C语言常用算法
非常全C语言常用算法

一、基本算法1.交换(两量交换借助第三者)例1、任意读入两个整数,将二者的值交换后输出。
main(){int a,b,t;scanf("%d%d",&a,&b);printf("%d,%d\n",a,b);t=a; a=b; b=t;printf("%d,%d\n",a,b);}【解析】程序中加粗部分为算法的核心,如同交换两个杯子里的饮料,必须借助第三个空杯子。
假设输入的值分别为3、7,则第一行输出为3,7;第二行输出为7,3。
其中t为中间变量,起到“空杯子”的作用。
注意:三句赋值语句赋值号左右的各量之间的关系!【应用】例2、任意读入三个整数,然后按从小到大的顺序输出。
main(){int a,b,c,t;scanf("%d%d%d",&a,&b,&c);/*以下两个if语句使得a中存放的数最小*/if(a>b){ t=a; a=b; b=t; }if(a>c){ t=a; a=c; c=t; }/*以下if语句使得b中存放的数次小*/if(b>c) { t=b; b=c; c=t; }printf("%d,%d,%d\n",a,b,c);}2.累加累加算法的要领是形如“s=s+A”的累加式,此式必须出现在循环中才能被反复执行,从而实现累加功能。
“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为0。
例1、求1+2+3+……+100的和。
main(){int i,s;s=0; i=1;while(i<=100){s=s+i; /*累加式*/i=i+1; /*特殊的累加式*/}printf("1+2+3+...+100=%d\n",s);}【解析】程序中加粗部分为累加式的典型形式,赋值号左右都出现的变量称为累加器,其中“i = i + 1”为特殊的累加式,每次累加的值为1,这样的累加器又称为计数器。
C语言常用算法集合

1.定积分近似计算:/*梯形法*/double integral(double a,double b,long n) { long i;double s,h,x;h=(b-a)/n;s=h*(f(a)+f(b))/2;x=a;for(i=1;i<n;i++){x+=h;s+=h*f(x) ;}return(s);}/*矩形法*/double integral(double a,double b,long n) { long i;double t=0,h,x;h=(b-a)/n;x=a;for(i=0;i<n;i++){t+=h*f(x);x+=h;}return(t);}2. 生成斐波那契数列:/*直接计算*/int fib(int n){ int i,f1=1,f2=1,f;for(i=3;i<=n;i++){f=f1+f2;f1=f2;f2=f;}if(n==1||n==2) return 1;else return f;}/*递归调用*/void fib(int n,int*s){ int f1,f2;if(n==1||n==2) *s=1;else{ fib(n-1,&f1);fib(n-2,&f2);*s=f1+f2;}}3.素数的判断:/*方法一*/for (t=1,i=2;i<n; i++)if(n%i==0) t=0;if(t) printf("%d is prime",n);/*方法二*/for (t=1,i=2;i<n&&t; i++)if(n%i==0) t=0;if(t) printf("%d is prime",n);/*方法三*/for (i=2;i<n; i++)if(n%i==0) break;if(i==n) printf("%d is prime",n); /*方法四*/for(t=1,i=2; i<=(int)sqrt(n); i++)if(n%i==0){t=0;break;}if(t) printf("%d is prime",n);4.反序数:/*求反序数*/long fan(long n){ long k;for(k=0;n>0;n/=10)k=10*k+n%10;return k;}/*求回文数*/int f(long n){ long k,m=n;for(k=0;n>0;n/=10)k=10*k+n%10;if(m==k) return 1;return 0;}/*求整数位数*/int f(long n){ int count;for(count=0;n>0;n/=10)count++;return count;}5.求最大公约数:/*方法一*/int gcd(int x,int y){ int z;z=x<y?x:y;while(!(x%z==0&&y%z==0))/*x%z||y%z*/ z--;return z;}/*方法二*/int gcd(int x,int y){int r;while((r=x%y)!=0){x=y;y=r;}return y;}/*方法三*/int gcd(int a ,int b){ int r ;if((r=a%b)==0)return b;elsereturn gcd(b,r);}6.数组常用算法:查找:/*线性查找*/int find(int num,int x[],int key){ int i,m=-1;for(i=0;i<num;i++)if(x[i]==key){m=i;break;}return m;}/*折半查找*/int find(int x[],int num,int key){ int m=-1,low=0,high=num-1,mid;while(low<=high){mid=(low+high)/2;if(x[mid]==key){m=mid;break;}else if(x[mid]>key) high=mid-1;else low=mid+1;}return m;}/*折半查找(递归)*/int b_search(int x[ ],int low,int high,int key) {int mid;mid=(low+high)/2;if(x[mid]==key) return mid;if(low>=high) return -1;else if(key<x[mid])return b_search(x,low,mid-1,key);elsereturn b_search(x,mid+1,high,key); }/*寻找子串*/int find(char *s1,char *s2){ int i,k=0;while(s1[i]==s2[i]) i++;if(s2[i]==0) return k;s1++;k++;return -1;}分词:/*方法一*/void fen(char s[][10],char str){ int i,j,k;for(i=0,j=0,k=0;str[i]!=0;i++)if(isalpha(a[i]))s[j][k++]=str[i];else {s[j][k]=0;k=0;j++;}}}/*方法二*/#include<stdio.h>#include<string.h>void main(){ int i=0,n=0;char s[80],*p;strcpy(s,"It is a book.");for(p=s;p!='\0';p++)if(*p=='')i=0;elseif(i==0){n++;i=1;}printf("%d\n",n);getch();}排序:/*插入法排序*/void sort(int a[],int n){ int i,j,t;for(i=1;i<n;i++){t=a[i];for(j=i-1;j>=0&&t<a[j];j--)a[j+1]=a[j];a[j]=t;}}/*归并排序*/#define x 10#define y 10void com(int *a,int *b,int *c){ int i,j,k;for(i=0,j=0,k=0;i<=x&&j<=y;){if(a[i]<b[j]){c[k++]=a[i];i++;}else{c[k++]=b[j];j++;}}if(i<x) for(k=k-1;i<x;i++)c[k++]=a[i];if(j<x) for(k=k-1;j<y;j++)c[k++]=a[j]; }/*交换法排序1 冒泡排序*/void sort(int a[],int n){ int i,j,t,flag;for(i=0;i<n-1;i++){flag=1;for(j=0;j<n-1-i;j++)if(a[j]>a[j+1]){t=a[j];a[j]=a[j+1];a[j+1]=t;flag=0;}if(flag) break;}}/*交换法排序2*/void sort(int a[],int n){ int i,j,t;for(i=0;i<n-1;i++)for(j=i+1;j<n;j++)if(a[i]>a[j]){t=a[i];a[i]=a[j];a[j]=t;}}/*选择法排序*/void sort(int a[],int n){ int i,j,point,t;for(i=0;i<n-1;i++){point=i;for(j=i+1;j<n;j++)if(a[point]<a[j]) point=j;if(point!=i){t=a[point];a[point]=a[i];a[i]=t;}}}7.一元非线性方程求根:/*牛顿迭代法求函数跟*/#include <stdio.h>#include <math.h>int main(void){ double x,x1,eps=1e-6,f,f1; /*误差为eps*/x=1.0; /*x=1.0是初值*/do{x1=x;f=6-x1*(5-x1*(4-3*x1)); /*f为f(x)函数*/f1=-5+x1*(8-9*x1); /*f1为f(x)的导函数*/x=x1-f/f1;f=6-x*(5-x*(4-3*x));}while(fabs(f)>=eps &&fabs(x-x1)>=eps);printf("x=%f",x);}/*二分法求函数跟*/#include <stdio.h>#include <math.h>double f(double x){ return 6-x*(5-x*(4-3*x)); /*f(x)函数*/}int main(void){ double a,b,c,x,eps=1e-6;do{scanf("%lf%lf",&a,&b);}while(f(a)*f(b)>0);if(fabs(f(a))<1e-6)x=a;else if (fabs(f(b))<1e-6)x=b;else {c=(b+a)/2;while(fabs(f(c))>eps&&fabs(b-a)>eps){if(f(a)*f(c)<0)b=c;elsea=c;c=(b+a)/2;}x=c;}printf("x=%f",x);}/*弦截法求函数跟*/c=(a*f(b)-b*f(a))/ (f(b)-f(a));while(fabs(f(c))>eps){if(f(a)*f(c)<0)b=c;elsea=c;c=(a*f(b)-b*f(a))/ (f(b)-f(a));}#include <stdio.h>void f();int main(void){ int x, loop=0;do{for(x=1;x<5;x++) {int x=2;printf("%d",x);}printf("%d ",x);f();loop++;}while(loop<1);getch();}void f(){ printf("%d",x++); }8.汉诺塔:#include<stdio.h>void Hanoi(int n, char A, char B, char C){if(n==1)printf("\n move %d from %c to %c",n,A,C);else{Hanoi(n-1,A,C,B);printf("\nmove %d from %c to %c",n,A,C);Hanoi(n-1,B, A, C);}}int main(void){ Hanoi(3,'A','B','C');getch();}9.建立链表:NODE *creat(void) /* void表示无参函数*/{NODE *head=NULL,*p1=NULL,*p2=NULL;long num;unsigned score;int n=0;do{scanf(“%ld%u”,&num,&score);if(num==0) break;n++;p1=(NODE *)malloc(sizeof(NODE));p1->data.num=num,p1->data.score=score;p1->next=NULL;if(n==1)head=p2=p1;else{p2->next=p1;p2=p1;}}while(1);return head;}10.级数的近似计算:#include <stdio.h>#include <math.h>int main(void){ double s=1,a=1,x,eps,f;int n,m;printf("input x and eps:");scanf ("%lf%lf",&x,&eps);for(n=1;fabs(a)>eps; n++){for(f=1,m=1;m<=n;m++)f*=m;a=pow(x,n)/f;s+=a;}printf("%f",s);}。
C语言常用算法

1.迭代法:
一般的一元五次方程或更高次的方程,以及几乎所有的微分方程、超越方程问题都无法用解析方法通过求根公式来求解,人们只能用数值方法求其近似值。
用事先估计的一个根的初始值X0,通过迭代算式X K+1=G(X K)求出一个近似的X1,再由求出X2,从而或得一个求解序列{ X0, X1, X2,…..X n,…}来逼近方程f(x)=0根。
这种求解过程成为迭代。
X1 x2=G(x1)
X3=G(x2)
X4=G(x3)
………
Xn=G(XN-1)
fabs(xn- xn-1)<1e-6
Xn+1=G(XN)
2.递归法:
递归是指一个过程直接或间接的调用它自身,递归过程必须有一个终止条件
3.递推法:
算法从递推的初始条件出发,应用递推公式对问题进行求解。
如Fibonacci 数列存在递推关系:
F(1)=1, F(2)=1, F(3)=2,
F(n)= F(n-1)+ F(n-2), (n>2)
若需求第30项的值,则依据公式,从初始条件F(1)=1,F(2)=1出发,逐步求出F(3),F(4),……,直到求出F(30)。
C语言常用算法总结

C语言常用算法总结1、冒泡排序算法:冒泡排序是一种简单的排序算法,它重复地遍历要排序的序列,一次比较两个相邻的元素如果他们的顺序错误就把他们交换过来。
时间复杂度为O(n^2)。
2、快速排序算法:快速排序是一种基于分治的排序算法,通过递归的方式将数组划分为两个子数组,然后对子数组进行排序最后将排好序的子数组合并起来。
时间复杂度为O(nlogn)。
3、插入排序算法:插入排序是一种简单直观的排序算法,通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描找到相应位置并插入。
时间复杂度为O(n^2)。
4、选择排序算法:选择排序是一种简单的排序算法,每次循环选择未排序部分的最小元素,并放置在已排序部分的末尾。
时间复杂度为O(n^2)。
5、归并排序算法:归并排序是一种稳定的排序算法,基于分治思想,将数组递归地分为两个子数组,将子数组排序后再进行合并最终得到有序的数组。
时间复杂度为O(nlogn)。
6、堆排序算法:堆排序是一种基于完全二叉堆的排序算法,通过构建最大堆或最小堆,然后依次将堆顶元素与末尾元素交换再调整堆,得到有序的数组。
时间复杂度为O(nlogn)。
7、二分查找算法:二分查找是一种在有序数组中查找目标元素的算法,每次将待查找范围缩小一半,直到找到目标元素或范围为空。
时间复杂度为O(logn)。
8、KMP算法:KMP算法是一种字符串匹配算法,通过利用模式字符串的自重复性,避免不必要的比较提高匹配效率。
时间复杂度为O(m+n),其中m为文本串长度,n为模式串长度。
9、动态规划算法:动态规划是一种通过将问题分解为子问题,并通过组合子问题的解来求解原问题的方法。
动态规划算法通常使用内存空间来存储中间结果,从而避免重复计算。
时间复杂度取决于问题规模。
10、贪心算法:贪心算法是一种通过选择局部最优解来构建全局最优解的算法并以此构建最终解。
时间复杂度取决于问题规模。
11、最短路径算法:最短路径算法用于求解图中两个节点之间的最短路径,常见的算法包括Dijkstra算法和Floyd-Warshall算法。
C语言常用算法大全

case'2': do{ system("cls"); if(password1!=password) //如果在case1中密码输入不正确将无法进行后面操作 { printf("please logging in,press any key to continue..."); getch(); break; } else { printf("******************************\n"); printf(" Please select:\n"); printf("* 1.$100 *\n"); printf("* 2.$200 *\n"); printf("* 3.$300 *\n"); printf("* 4.Return *\n"); printf("******************************\n"); CMoney=getch(); } }while(CMoney!='1'&&CMoney!='2'&&CMoney!='3'&&CMoney!='4'); //当输入值不是1,2,3,4中任意数将继续执行do循环体中语句 switch(CMoney) { case'1': system("cls"); a=a-100; printf("**********************************************\n"); printf("* Your Credit money is $100,Thank you! *\n"); printf("* The balance is $%d. *\n",a); printf("* Press any key to return... *\n"); getch(); break; case'2': system("cls");
C语言常用简单算法

C语言常用简单算法C语言是一门功能强大的编程语言,其算法也是很多的。
下面是一些常用的简单算法:1.二分查找算法:二分查找是一种在有序数组中查找特定元素的算法。
它的基本思想是首先在数组的中间位置找到待查找的元素,如果该元素等于目标值,则查找成功;如果该元素大于目标值,说明目标值在数组的前半部分,则在前半部分继续进行查找;如果该元素小于目标值,则说明目标值在数组的后半部分,则在后半部分继续进行查找。
重复以上步骤,直到找到目标值或者确定目标值不存在。
2.冒泡排序算法:冒泡排序是一种简单直观的排序算法。
它的基本思想是通过反复交换相邻的两个元素,将较大的元素逐渐往后移动,从而实现排序的目的。
具体实现时,每一轮比较都会使最大的元素移动到最后。
3.插入排序算法:插入排序是一种简单直观的排序算法。
它的基本思想是将数组分成已排序部分和未排序部分,每次从未排序部分取出一个元素,然后将该元素插入到已排序部分的合适位置,从而实现排序的目的。
4.选择排序算法:选择排序是一种简单直观的排序算法。
它的基本思想是每次选择一个最小(或最大)的元素放到已排序部分的末尾,从而实现排序的目的。
具体实现时,每一轮选择都通过比较找出未排序部分的最小(或最大)元素。
5.快速排序算法:快速排序是一种高效的排序算法。
它的基本思想是通过选取一个基准元素,将数组分成两个子数组,一个子数组中的元素都小于基准元素,另一个子数组中的元素都大于基准元素,然后对这两个子数组分别进行快速排序,最终实现排序的目的。
6.斐波那契数列算法:斐波那契数列是一列数字,其中每个数字都是前两个数字之和。
常见的斐波那契数列算法有递归算法和迭代算法。
递归算法通过反复调用自身来计算斐波那契数列的值,而迭代算法则通过循环来计算。
7.求最大公约数算法:求两个数的最大公约数是一种常见的问题。
常见的求最大公约数的算法有欧几里得算法和辗转相除法。
欧几里得算法通过不断用较小数除以较大数的余数,直到余数为0,得到最大公约数。
C语言入门必学—10个经典C语言算法
C语言入门必学—10个经典C语言算法C语言是一种广泛使用的编程语言,具有高效、灵活和易学的特点。
它不仅在软件开发中被广泛应用,也是计算机科学专业的必修课。
在学习C语言的过程中,掌握一些经典的算法是非常重要的。
本文将介绍10个经典C语言算法,帮助读者更好地了解和掌握C语言。
一、冒泡排序算法(Bubble Sort)冒泡排序算法是最简单、也是最经典的排序算法之一。
它通过不断比较相邻的元素并交换位置,将最大(或最小)的元素逐渐“冒泡”到数组的最后(或最前)位置。
二、选择排序算法(Selection Sort)选择排序算法是一种简单但低效的排序算法。
它通过不断选择最小(或最大)的元素,并与未排序部分的第一个元素进行交换,将最小(或最大)的元素逐渐交换到数组的前面(或后面)。
三、插入排序算法(Insertion Sort)插入排序算法是一种简单且高效的排序算法。
它通过将数组分为已排序和未排序两个部分,依次将未排序部分的元素插入到已排序部分的合适位置。
四、快速排序算法(Quick Sort)快速排序算法是一种高效的排序算法。
它采用了分治的思想,通过将数组分为较小和较大两部分,并递归地对两部分进行排序,最终达到整个数组有序的目的。
五、归并排序算法(Merge Sort)归并排序算法是一种高效的排序算法。
它采用了分治的思想,将数组一分为二,递归地对两个子数组进行排序,并将结果合并,最终得到有序的数组。
六、二分查找算法(Binary Search)二分查找算法是一种高效的查找算法。
它通过不断将查找范围折半,根据中间元素与目标值的大小关系,缩小查找范围,最终找到目标值所在的位置。
七、递归算法(Recursive Algorithm)递归算法是一种通过自我调用的方式解决问题的算法。
在C语言中,递归算法常用于解决树的遍历、问题分解等情况。
八、斐波那契数列算法(Fibonacci Sequence)斐波那契数列是一列数字,其中每个数字都是前两个数字的和。
C语言程序设计的常用算法
C语言程序设计的常用算法1.排序算法-冒泡排序:通过多次比较和交换来将最大(小)的数移到最后(前),时间复杂度为O(n^2)。
适用于数据较少、数据基本有序的情况。
- 快速排序:通过一趟排序将待排序序列分隔成独立的两部分,其中一部分的所有元素都比另一部分的所有元素小。
然后递归地对两部分进行排序,时间复杂度为O(nlogn)。
适用于大规模数据的排序。
-插入排序:将待排序序列分为已排序和未排序两部分,每次从未排序部分取一个元素插入到已排序部分的适当位置,时间复杂度为O(n^2)。
适用于数据量较小的排序场景。
- 归并排序:将待排序序列分为若干个子序列,分别进行排序,然后再将排好序的子序列合并成整体有序的序列,时间复杂度为O(nlogn)。
适用于需要稳定排序且对内存空间要求不高的情况。
2.查找算法-顺序查找:从头到尾依次对每个元素进行比较,直到找到目标元素或者遍历完整个序列。
时间复杂度为O(n)。
- 二分查找:对于有序序列,将序列的中间元素与目标元素进行比较,根据比较结果缩小查找范围,直到找到目标元素或者查找范围为空。
时间复杂度为O(logn)。
3.图算法-广度优先(BFS):从给定的起始顶点开始,按照“先访问当前顶点的所有邻接顶点,再依次访问这些邻接顶点的所有未访问过的邻接顶点”的顺序逐层访问图中的所有顶点。
适用于寻找最短路径、连通性等问题。
-深度优先(DFS):从给定的起始顶点开始,按照“先递归访问当前顶点的一个邻接顶点,再递归访问这个邻接顶点的一个邻接顶点,直到无法再继续递归”的方式遍历图中的所有顶点。
适用于寻找路径、判断连通性等问题。
4.动态规划算法-背包问题:给定一个背包容量和一组物品的重量和价值,选择一些物品装入背包,使得装入的物品总重量不超过背包容量,且总价值最大。
利用动态规划的思想可以通过构建二维数组来解决该问题。
-最长公共子序列(LCS):给定两个序列,找出一个最长的子序列,且该子序列在两个原序列中的顺序保持一致。
C语言常用算法大全
C语言常用算法大全1.排序算法-冒泡排序:依次比较相邻的两个元素,如果顺序不对则交换,每轮找出一个最大或最小的元素-选择排序:从未排序的元素中选择最小或最大的放到已排序的最后,以此类推-插入排序:将未排序的元素插入到已排序的合适位置,从后向前进行比较和交换-快速排序:选择一个基准元素,将小于基准元素的放在左边,大于基准元素的放在右边,然后对左右两边递归地进行快速排序-归并排序:将待排序的序列不断划分为左右两部分,分别排序后再将排序好的左右两部分按顺序合并-堆排序:构建大顶堆,将堆顶元素与末尾元素交换,然后重新调整堆,重复这个过程直到排序完成2.查找算法-顺序查找:从给定的元素序列中逐个比较,直到找到目标元素或遍历完整个序列-二分查找:对于有序序列,在序列的中间位置比较目标元素和中间元素的大小关系,通过每次缩小一半的范围来查找目标元素-插值查找:根据目标元素与有序序列的最小值和最大值的比例推测目标元素所在的位置,然后递归地进行查找-斐波那契查找:根据斐波那契数列的性质来确定目标元素所在的位置,然后递归地进行查找3.图算法-深度优先(DFS):从图的一些顶点出发,依次访问其未被访问过的邻接顶点,直到所有顶点都被访问过为止-广度优先(BFS):从图的一些顶点出发,逐层遍历图的顶点,直到所有顶点都被访问过为止- 最小生成树算法:Prim算法和Kruskal算法,用于找到连接图中所有顶点的最小权值边,构成一棵包含所有顶点的生成树- 最短路径算法:Dijkstra算法和Floyd-Warshall算法,用于找到图中两个顶点之间的最短路径-拓扑排序:用于有向无环图(DAG)中的顶点排序,确保排序后的顶点满足所有依赖关系-关键路径算法:找出网络中的关键路径,即使整个工程完成的最短时间4.字符串算法- KMP算法:通过预处理模式串构建next数组,利用next数组在匹配过程中跳过一部分不可能匹配的子串- Boyer-Moore算法:从模式串的末尾开始匹配,利用坏字符和好后缀规则进行跳跃匹配- Rabin-Karp算法:利用哈希函数对主串和匹配串的子串进行哈希计算,然后比较哈希值是否相等- 字符串匹配算法:BM算法、Shift-And算法、Sunday算法等,用于寻找模式串在主串中的出现位置5.动态规划算法-最长公共子序列(LCS):用于寻找两个序列中最长的公共子序列-最长递增子序列(LIS):用于寻找给定序列中最长的递增子序列-0-1背包问题:将有限的物品放入容量为C的背包中,使得物品的总价值最大-最大子数组和:用于求解给定数组中连续子数组的最大和-最大正方形:在给定的0-1矩阵中,找出只包含1的最大正方形的边长这些算法是在C语言中常用的算法,它们涵盖了排序、查找、图、字符串和动态规划等多个领域。
C语言常用简单算法
C语言常用简单算法C语言是一种广泛应用的编程语言,支持各种算法的实现。
以下是一些常用的简单算法,涵盖了排序、查找、递归等方面。
1. 冒泡排序(Bubble Sort):通过不断比较相邻元素的大小,将较大的元素逐步“冒泡”到数组的末尾。
2. 选择排序(Selection Sort):每次从未排序的数组中选择最小(或最大)的元素,放到已排序数组的末尾。
3. 插入排序(Insertion Sort):将数组分为已排序和未排序两个部分,每次将未排序部分中的元素插入到已排序部分的正确位置。
4. 快速排序(Quick Sort):选择一个基准元素,将数组分成两部分,将小于基准的元素放在左边,大于基准的元素放在右边,然后递归地对两部分进行排序。
5. 归并排序(Merge Sort):将待排序数组递归地分成两部分,分别进行排序,然后再将两个有序的数组合并成一个有序的数组。
6. 二分查找(Binary Search):对于有序数组,通过比较中间元素和目标值的大小,缩小查找范围,直到找到目标值或查找范围为空。
7. 线性查找(Linear Search):对于无序数组,逐个比较数组中的元素和目标值,直到找到目标值或遍历完整个数组。
8. 求阶乘(Factorial):使用递归方式或循环方式计算给定数字的阶乘。
9. 斐波那契数列(Fibonacci Sequence):使用递归方式或循环方式生成斐波那契数列。
10. 汉诺塔(Tower of Hanoi):使用递归方式实现汉诺塔问题的解决,将一组盘子从一个柱子移动到另一个柱子。
11. 判断回文数(Palindrome):判断给定数字是否为回文数,即正序和倒序相同。
12.求最大公约数(GCD):使用辗转相除法或欧几里德算法求两个数的最大公约数。
13.求最小公倍数(LCM):通过最大公约数求得最小公倍数。
14. 求质数(Prime Number):判断给定数是否为质数,即只能被1和自身整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八、常用算法(一)考核知识要点1.交换、累加、累乘、求最大(小)值2.穷举3.排序(冒泡、插入、选择)4.查找(顺序、折半)5.级数计算(递推法)6.一元方程求解(牛顿迭代法、二分法)7.矩阵(转置)8.定积分计算(矩形法、梯形法)9.辗转相除法求最大公约数、判断素数10.数制转换(二)重点、难点精解教材中给出的算法就不再赘述了。
1.基本操作:交换、累加、累乘1)交换交换算法的要领是“借助第三者”(如同交换两个杯子里的饮料,必须借助第三个空杯子)。
例如,交换两个整型变量里的数值:int a=7,b=9,t;t=a; a=b; b=t;(不借助第三者,也能交换两个整型变量里的数值,但不通用,只是一个题目而已。
例如:int a=7,b=9; a=a+b; b=a-b; a=a-b;)2)累加累加算法的要领是形如“s=s+A”的累加式,此式必须出现在循环中才能被反复执行,从而实现累加功能。
“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为0。
3)累乘累乘算法的要领是形如“s=s*A”的累乘式,此式必须出现在循环中才能被反复执行,从而实现累乘功能。
“A”通常是有规律变化的表达式,s在进入循环前必须获得合适的初值,通常为1。
2.非数值计算常用经典算法1)穷举法也称为“枚举法”,即将可能出现的各种情况一一测试,判断是否满足条件,一般采用循环来实现。
例如,用穷举法输出“将1元人民币兑换成1分、2分、5分硬币”的所有方法。
main(){int y,e,w;for(y=0;y<=100;y++)for(e=0;e<=50;e++)for(w=0;w<=20;w++)if(1*y+2*e+5*w==100)printf("%d,%d,%d\n",y,e,w);}2)有序序列的插入算法就是将某数据插入到一个有序序列后,该序列仍然有序。
以下给出用数组描述该算法的例子:将x插入一升序数列后,数列仍为升序排列。
#define n 10main(){int a[n]={-1,3,6,9,13,22,27,32,49},x,j,k; /*注意留一个空间给待插数*/scanf("%d",&x);if(x>a[n-2]) a[n-1]=x ; /*比最后一个数还大就往最后一个元素中存放*/else{/*查找待插位置*/j=0;while( j<=n-2 && x>a[j])j++;/*从最后一个数开始直到待插位置上的数依次后移一位*/for(k=n-2; k>=j; k- -)a[k+1]=a[k];a[j]=x; /*插入待插数*/}for(j=0;j<=n-1;j++)printf("%d ",a[j]);}3)折半查找(二分法查找)顺序查找的效率较低,当数据很多时,用二分法查找可以提高效率。
使用二分法查找的前提是数据必须有序。
二分法查找的思路是:要查找的关键值同数组的中间一个元素比较,若相同则查找成功,结束;否则判别关键值落在数组的哪半部分,就在这半部分中按上述方法继续比较,直到找到或数组中没有这样的元素值。
例如,任意读入一个整数x,在升序数组a中查找是否有与x等值的元素。
#define n 10main(){int a[n]={2,4,7,9,12,25,36,50,77,90};int x,high,low,mid;/*x为关键值*/scanf("%d",&x);high=n-1;low=0;mid=(high+low)/2;while(a[mid]!=x&&low<high){if(x<a[mid]) high=mid-1;else low=mid+1;mid=(high+low)/2;}if(x= =a[mid]) printf("Found %d,%d\n",x,mid);else printf("Not found\n");}3.数值计算常用经典算法1)级数计算级数计算的关键是“描述出通项”,而通项的描述法有两种:一为直接法、二为间接法又称递推法。
直接法的要领是:利用项次直接写出通项式;递推法的要领是:利用前一个通项写出后一个通项。
可以用直接法描述通项的级数计算例子有:(1)1+2+3+4+5+……(2)1+1/2+1/3+1/4+1/5+……等等。
可以用间接法描述通项的级数计算例子有:(1)1+1/2+2/3+3/5+5/8+8/13+……(2)1+1/2!+1/3!+1/4! +1/5!+……等等。
下面举一个通项的一部分用直接法描述,另一部分用递推法描述的级数计算的例子: 计算级数⎪⎭⎫ ⎝⎛∑∞=+2202!1x n n n 的值,当通项的绝对值小于eps 时计算停止。
#include <math.h>float g(float x,float eps);main(){float x,eps;scanf("%f%f",&x,&eps);printf("\n%f,%f\n",x,g(x,eps));}float g(float x,float eps){int n=1;float s,t;s=1;t=1;do{t=t*x/(2*n);s=s+(n*n+1)*t; /*加波浪线的部分为直接法描述部分,t 为递推法描述部分*/ n++;}while(fabs(t)>eps);return s;}2)牛顿迭代法牛顿迭代法又称牛顿切线法:先任意设定一个与真实的根接近的值x0作为第一次近似根,由x0求出f(x0),过(x0,f(x0))点做f(x)的切线,交x轴于x1,把它作为第二次近似根,再由x1求出f(x1),过(x1,f(x1))点做f(x)的切线,交x轴于x2,……如此继续下去,直到足够接近真正的根x*为止。
而f '(x0)=f(x0)/( x1- x0)所以x1= x0- f(x0)/ f ' (x0)例如,用牛顿迭代法求下列方程在1.5附近的根:2x3-4x2+3x-6=0。
#include "math.h"main(){float x,x0,f,f1;x=1.5;do{x0=x;f=2*x0*x0*x0-4*x0*x0+3*x0-6;f1=6*x0*x0-8*x0+3;x=x0-f/f1;}while(fabs(x-x0)>=1e-5);printf ("%f\n",x);}3)二分法先指定一个区间[x1, x2],如果函数f(x)在此区间是单调变化的,则可以根据f(x1)和f(x2)是否同号来确定方程f(x)=0在区间[x1, x2]内是否有一个实根;如果f(x1)和f(x2)同号,则f(x) 在区间[x1, x2]内无实根,要重新改变x1和x2的值。
当确定f(x) 在区间[x1, x2]内有一个实根后,可采取二分法将[x1, x2]一分为二,再判断在哪一个小区间中有实根。
如此不断进行下去,直到小区间足够小为止。
具体算法如下:(1)输入x1和x2的值。
(2)求f(x1)和f(x2)。
(3)如果f(x1)和f(x2)同号说明在[x1, x2] 内无实根,返回步骤(1),重新输入x1和x2的值;若f(x1)和f(x2)不同号,则在区间[x1, x2]内必有一个实根,执行步骤(4)。
(4)求x1和x2的中点:x0=(x1+ x2)/2。
(5)求f(x0)。
(6)判断f(x0)与f(x1)是否同号。
①如果同号,则应在[x0, x2]中寻找根,此时x1已不起作用,用x0代替x1,用f(x0)代替f(x1)。
②如果不同号,则应在[x1, x0]中寻找根,此时x2已不起作用,用x0代替x2,用f(x0)代替f(x2)。
(7)判断f(x0)的绝对值是否小于某一指定的值(例如10-5)。
若不小于10-5,则返回步骤(4)重复执行步骤(4)、(5)、(6);否则执行步骤(8)。
(8)输出x0的值,它就是所求出的近似根。
例如,用二分法求方程2x3-4x2+3x-6=0在(-10,10)之间的根。
#include "math.h"main(){float x1,x2,x0,fx1,fx2,fx0;do{printf("Enter x1&x2");scanf("%f%f",&x1,&x2);fx1=2*x1*x1*x1-4*x1*x1+3*x1-6;fx2=2*x2*x2*x2-4*x2*x2+3*x2-6;}while(fx1*fx2>0);do{x0=(x1+x2)/2;fx0=2*x0*x0*x0-4*x0*x0+3*x0-6;if((fx0*fx1)<0){x2=x0;fx2=fx0;}else{x1=x0;fx1=fx0;}}while(fabs(fx0)>1e-5);printf("%f\n",x0);}4)梯形法求定积分定积分⎰ba dx x f )(的几何意义是求曲线y=f(x)、x=a 、x=b 以及x 轴所围成的面积。
可以近似地把面积视为若干小的梯形面积之和。
例如,把区间[a, b]分成n 个长度相等的 小区间,每个小区间的长度为h=(b-a)/n ,第i 个小梯形的面积为[f(a+(i-1)·h)+f(a+i ·h)]·h/2,将n 个小梯形面积加起来就得到定积分的近似值: ∑⎰=∙∙++∙-+≈n i ba h h i a f h i a f dx x f 12/)]())1(([)(根据以上分析,给出“梯形法”求定积分的N-S 结构图: 输入区间端点:a ,b输入等分数nh=(b-a)/2, s=0i 从1到nsi=(f(a+(i-1)*h)+f(a+i*h))*h/2s=s+si输出s例如:求定积分⎰102sin dx x 的值。
上述程序的几何意义比较明显,容易理解。
但是其中存在重复计算,每次循环都要计算小梯形的上、下底。
其实,前一个小梯形的下底就是后一个小梯形的上底,完全不必重复计 算。
为此做出如下改进:⎰∑-=∙+++∙≈ba n i h i a fb f a f h dx x f 11)](2/)(2/)([)(矩形法求定积分则更简单,就是将等分出来的图形当作矩形,而不是梯形。
4.其他常见算法1)求最大值或最小值在若干个数中求最大值,一般先假设一个较小的数为存放最大值变量的初值,若无法估计较小的值,则取第一个数为存放最大值变量的初值;然后将存放最大值变量的值与其余每一个数比较,若某数大于存放最大值变量的值,将该数赋值给存放最大值的变量;再依次逐一比较。