辽宁公务员考试行测技巧:容斥原理公式及运用
公考容斥问题解题技巧

公考容斥问题解题技巧
一、理解问题背景
容斥问题在公务员考试中是一种常见的题型,主要考察考生对于集合概念的理解和应用。
在解决这类问题时,首先要明确问题的背景和涉及的集合。
了解题目所给的各个集合的元素以及它们的属性,以便更好地分析问题。
二、识别关键信息
在阅读题目时,要迅速识别出关键信息,尤其是涉及到集合关系和数量关系的语句。
这些信息将有助于确定解题思路和方向,避免在解题过程中出现混乱。
三、使用公式计算
解决容斥问题需要使用到一定的公式进行计算。
考生应熟练掌握基本的公式,如容斥原理公式:∣A∪B∣=∣A∣+∣B∣−∣A∩B∣(∣A∪B∣表示集合A和集合B的并集的元素数量,∣A∣和∣B∣分别表示集合A和集合B的元素数量,∣A∩B∣表示集合A和集合B的交集的元素数量)。
通过合理运用公式,可以快速准确地得出答案。
四、避免重复和遗漏
在解题过程中,要注意避免重复计数和遗漏。
当分析两个集合之间的关系时,要特别小心,确保每个元素只被计算一次,并且所有的元素都被考虑在内。
通过仔细分析集合之间的关系,可以有效地避免重复和遗漏。
五、提高运算速度
在考试中,时间是非常宝贵的。
为了提高解题速度,考生需要熟练掌握各种运算技巧和方法。
通过练习和总结经验,考生可以逐渐提高自己的运算速度,从而在考试中更加从容地应对各种问题。
综上所述,解决公考容斥问题需要考生具备一定的数学基础和逻辑思维能力。
通过理解问题背景、识别关键信息、使用公式计算、避免重复和遗漏以及提高运算速度等技巧,考生可以更加高效地解决这类问题,提高自己的考试成绩。
公务员笔试之行测:巧解三集合容斥原理问题

2014年公务员行测:巧解三集合容斥原理问题华图教育三集合容斥原理此类题型主要出现在近年来各省的省考中,主要是有三个独立的个体,此类题型主要的做题方法是公式法和作图法。
近年来直接套用三集合公式的题目有所减少,开始出现条件变形的题目,不管容斥原理的题目怎么变化,但我们只要掌握住核心思想——剔除重复,那么做任何一个容斥原理题目都能够得心应手。
根据上图,可得三集合容斥原理核心公式:=A +B +C -A B -B C -A C +A B C =-x A B C 总数一、直接利用公式型【例1】(2012年4月联考)某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人【答案】A 【解析】设同时报乙、丙职位的人数为x ,则根据三集合容斥原理公式有:22+16+25-8-6-x+0=42-0,解得x=7。
因此,本题答案为A 选项。
二、三集合容斥原理作图型若在题目中任何一个位置看到“只满足”或“仅满足”,则公式法不能够再用,采用作图法来解题,注意,在作图的时候不管三七二十一,先画三个两两相交的圈,再往里填数字即可,填的时候注意从中间往外一层一层填。
【例2】(2007年江苏)一次运动会上,17名游泳运动员中,有8名参加了仰泳,有10 Cx B A名参加蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这17名游泳运动员中,只参加1个项目的人有多少?()A.5名B.6名C.7名D.4名【答案】B【解析】本题问题中出现了“只”,故只能采用作图法。
于是有仰12 2 2 34 3蛙自由只参加1个项目的人数为1+2+3=6。
因此,本题答案为B选项。
行测数学运算16种题型之容斥原理问题

行测数学运算16种题型之容斥原理问题核心公式:(1)两个集合的容斥关系公式:A+B=A∪B+A∩B(2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C【例1】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:A.22人 B.28人 C.30人 D.36人【解析】设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52)A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)B∩C=既喜欢看电影又喜欢看戏剧的人(16)A∩B∩C=三种都喜欢看的人(12)A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)根据公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩CC∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)=148-(100+18+16-12)=26所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C=52-16-26+12=22【例2】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。
A.22B.18C.28D.26【解析】设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)显然,A+B=26+24=50;A∪B=32-4=28,则根据公式A∩B=A+B-A∪B=50-28=22所以,答案为A。
【例3】某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有( )人A.57B.73C.130D.69【解析】设A=会骑自行车的人(68),B=会游泳的人(62)显然,A+B=68+62=130;A∪B=85-12=73,则根据公式A∩B=A+B-A∪B=130-73=57所以,答案为A。
2020年辽宁国考行测容斥最值问题的解法.doc

2020年辽宁国考行测容斥最值问题的解法容斥问题是公考中较为常见的一类题型,小伙伴们再练习的时候也乐于做这类题型,常常感觉这类题型的难度低,方法固定,比较容易求解。
但在2019年国考时,不少同学会发现原本简单的容斥问题变难了,因为之前我们学过的容斥问题往往直接列方程求解即可,但是2019年的国考题在设问中出现了至少两个字,同学们便无从下手了。
那么当容斥问题的设问中出现了至多、至少等最值问法时,我们应该如何解题呢?我们常用的解法一般是设未知数列出不定方程,然后通过分析如何取最值的方法来求解。
我们不妨通过几道例题来总结一下这类题型的规律,希望对大家有所帮助。
【例1】(2018辽宁省公检法)某班在筹备联欢会时发现很多同学都会唱歌和乐器演奏,但有部分同学这2种才艺都不会。
具体有4种情况:只会唱歌,只会乐器演奏,唱歌和乐器演奏都会,唱歌和乐器演奏都不会。
现知会唱歌的有22人,会乐器演奏的有15人,两种都会的人数是两种都不会的5倍。
这个班至多有( )人。
A. 27B. 30C. 33D. 36【思路点拨】分析题干我们可以发现这是一个两集合容斥问题,设问中出现了至多这种最值问法。
那么我们可以设该班共有x人,唱歌和乐器演奏都不会的有y人,则两种都会的有5y人,根据二集合容斥公式可列出不定方程:x-y=22+15-5y,化简得:x=37-4y。
要想x取值最大,则y应最小,因为题干中提到有部分同学这2种才艺都不会,所以y最小取1而不能取0;当取y=1时,x=33,故这个班至多有33人。
因此,选择C选项。
【例2】(2019国考)有100名员工去年和今年均参加考核,考核结果分为优、良、中、差四个等次。
今年考核结果为优的人数是去年的1.2倍。
今年考核结果为良及以下的人员占比比去年低15个百分点。
问两年考核结果均为优的人数至少为多少人?A. 55B. 65C. 75D. 85【思路点拨】本题是一个2集合的容斥问题,今年考核结果为优的人可以看做一个集合,去年考核为优的人看做另一个集合,设问中也出现了至少这种最值问法。
行测容斥问题公式

行测容斥问题公式行测中的容斥问题可是个有趣的“家伙”,在考试中时不时就会冒出来,给咱们考生带来点小挑战。
咱们先来说说啥是容斥问题。
简单来讲,容斥问题就是研究集合之间重叠部分的情况。
比如说,一个班级里喜欢数学的有一部分同学,喜欢语文的有一部分同学,那么既喜欢数学又喜欢语文的同学有多少呢?这就是一个典型的容斥问题。
容斥问题有几个常用的公式。
两集合容斥公式:A∪B = A + B -A∩B。
这就好比有两个盒子,一个装苹果,一个装香蕉。
把两个盒子里的水果都放到一个大筐里,总数就是两个盒子里水果数的和,减去两个盒子里都有的那种水果(比如既是苹果又是香蕉的水果)。
再说说三集合容斥公式,标准型:A∪B∪C = A + B + C - A∩B -B∩C - C∩A + A∩B∩C 。
这个公式看起来有点复杂,其实就是把三个集合的数量加起来,然后减去两两重叠的部分,再把三个都重叠的部分加回来。
打个比方,咱就说班级里的兴趣小组,有数学小组、语文小组和英语小组。
数学小组有多少人,语文小组有多少人,英语小组有多少人,这都好算。
但是有些同学既参加了数学又参加了语文,有些既参加了语文又参加了英语,有些既参加了数学又参加了英语,还有些同学三个小组都参加了。
要算出班级里一共参加兴趣小组的人数,就得用这个公式。
还有个非标准型的三集合容斥公式:A∪B∪C = A + B + C - 只属于两个集合的 - 2×属于三个集合的。
这个公式呢,理解起来也不难。
还是拿兴趣小组举例,咱们先把三个小组的人数加起来,然后把重复算的只属于两个小组的人数减掉,但是属于三个小组的人数被多减了一次,所以要再加上两倍的属于三个小组的人数。
我记得之前有个学生,在做容斥问题的时候,那叫一个头疼。
题目是这样的:一个班级有 50 名同学,参加数学竞赛的有 25 人,参加语文竞赛的有20 人,其中有10 人既参加了数学竞赛又参加了语文竞赛,问班级里参加竞赛的总人数是多少。
容斥原理公式 行测

容斥原理公式行测容斥原理公式在行测中的应用那可是相当重要的哟!咱先来说说啥是容斥原理。
简单来讲,就是在计算多个集合的总数或者某个集合元素的数量时,要把重复计算的部分去掉,把遗漏的部分补上。
这就好比你去超市买水果,苹果、香蕉、橙子都想买,但有的水果可能被你算了两次,这时候就得用容斥原理来算清楚到底买了多少种、多少个水果。
容斥原理公式主要有两个,一个是两集合的容斥原理公式,另一个是三集合的容斥原理公式。
两集合的容斥原理公式是:A∪B = A + B - A∩B 。
比如说,一个班级里喜欢数学的有 30 人,喜欢语文的有 25 人,既喜欢数学又喜欢语文的有 10 人,那这个班级里喜欢数学或者喜欢语文的同学总数就是 30 + 25 - 10 = 45 人。
三集合的容斥原理公式就稍微复杂点,有标准型和非标准型。
标准型是:A∪B∪C = A + B + C - A∩B - B∩C - C∩A + A∩B∩C 。
非标准型是:A∪B∪C = A + B + C - 只属于两个集合的元素 - 2×属于三个集合的元素。
给您举个例子吧,就说咱公司组织活动,有喜欢爬山的,有喜欢游泳的,还有喜欢骑自行车的。
喜欢爬山的有 50 人,喜欢游泳的有 40 人,喜欢骑自行车的有 30 人,既喜欢爬山又喜欢游泳的有 15 人,既喜欢游泳又喜欢骑自行车的有 10 人,既喜欢爬山又喜欢骑自行车的有8 人,三个都喜欢的有 3 人。
那用标准型公式来算,参加活动的总人数就是 50 + 40 + 30 - 15 - 10 - 8 + 3 = 90 人。
在行测考试中,容斥原理的题目经常出现,而且形式多种多样。
有的是让你直接用公式计算人数,有的是通过给出一些条件让你推导某个集合的元素数量,还有的会把容斥原理和其他知识点结合起来考,比如概率问题、最值问题等等。
我之前有个朋友考行测,就碰到了一道容斥原理的题目,他当时没搞清楚,结果在这道题上浪费了好多时间,最后也没做对。
国考行测三集合容斥原理

国考行测三集合容斥原理
集合容斥原理是组合数学中的一种常用原理,常用于解决集合问题。
在国家公务员考试中,行测部分经常涉及与集合相关的题目,而集合容斥原理则是解决这类问题的一种有效方法。
集合容斥原理描述了多个集合之间的差集和交集的关系。
具体来说,对于给定的n个集合A1、A2、...、An,集合容斥原理
可以帮助我们计算出这些集合的并集的元素个数。
集合容斥原理的公式为:
|A1 ∪ A2 ∪ ... ∪ An| = |A1| + |A2| + ... + |An| - |A1 ∩ A2| - |A1
∩ A3| - ... + (-1)^n-1 |A1 ∩ A2 ∩ ... ∩ An|
其中,|A|表示集合A的元素个数。
在国考行测中,集合容斥原理常常可以用于解决关于人员分组、选修课程、考试通过等问题。
通过运用集合容斥原理,我们可以得到相应的计算式,从而求得准确的答案。
需要注意的是,在实际运用中,对于给定的具体问题,我们需要根据情况决定要包含哪些集合以及如何计算交集和差集。
并且,根据具体情况,可能需要结合其他的解题方法进行综合运用。
总的来说,集合容斥原理在国考行测中是一种非常有用的解题方法,能够帮助我们清晰地分析问题,准确地求解答案。
因此,对集合容斥原理的理解和掌握对于国考行测的备考非常重要。
考公容斥问题公式

考公容斥问题公式考公中的容斥问题公式,那可是个有趣又有点小复杂的家伙!咱先来说说啥是容斥问题。
简单来讲,就是在一个集合里面,有各种子集合,然后要算它们之间的重叠部分或者不重叠部分的数量。
比如说,一个班级里,喜欢数学的有多少人,喜欢语文的有多少人,既喜欢数学又喜欢语文的有多少人,那通过容斥问题的公式就能算出只喜欢数学的、只喜欢语文的,还有都不喜欢的分别有多少人。
容斥问题的公式主要有两个常见的:一是两集合容斥公式:A∪B = A + B - A∩B 。
比如说一个班有 50 个人,参加数学竞赛的有 20 人,参加语文竞赛的有 30 人,其中 10 人两个竞赛都参加了,那参加竞赛的总人数就是 20 + 30 - 10 = 40 人。
二是三集合容斥公式:A∪B∪C = A + B + C - A∩B - B∩C - C∩A + A∩B∩C 。
就像一个公司搞活动,喜欢唱歌的有 30 人,喜欢跳舞的有25 人,喜欢表演小品的有 20 人,既喜欢唱歌又喜欢跳舞的有 10 人,既喜欢跳舞又喜欢表演小品的有 8 人,既喜欢唱歌又喜欢表演小品的有 5 人,三种都喜欢的有 3 人。
那参加活动的总人数就是 30 + 25 + 20 - 10 - 8 - 5 + 3 = 50 人。
我记得之前给学生们讲容斥问题的时候,有个学生一直搞不明白,愁得小脸都皱起来了。
我就给他举了个特别生活化的例子。
咱就说去超市买水果,苹果区有一堆人,香蕉区有一堆人,还有既买了苹果又买了香蕉的人。
让他自己去想想怎么算一共多少人买了水果。
这孩子后来恍然大悟,那种突然开窍的表情,真让人觉得特有成就感。
容斥问题在考公里可重要啦,好多题目都跟它有关。
像那种给出各种条件,让你算人数或者数量的题目,要是不会容斥问题公式,那可就抓瞎啦。
比如说一个单位,会英语的有多少,会日语的有多少,两种都会的有多少,然后问你至少会一种语言的有多少人。
这时候,容斥问题公式就能派上大用场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁公务员考试行测技巧:容斥原理公式及运用
在历年辽宁公务员考试中,行测考试题量都很大,两个小时的时间大部分考生做不完所有题目。
而对于申论而言,考生往往写不完作文。
因此,如何在这有限的时间内最大限度取得高分是考生最为关心的。
下面,中公教育专家就告诉考生如何利用有效的辽宁公务员解题技巧来获得高分。
想第一时间了解公职考试解析吗?请点击>>>辽宁公职辅导讲座资讯
在计数时,必须注意无一重复,无一遗漏。
为了使重叠部分不被重复计算,中公教育专家研究出一种新的计数方法。
这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
一、容斥原理1:两个集合的容斥原理
如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。
如下图所示。
【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。
A∪B=15+12-4=23,共有23人至少有一门得满分。
二、容斥原理2:三个集合的容斥原理
如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。
如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。
即得到:
【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?
参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。
三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。
在懂得了解题方法后想看书强化自己请参考辽宁公务员考试辅导教材这里有最权威的公职考试用书、最实用的模拟密押题!
中公教育公务员考试培训与辅导专家提醒您,备考有计划,才能在公考大战中拔得头筹!中公行测频道帮助各位考生取得面试最后的胜利!。