 以X记三次抛掷中出现H的总数, 则对样本空间 S={e}中的每一个样本点e, X都有一个值与之对 应, 即有
1) P { X = k} = C3k p k (1 − p )3− k , k = 0,1, 2,3 (
( 2)
P { X = 2} = C32 p 2 (1 − p)
21
泊松分布(Poisson分布)
若随机变量X的概率分布律为 e− λ λ k
P { X = k} = k! , = 0,1, 2, ⋅⋅⋅, λ > 0 k
互不影响
例如: 1.独立重复地抛n次硬币,每次只有两个可能的结果: 正面,反面, P (出现正面 ) = 1 2 2.将一颗骰子抛n次,设A={得到1点},则每次试验 只有两个结果:A , A , P ( A ) = 1 6
12
定义随机变量X表示n重伯努利试验中事件A发生的次 数, 我们来求它的分布律. X所有可能取的值为0,1,2,...,n. 由于各次试验是相互独立的, 因此事件A在指定的 k(0≤k≤n)次试验中发生, 在其它n−k次试验中A不发生 的概率为
13
设A在n重伯努利试验中发生X次,则
k P பைடு நூலகம் X = k} = Cn p k (1 − p ) n − k , = 0,⋅⋅⋅,n k 1,
⎛n⎞ k Cn = ⎜ ⎟ 表示n中 ⎜k ⎟ ⎝ ⎠ 任选k的组合数目
《概率论与数理统计》课件-第2章随机变量及其分布 (1)

HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)
概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

以X记“第1人维护的20台中同一时刻发生故障的台 数”以Ai ( i 1,2,3,4)表示事件“第i人维护的20台中 ,
发生故障时不能及时维修”, 则知80台中发生故障
而不能及时维修的概率为
三、几种常见离散型随机变量的概率分布
P ( A1 A2 A3 A4 ) P ( A1 )
三、几种常见离散型随机变量的概率分布
3、独立重复试验与二项分布 (1)独立重复试验
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
练习1 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用10ห้องสมุดไป่ตู้0小时已坏的灯泡数 . 把观察一个灯泡的使用 时数看作一次试验, “使用到1000小时已坏” P{X 1} =P{X=0}+P{X=1} 视为事件A .每次试验, A )3+3(0.8)(0.2)2 =(0.2出现的概率为0.8
本例中,n=20,p=0.2, 所以,(n+1)p=4.2, 故k0=4。
三、几种常见离散型随机变量的概率分布
练习3 设有80台同类型设备,各台工作是相互独立 的发生故障的概率都是 0.01,且一台设备的故障能 由一个人处理. 考虑两种配备维修工人的方法 , 其 一是由四人维护,每人负责20台; 其二是由3人共同 维护台80.试比较这两种方法在设备发生故障时不 能及时维修的概率的大小. 解 按第一种方法
概率统计教学资料-1-2节第2章随机变量及其分布

因此事件A在n次试验中发生k次的概率为
n
P (X k ) C n kp k q n k ,k 0 ,1 , ,n
C
k n
p
k
q
n k C n 0 p 0 q n C n 1 p q n 1 C n n p n q 0 1
.
k 0
2019/11/18
13
二项分布(Binomial distribution)
k! n
nn
li(1 m )n k li(1 m )nli(1 m ) k
n nln in C lnm in k m p (1kqn nn )k nn ( k )k !ee n ,k0,1,2,
2019/11/18
将 样 本 空 间 与 实 数 值 之 间 建 立 一 种 对 应 关 系 , 以 便 利 用 数 学
分 析 的 方 法 对 随 机 试 验 的 结 果 进 行 深 入 广 泛 的 研 究 和 讨 论 .
2019/11/18
4
1. 随机变量的定义
定义: 设随机试验E的样本空间为 S {e}, 若对于每 一个样本点 eS, 变量X 都有唯一确定实数与之对应, 则X是定义在 S上的单值实函数, 即 XX(e), 称
辆汽车通过的概率.
解: 由题意知
P(X0)0e0.2, 则1.61.
0! 而 P ( X 1 ) 1 P ( X 0 ) P ( X 1 )
10.21 e 1 0 .2 1 .6 0 1 .2
1!
0.478.
2019/11/18
19
P ( X 2 ) P ( A ) P ( A B ) P ( B |A ) 0 . 7 0 . 8 5 0 . 6
概率论与数理统计图文课件最新版-第2章-随机变量及其分布
函数 f ( x),使得对于任意实数 x 有:
x
F ( x) f (t)dt ( P( X x))
则称 X 为连续型变量,f ( x)为 X 的概率密度函数 注 ▲ 连续型随机变量与离散型随机变量的区别
离散型: P( X xk ) 0 连续型:P( X xk ) 0
机
多,而且还不能一 一列
变 连续型随机变量 量
举,而是充满一个区间
例如,“电视机的寿命”,实际中
常 遇到的“测量误差”等等.
概率统计
第二章知识结构图
随机变量
离散型随 机变量
连续型随 机变量
分布律
分布 函数
函数的 分布
概率 密度
分布 函数
函数的 分布
定义 常用分布
概率统计
定义 常用分布
第四节 连续型随机变量及其概率密度
0 x 0
则称 X 为服从参数 的指数分布.
概率统计
二 . 连续型随机变量的分布函数
定义: 若定义在 (, )上的可积函数 f ( x)
满足: (1). f ( x) 0
(2). f ( x)dx 1
f (x)确定了 分布函数F(x),
则称 F ( x)
x
f ( x)dx
f (x)是F(x)的 导函数, F(x)是f (x)的一
(2) 某段时间内候车室的旅客数目为 X , 则它也是一个随机变量,它可以取 0 及一切 自然数。X 是定义在样本空间,则:
S e {人数 人数 0}
X X (e)的值域RX [0, )
概率统计
二. 随机变量的分类 离散型随机变量
概率统计 第二章 离散型随机变量.
以随机变量X表示n次试验中A发生的次数,X可能取值 为0,1,2,3,…,n。设每次试验中A发生的概率为p, 发生的概率为1-p=q。 (X=k)表示事件“n重贝努里试验中A出现k次”,即
A
AA A A A A A A A A A A AA A A A A
因此X的分布律为
P ( X k ) C 0 .6 0 .4
k 7 k
7k
, k 0 ,1, 2 ,..., 7
所求概率为 P ( X 4 ) P7( X 4 ) P ( X 5 ) P ( x 6 ) P ( X 7 )
C
k 4
k 7
( 0 .6 ) ( 0 .4 )
k
( p q) 1
n
k 0
正好是二项式(p+q)n展开式的一般项,故称二 项分布。特别地,当n=1时P(X=k)=pkq1-k(k=0,1)即为 0-1分布。
例2.6 某厂长有7个顾问,假定每个顾问贡献正确意见 的概率为0.6,且设顾问与顾问之间是否贡献正确意见 相互独立。现对某事可行与否个别征求各顾问的意见, 并按多数顾问的意见作出决策,试求作出正确决策的概 率。 解 设X=k表示事件“7个顾问中贡献正确意见的人 数”, 则X可能取值为0,1,2,…,7。 (视作7重贝努里实验中恰有k次发生,k个顾问贡献出 正确意见),X~B(7,0.6)。
1 X 0 当 e1 发生时 当 e 2 发生时
即它们都可用0-1分布来描述,只不过对不同 的问题参数p的值不同而已。
3、超几何分布(参见第一章)
4、二项分布
(1)贝努里(Bernoulli)试验模型。 设随机试验满足: 1°在相同条件下进行n次重复试验; 2°每次试验只有两种可能结果,A发生或A不发生; 3°在每次试验中,A发生的概率均一样,即P(A)=p; 4°各次试验是相互独立的, 则称这种试验为贝努里概型或n重贝努里试验。 在n重贝努里试验中,人们感兴趣的是事件A发 生的次数。
第二节 离散型随机变量及其概率分布
P( X ≤ 0.1 | X ≥ 1) = P( X ≤ 1, X ≥ 1) = P( X = 1) = 0.27 = 0.303
10
P( X ≥ 1)
P( X ≥ 1) 0.89
二项分布的图形特点:
Pk X~B(n,p)
对于固定n及p,当k增加时,
概率P(X=k) 先是随之增加直至
− 10
=
0 .9513
> 0 .95 .
只要在月底进货15件(假定上个月没有存货),就可
以95%的概率保证这种商品在下个月内不会脱销.
二项分布的泊松近似
定理(泊松定理) 在 n 重伯努利试验中,事件 A 在每次试验中发生概率为 pn (注意这与实验的次数
n 有关),如果 n → ∞ 时, npn → λ ( λ > 0 为常数),
多少件?
解 设商店每月销售该种商品X件,月底的进货量为 n件,
按题意要求为 P{X ≤ n}≥ 0.95
∑ X服从λ = 10的泊松分布,则有
由附录的泊松分布表知
∑14
k =0
10 k k!
e
−
n k =0
10k k!e
−10
≥
10 = 0 .9166
0.95
< 0 .95
,
∑15
k =0
10 k k!e
则对任意给定的非负整数 k,有
( ) lim
n→∞
⎛ ⎜ ⎝
n k
⎞ ⎟ ⎠
pnk
1 − pn
n−k = λ k e−λ .
k!
证明略.
上面我们提到
二项分布 np → λ ( n → +∞ )泊松分布
概率论与数理统计第二章随机变量及其分布
设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 随机变量
许多随机试验的结果与实数密切联系, 也有些随机试验结果从表面上看并不与实 数相联系,下面我们通过实例对这二种不 同的情况来引进随机变量的概念。
•例1、设有同类产品100件,其中5件 次品、 95件正品。现从中任取20件产品,问抽到的 次品数是多少?
例3、 贝努利试验中可以用变量 X 表示 事件 A 发生的次数。
如抛 10 次均匀硬币,用 X 表示正面向 上的次数。
p X k 1 k 0 1 2 k 1 1 2 1 0 k, k 0 ,1 ,2 , ,1 0 .
在这类随机试验中样本空间表现为一 个数集,或者说可以用一个数来表示样本 空间中的样本点,用数集来表示样本空间。
• 次品数是由试验的结果来决定的,因次品数 是一个变量。本例中,记次品数为变量X, 则X可能取值为
0、1、2、3、4、5
许多随机试验的结果(即随机事件)都与实数密 切相连。进一步的例子:
例 2. 抛一枚骰子观测出现的点数。我们看到样 本空间可以量化为一个数集:
1 , 2 , , 6
我们可以用变量 X 表示出现的点数。
A : X S,那么便用X S 来表
示事件 A,用 P X S 来表示事件 A 的概
率 P(A)。
引进随机变量的目的是通过随机 变量来研究随机现象。
站在试验前的立场,我们不知道试验 结果将出现 中的哪个样本点,即不知道 随机变量将会取 X 中的哪个值,因此随机 变量的取值是随机的,随机变量的取值的 规律性也就反应了随机现象的统计规律性。
从数学上看,上述对应关系犹如一个函 数,即对于样本空间 中的任意一个元素 ,
它对应的函数值为 X ;对于样本空间本
身就是一个数集的试验,我们可以理解成
一个函数: X ,对一切 。
定义 2.1 给定一个随机试验, 是 它的样本空间。如果对 中的每一个样本点
,有一个实数 X 与它对应,那么就
={X=3}。
pApX3
例 2 中,X 表示抛一枚骰子出现的点数,A={出 现奇数点}={X=1,3,5}
p(A)=p({X=1,3,5})=1/2 例 4 中,X 表示抛一枚均匀硬币出现的二种情 况,A={出现正面向上}={X=1},
p(A)=p(X=1)=1/2
一般地,对实数轴上任意一个集合 S, 如果 S 对应的样本点构成一个事件 A,即
结论:引进随机变量(本质上是一个函数), 以借助微积分等数学工具来研究随机变量取值 的统计规律性,描述这种规律性的各种表达 形式称为随机变量的分布。
§2.2 概率函数
随机变量
离散型随机变量
连续型随机变量
定义:如果一个随机变量只可能取 有限个或可列无限个值,那么称这个随 机变量为(一维)离散型随机变量。
X∈S 的概率为:
P X S P X ai pi
ai S
i:ai S
例8、 在例 6 中,求白球数不超过 1 的概率
及 p(X=1| X≤1)(盒中 5 球,2 白 3 黑。今从中
任取三球,求“取得的白球数”X 的概率函数)。
解:P(X≤1)=p(X=0)+p(X=1)=7/10
1 6/10 3/10
例 7.从一批含有 10 件正品、3 件次品的产品 中一件一件地抽取,设每次各个产品被抽到的可能 性相等,在下列三种情况下,分别求出“直到取得 正品为止所需抽取次数”X 的概率分布。 (1) 有放回抽样;(2)无放回抽样; (3)每次取出一件产品后总是放回一件正品。
利用概率函数可以求出任意数集 S,
离散型随机变量的分布的表现形式 称为概率函数(或分布律)。
定义. 设 X a1, a2, , ai , ,
且 P X ai pi ,其中 pi 满足
(1) pห้องสมุดไป่ตู้ 0 i ;
(2) pi 1 。
i
那么称 P X ai pi , i 1, 2, ,
为随机变量 X 的概率函数或概率分布(律)。
p(X=1| X≤1)=6/7
例 9. 已知甲、乙两箱中装有同种产品,其中 甲箱中装有 3 件合格品、3 件次品;乙箱中仅装有 3 件合格品,今从甲箱中任取 3 件产品放入乙箱, 求:
(1) 乙箱中次品件数 X 的概率函数; (2) 从乙箱中任取一件产品是次品的概率。
• 随机变量的分布律或概率函数常用表格表 示,
• 其中概率为零的项不必列出,为方便起见, 常按X的取值从小到大的次序排列。
X a1 Pr p1
a2 … p2 …
an … pn …
例6. 盒中 5 球,2 白 3 黑。今从中任取 三球,求“取得的白球数”X 的概率函数。
• 解:X的概率函数为
X0 Pr 1/10
把这个定义域为 的单值实值函数 X=X( )
称为是(一维)随机变量。
把随机变量 X 的取值范围称为 X 的值
域,记作 X ,则 X , 。
并用大写字母:X、Y、Z、…来表示随 机变量。
引进随机变量后,随机事件及其概率可以 通过随机变量来表达。
例1中,X表示抽取的20件产品中的次品数, A={抽取的20件产品中恰有三件次品}
还存在许多随机试验,它们的试验结果 从表面上看并不与实数相联系,但我们可以 引进示性函数使它们与实数相联系,请看 下例。
例4、 抛一枚硬币,其结果为{出现正面向上, 出现反面向上}。样本空间不是一个数集,但是 我们可以人为地把试验结果和实数对应起来,
令
X
1 0
, 当 正面向上 , 当 反面向上