2019年苏科版九年级下册数学期末测试卷(2)含答案
2019年秋浙教版初中数学九年级下册《解直角三角形》单元测试(含答案) (638)

九年级数学下册《解直角三角形》试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________题号一二三总分得分评卷人得分一、选择题1.(2分)三角形在正方形网格纸中的位置如图所示,则sinα的值是()A.34B.43C.35D.452.(2分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.则cosB等于()A.34B.43C.35D.453.(2分) 如图,在300 m高的峭壁上测得一塔顶与塔基的俯角分别为 30°和 60°,则塔高 CD 约为()A.100m B.200m C.150m D.180m4.(2分)若把 Rt△ABC 的各边都扩大 3倍,则各边扩大后的cosB 与扩大前的cosB 的值之间的关系是()A.扩大3倍B.缩小3倍C.相等D.不能确定5.(2分)如图是某小区的一块三角形空地,准备在上面种植某种草皮以美化环境,已知这种草皮每平方米售价为m元,则购买这种草皮至少需要()A.450m元B.225m元C.150m元D.300m元6.(2分)在△ABC 中,∠C= 90°,如果∠B = 60°,那sinA+cosB=()A.14B.1 C12+D13+评卷人得分二、填空题7.(3分)某市为改善交通状况,修建了大量的高架桥.一汽车在坡度为30°的笔直高架桥点A 开始爬行,行驶了150米到达点B ,则这时汽车离地面的高度为 米. 8.(3分)已知正三角形的周长是 6,则它的面积为 .9.(3分)在直角三角形ABC 中,∠A=090,AC=5,AB=12,那么tan B = . 10.(3分) 如图所示,将两条宽度为 3cm 的纸带交叉叠放,若α已知,则阴影部分的面积为 .11.(3分)如图所示,某人在高楼A 处观测建筑物D 点,则它的俯角是 .12.(3分)一斜坡的坡比为 1:2,其最高点的垂直距离为 50m ,则该斜坡的长为 m . 13.(3分)Rt △ABC 中,斜边与一直角边比为25:7,则较小角的正切值为 . 14.(3分)计算:21()(12)4x x x −+÷−= .15.(3分)已知 CD 是 Rt △ABC 斜边上的高线,且 AB= 10,若 sin ∠ACD=45,则CD= . 评卷人 得分三、解答题16.(6分)又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下面是两位同学的一段对话: 甲:我站在此处看塔顶仰角为60 乙:我站在此处看塔顶仰角为30 甲:我们的身高都是1.5m乙:我们相距20m请你根据两位同学的对话,计算白塔的高度(精确到1米).17.(6分)如图,水坝的横断面是梯形,迎水坡BC的坡角30∠=°,背水坡AD的坡度为B1:2,坝顶DC宽25米,坝高CE是45米,求:坝底AB的长,迎风坡BC的长以及BC 的坡度.(答案可以带上根号)18.(6分)燕尾槽的横断面是等腰梯形.如图是一燕尾槽的横断面,其中燕尾角B是55,外口宽AD是16cm,燕尾槽的深度是6cm,求它的里口宽BC(精确到0.1cm).19.(6分)某科技馆座落在山坡M 处,从山脚A 处到科技馆的路线如图所示.已知A 处海拔高度为103.4m ,斜坡AB 的坡角为30,40m AB =,斜坡BM 的坡角为18,60m BM =,那么科技馆M 处的海拔高度是多少?(精确到0.1m )(参考数据:sin180.309= cos180.951= tan180.324=)20.(6分)随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD ,如图所示,根据图中数据计算坝底 CD 的宽度. (结果保留根号)21.(6分)下图为住宅区内的两幢楼,它们的高m CD AB 30==,现需了解甲楼对乙楼的采光的影响情况.当太阳光与水平线的夹角为30°时.试求: 1)若两楼间的距离m AC 24=时,甲楼的影子,落在乙楼上有多高? 2)若甲楼的影子,刚好不影响乙楼,那么两楼的距离应当有多远?甲 乙300BD22.(6分)Rt △ABC 中,∠C=90°,cosB=32,求a:b:c 等于多少?23.(6分)在Rt △ABC 中,∠C =900,AB =13,BC =5,求A sin , A cos ,A tan .24.(6分)化简:=−2)3(π .25.(6分)计算:322(3)a a −÷= .26.(6分)计算:(1))1)(1()2(2−+−+x x x (2))()23(3223ab ab b a b a ÷+−(3)262−−x x ÷ 4432+−−x x x27.(6分)已知等腰三角形的底边长为20,面积为10033,求这个等腰三角形的三个内角度数及腰长.28.(6分)如图所示,已知∠ACB=90° , AB=13 , AC=12 ,∠BCM=∠BAC,求cosB 及点B 到直线MN的距离.29.(6分)已知a、b、c是△ABC的三边,a、b、c满足等式2(2)4()()b c a c a=+−,且有5a-3c=0,求 sinB 的值.30.(6分)如图,在Rt△ABC 中,∠C= 90°,AC=5,BC=12,求B的正弦、余弦和正切的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.D 3.B 4.C 5.C 6.B二、填空题7.7589.125 10.9sin a11.∠EAD12. 13.247 14.1142x − 15.24三、解答题16.由题目可得:30CAB ∠=,60CBD ∠=,20m AB =, 1.5m AM BN DP ===.在ABC △中,CBD ACB CAB ∠=∠+∠,603030ACB ∴∠=−=,A M N PC B 乙 甲 6030 ACB CAB ∴∠=∠,20m BC AB ∴==.在Rt CBD △中,20m BC =,60CBD ∠=sin CD CBD BC ∠=,sin 6020CD∴=,320sin 6020103m CD ∴===103 1.519m CP CD DP ∴=+=≈.答:白塔的高度约为19米.17.解:452AF =∵452AF = 30tan 45=BE ,453BE =45225453AB =+∴(米),又451sin302BC ==∵° 90BC =(米),BC 的坡度为3.18.解:作AE BC DF BC ⊥⊥,,垂足分别为E ,F , 在Rt ABE △中,tan AEB BE=, ∴ tan AE BE B ==6tan 55. ∴6221624.4tan 55BC BE AD =+=⨯+≈(cm ). 答:燕尾槽的里口宽BC 约为24.4cm .19.解:过B 向水平线AC 作垂线BC ,垂足为C ,过M 向水平线BD 作垂线MD , 垂足为D ,则11402022BC AB ==⨯=. sin18MD BM =600.309=⨯18.54=.∴科技馆M 处的海拔高度是:103.42018.54141.94141.9(m)++=≈.20.在 Rt △ADF 中,∠D=60°,tan AFD DF =,∴3933tan 3AF DF D ==⨯=在 Rt △BEC 中,∵∠C=45°,∴△BEC 为等腰直角三角形∴EC= BE=9,在矩形 AFEB 中,FE=AB=10,∴DC DF FE EC ⋅=++331091933=+=+21.解:(1)设阳光照射在乙楼CD 的E 处,连结BD ,则BD=AC=24,∠D BE =30°,DE=33BD=83,∵AB=CD=30,∴CE=30-83;即阳光照射在乙楼离地面高30-83米处;(2)要使甲楼的影子不影响乙,则阳光刚好照射在乙楼C 处,在Rt △ABC 中,∠A BC =60°,AC=3AB=303,即两楼相距303米. 22.3:5:2. 23.135sin =A , 1312cos =A ,125tan =A . 24.3−π25.49a26.(1)54+x ;(2)2223b ab a +−;(3)42−x . 27.如图所示,AB=AC,∵BC=20,10033ABC S ∆=,∴1033AH =,∵BH=10,∴3tan 3B =∴∠B= 30°, ∴∠C= 30°, ∴∠BAC= 120°. Rt △ABH 中,20233AB AH ==,即△ABC 的三个内角分别为 30°, 30°,120°,腰长为2033. 28.如图过 B 作BH ⊥MNM 于H ,222213125BC AB AC =−=−=,5sin sin 13BC A BCH AB ===∠,5cos 13B = ∵sin 5BH BH BCH BC ∠==,∴2513BH =,即 B 到直线的距离为2513.29.由已知得222b c a =−,即222c a b =+,∴△ABC 是Rt △,∠C=90°, ∵530a c −=,∴35a c =. 设: a = 3k ,c= 5k ,∴b= 4k ,∴4sin 5b Bc ==. 30.5sin 13AC B AB ==,1213BC sB AB ∞==,5tan 12AC B BC ==。
2019年人教版九年级下册数学第29章测试卷及答案

第二十九章投影与视图一、选择题1.为了看到柜顶上的物品,我们常常向后退几步或踮起脚,这其中的道理是( )A.增大柜顶的盲区B.减小柜顶的盲区C.增高视点D.缩短视线2.如图所示,凯凯和乐乐捉迷藏,乐乐站在图中的P处,凯凯藏在图中哪些位置,才不易被乐乐发现( )A.M,R,S,FB.N,S,E,FC.M,F,S,RD.E,S,F,M3.如图所示的几何体,从上面看得到的平面图形是( )A. B. C. D.4.在操场上练习双杠的过程中发现双杠的两横杠在地上的影子( )A.相交B.互相垂直C.互相平行D.无法确定5.如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A.主视图改变,俯视图改变B.左视图改变,俯视图改变C.俯视图不变,左视图改变D.主视图不变,左视图不变6.如图所示的几何图形的俯视图是( )A. B. C. D.7.当太阳光线与地面成40°角时,在地面上的一棵树的影长为10 m,树高h(单位:m)的范围是( ) A. 3<h<5B. 5<h<10C. 10<h<15D. 15<h<208.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )A. B. C. D.9.如图是一个削去一个角的正方体,从左面看到的图形是( )A. B. C. D.10.桌面上放置的几何体中,主视图与左视图可能不同的是( )A.圆柱B.正方体C.球D.直立圆锥11.如图所示几何体的主视图是( )A.B.C.D.12.如图所示,在一条笔直的小路上有一盏路灯,晚上小雷从点B处直走到点A处时,小雷在灯光照射下的影长y与行走的路程x之间的函数图象大致是( )A. B. C. D.二、填空题13.如图,大楼ABCD(可以看作不透明的长方体)的四周都是空旷的水平地面.地面上有甲、乙两人,他们现在分别位于点M和点N处,M、N均在AD的中垂线上,且M、N到大楼的距离分别为60米和20米,又已知AB长40米,AD长120米,由于大楼遮挡着,所以乙不能看到甲.若乙沿着大楼的外面地带行走,直到看到甲(甲保持不动),则他行走的最短距离长为________米.14.如图,请写出图1,图2,图3是从哪个方向可到的:图1________;图2________;图3________.15.如图所示的是一个形如长方体零件的三视图(单位:cm),根据图中数据计算这个零件的体积是________cm3.16.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.17.如图,正方体的棱长和圆柱直径均为1,且圆柱的高为2,则这个组合体右视图的面积是________.18.如图中是一球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球影子会________(填“逐渐变大”或“逐渐变小”)19.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走________个小正方体.20.课桌上按照下图的位置放着一个暖水瓶、一只水杯和一个乒乓球.小明从课桌前走过(图中虚线箭头的方向),下图描绘的是他在不同时刻看到的情况,请对这些图片按照看到的先后顺序进行排序,正确的顺序是________,________,________,________.21.如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为________.22.如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长________米.23.长方体、球体、三棱柱、圆柱体,这四个几何体中有三个的某一种视图都是同一种几何图形,则这一个几何体是________.24.如图,电影胶片上每一个图片的规格为3.5 cm×3.5 cm,放映屏幕的规格为2 m×2 m,若放映机的光源S距胶片20 cm,那么光源S距屏幕__________米时,放映的图象刚好布满整个屏幕.三、解答题25.如示意图,小华家(点A处)和公路(l)之间竖立着一块35 m长且平行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区内的那段公路计为BC.一辆以60 km/h匀速行驶的汽车经过公路段的时间是3 s,已知广告牌和公路的距离是40 m,求小华家到公路的距离.(精确到1 m)26.看教室黑板上的同一幅画,是离黑板近,视角大;还是离黑板远,视角大呢?是离黑板近看得清还是远看得清呢?由此你可以得出一个什么样的结论?27.请画出下面几何体中的平面图形.28.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6.小明、小刚、小红三人从不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的数字对面各是什么数字?29.我们坐公共汽车下车后,不要从车前车后猛跑,为什么?30.如图,在圆桌的正上方有一盏吊灯.在灯光下,圆桌在地板上的投影是面积为4πm2的圆.已知圆桌的高度为1.5 m,圆桌面的半径为1 m,试求吊灯距圆桌面的高度.31.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1 m长的影子如图所示,已知窗框的影子DE 到窗下墙脚的距离CE=3.9 m,窗口底边离地面的距离BC=1.2 m,试求窗口的高度(即AB的值).32.已知木棒AB垂直投射于投影面α上的投影为A1B1,且木棒AB的长为8 cm.(1)如图(1),若AB平行于投影面α,求A1B1长;(2)如图(2),若木棒AB与投影面α的倾斜角为30°,求这时A1B1长.答案解析1.【答案】B【解析】∵为了看到柜顶上的物品,我们常常向后退几步或踮起脚,∴这其中的道理是减小柜顶的盲区.故选B.2.【答案】D【解析】凯凯和乐乐捉迷藏,乐乐站在图中的P处,P处为视点,凯凯只有藏在盲区才不会被发现.由图可知:P视点的盲区中有E,S,F,M点,因此在这四点时不容易被发现.故选D.3.【答案】B【解析】从上面看得到的平面图形是两个同心圆,故选B.4.【答案】C【解析】利用在同一时刻,平行物体的投影仍旧平行分析.根据平行投影的特点是:在同一时刻,平行物体的投影仍旧平行.双杠平行,地上双杠的两横杠的影子也平行.故选C.5.【答案】D【解析】将正方体①移走前的主视图为第一层有一个正方形,第二层有四个正方形,没有改变.将正方体①移走前的左视图为第一层有一个正方形,第二层有两个正方形,没有发生改变.将正方体①移走前的俯视图为第一层有四个正方形,第二层有两个正方形,发生改变.故选D.6.【答案】D【解析】主视图:从正面看:半个椭圆+梯形,选项B;左视图:从左面看:线段+梯形,选项A;俯视图:从上面看:圆环+直径,选项D;故选D.7.【答案】B【解析】AC=10.①当∠A=30°时,BC=AC tan 30°=10×≈5.7.②当∠A=45°时,BC=AC tan 45°=10.∴5.7<h<10,故选B.8.【答案】B【解析】由几何体所示,可得主视图和俯视图分别为和.故选B.9.【答案】B【解析】从左边看是一个正方形,正方形的右上角是一个三角形,三角形的斜边是虚线,故选B.10.【答案】A【解析】A.当圆柱侧面与桌面接触时,主视图和左视图有一个可能是长方形,另一个是圆,故选项符合题意;B.正方体的主视图和作左视图都是正方形,一定相同,故选项不符合题意;C.球的主视图和作左视图都是圆,一定相同,故选项不符合题意;D.直立圆锥的主视图和作左视图都是等腰三角形,一定相同,故选项不符合题意;故选A.11.【答案】B【解析】几何体的主视图为,故选B.12.【答案】C【解析】根据中心投影的性质得出小红在灯下走的过程中应长随路程之间的变化,进而得出符合要求的图象.∵小路的正中间有一路灯,晚上小雷由B处径直走到A处,他在灯光照射下的影长l与行走的路程s之间的变化关系,应为当小雷走到灯下以前为l随s的增大而减小,∴用图象刻画出来应为C.故选C13.【答案】40+20【解析】连接MD并延长,连接NC并延长,使其两延长线相交于点P,作PO⊥MN于O,作CG⊥MP于G,根据题意可得出:ME=60,DE=HO=FC=60米,FN=20米,EF=40米,∴NC==40米,设EO=x米,∴DH=x米,∵ME=DE=60米,∴∠MDE=45°,∴DH=HP=x米,NO=(20+40-x)米,PO=(60+x)米,∵FC∥PO,∴=,∴=,解得x=60-20,∴PO=(120-20)米,NO=(40-20)米,CD·HP=DP·CG,×40×(120-20-60)=×[20+40-(40-20)]·CG,∴CG=20米,∴行走的最短距离长为NC+CG=(40+20)米.故答案为(40+20).14.【答案】左面上面前面【解析】从左面看是一个三角形、一个长方形,从上面看是一个圆形、一个长方形;从正面看是一个三角形、一个圆形,故答案为左面,上面,前面.15.【答案】24【解析】根据三视图可知,该长方体的长为3 cm,宽为2 cm,高为4 cm,∴这个长方体的体积是3×2×4=24(cm3),故答案为24.16.【答案】22【解析】综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二层有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.∴这个几何体的表面积是5×6-8=22,故答案为22.17.【答案】2【解析】右视图是两个小正方形,故答案为2.18.【答案】逐渐变大【解析】根据中心投影的特点,可得当发光的手电筒由远及近时,落在竖直墙面上的球影子会逐渐变大.19.【答案】27【解析】留下靠墙的正方体,以及墙角处向外的一列正方体,依次数出搬走的小正方体的个数相加即可.第1列最多可以搬走9个小正方体;第2列最多可以搬走8个小正方体;第3列最多可以搬走3个小正方体;第4列最多可以搬走5个小正方体;第5列最多可以搬走2个小正方体.9+8+3+5+2=27个.故最多可以搬走27个小正方体.故答案为27.20.【答案】乙甲丙丁【解析】根据给出的俯视图可以确定暖水瓶,水杯和乒乓球的位置,所以最早看到的是比较接近左视图的乙,然后到接近主视图的甲,再到接近右视图的丙,最后是丁,故填乙甲丙丁.故答案为乙甲丙丁.21.【答案】12+15π【解析】由几何体的三视图,可得该几何体该几何体的表面是由3个长方形与两个扇形围成,该组合体的表面积为S=2×2×3+×2+×3=12+15π,故答案为12+15π.22.【答案】(5-5)【解析】如图所示:∵第一次是当阳光与地面成45°,∴AB=BC=5 m,∵第二次是阳光与地面成30°,∴BD==5(m),∴第二次观察到的影子比第一次长(5-5) m.故答案为(5-5)23.【答案】球体【解析】视图是同一种几何图形的几何体是正方体或者球体,所给选项中有球体,故答案为球体.24.【答案】【解析】∵△SPE∽△SBC,∴=,又∵PE=3.5 cm,BC=200 cm,SR=20 cm,∴=,解得SD=cm=m.故答案为.25.【答案】解如图,连接AD、AE,并延长分别交l于B、C,则CBDE为视点A的盲区,BC=60 000×=50(m).过A点作AM⊥BC于M,交DE于N,则AN⊥DE,MN=40 m.由△ADE∽△ABC,得==,即=,所以AM≈133(米).即小华家到公路的距离约为133米.【解析】根据盲区的定义,作出盲区,然后即可以通过相似三角形的性质求出距离.26.【答案】解根据视角的定义可得:离黑板近视角大,离黑板近看得清.结论:视角大,看得清.【解析】人眼到视平面的距离视固定的(视距),视平面左右两个边缘到人眼的连线得到的角度就是视角.27.【答案】解(1)圆,长方形:(2)三角形:(3)梯形,两个正方形:(4)梯形,圆:【解析】根据圆柱,三棱锥,棱台,圆台的特征作图.圆柱一共有3个面,其中下底面是圆,侧面展开是长方形;三棱锥一共有4个面,都是三角形;棱台一共有6个面,其中4个梯形,两个正方形;圆台一共有3个面,其中侧面展开图是梯形,两个圆形.28.【答案】解从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.【解析】由图一和图二可看出看出1的相对面是5;再由图二和图三可看出看出3的相对面是6,从而2的相对面是4.29.【答案】解因为汽车司机的视线在车前车后有看不见的地方,即盲区.汽车前进或倒退时,在车前或车后走很容易出危险.【解析】根据汽车司机的视线在车前车后有看不见的地方,很容易出危险,得出坐公共汽车下车后,不要从车前车后猛跑.30.【答案】解∵圆桌面的半径为1 m,∴圆桌面的面积为πm2,∴=,∵AB∥CD,∴△PAB∽△PCD,∴=,∵圆桌的高度为1.5 m,∴=,∴解得PA=1.5(m),答:吊灯距圆桌面的高度为1.5 m.【解析】首先求出圆桌的面积,进而利用相似三角形的性质得出面积比为1∶4,则相似比为1∶2,即可得出PA的长.31.【答案】解由于阳光是平行光线,即AE∥BD,所以∠AEC=∠BDC.又因为∠C是公共角,所以△AEC∽△BDC,从而有=.又AC=AB+BC,DC=EC-ED,EC=3.9,ED=2.1,BC=1.2,于是有=,解得AB=1.4(m).答:窗口的高度为1.4 m.【解析】根据阳光是平行光线,即AE∥BD,可得∠AEC=∠BDC;从而得到△AEC∽△BDC,根据比例关系,计算可得AB的数值,即窗口的高度.32.【答案】解(1)由于是平行投影,故A1B1=AB=8 cm;(2)过A作AH⊥BB1,垂足为H.∵AA1⊥A1B1,BB1⊥A1B1,∴四边形AA1B1H为矩形,∴AH=A1B1,在Rt△ABH中,∵∠BAH=30°,AB=8 cm,∴AH=AB cos 30°=8×=4(cm).即A 1B1=4cm.【解析】(1)由平行投影性质:平行长不变,可得A1B1=AB;(2)过A作AH⊥BB1,在Rt△ABH中有AH=AB cos 30°,可得A1B1的长度.。
期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。
苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)

苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)1.下列说法:①如果a 2>b 2,那么a>b ;4;③过一点有且只有一条直线与已知直线平行;④关于x 的方程2210mx x ++=没有实数根,那么m 的取值范围是m>1且m≠0;正确的有( )A .0个B .1个C .2个D .3个2.如图,如果从半径为9cm 的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .6cmB .3cmC .5cm D .3cm 3.如图,AB 是O 的直径,120BOD =∠,点C 为BD 的中点,AC 交OD 于点E ,1DE =,则AE 的长为( )A B C .D .4.若关于x 的一元二次方程mx 2﹣2x +1=0有两个实数根,则实数m 的取值范围是( )A .m ≤1B .m ≤﹣1C .m ≤1且m ≠0D .m ≥1且m ≠0 5.下列说法正确的是( )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差为2s 甲,乙组数据的方差为2s 乙,则乙组数据比甲组数据稳定6.某型号的手机连续两次降阶,每台手机售价由原来的1185元降到580元,设平均每次降价的百分率为,则列出方程正确的是( )A .580(1+x)2=1185B .1185(1-x)2=580C.580(1-x)2=1185 D.1185(1+x)2=5807.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A B.2 C.D.(1+8.一组数据2,3,5,4,5的众数是()A.2 B.3 C.4 D.59.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为( )A.4 B.6 C.8 D.1010.通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若测试结果每位同学的成绩各不相同.则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的()A.平均数B.众数C.中位数D.方差11.在如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是______.12.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是_____.13.一组数据2,4,5,,1的平均数为,那么这组数据的方差是___.14.关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,且x 1﹣x 2=2,则m 的值是_____.15.已知圆锥的母线长为5cm ,侧面积为15π2cm ,则这个圆锥的底面圆半径为_____cm.16.已知a ,b 是方程x 2+2017x +2=0的两个根,则(2+2019a +a 2)(2+2019b +b 2)的值为______.17.如图,四边形ABCD 为⊙O 的内接四边形,点E 在DA 的延长线上,已知∠BCD=110°,则∠BAE =_______°.18.已知O 的半径为4cm ,点P 在直线l 上,且点P 到圆心O 的距离为4cm ,则直线l 与O ______.19.如图,△ABC 中,AB =8,BC =10,AC =7,∠ABC 和∠ACB 的平分线交于点 I ,IE ⊥BC 于E ,则 BE 的长为________.20.一元二次方程290x x +=的解是______.21.如图,已知Rt △ABC 中,∠ACB=90°,以AC 为直径的圆O 交斜边AB 于D .过D 作DE ⊥AC 于E ,将△ADE 沿直线AB 翻折得到△ADF .(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为10,sin ∠FAD=35,延长FD 交BC 于G ,求BG 的长.22.已知:关于x 的方程()222120x m x m -+++=. ()1若方程总有两个实数根,求m 的取值范围;()2在(1)的条件下,若两实数根1x 、2x 满足1212x x x x +=,求m 的值.23.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?24.已知ABC,()1用无刻度的直尺和圆规作ABD,使A D B A C B.∠∠=且ABD的面积为ABC 面积的一半,只需要画出一个ABD即可(作图不必写作法,但要保留作图痕迹) ()2在ABC中,若ACB45∠=,AB4=,则ABC面积的最大值是______25.足球训练场上,教练在球门前画了一个圆圈进行无人防守的射门训练.如图,甲、乙两名运动员分别在C,D两处,他们争论不休,都说自己所在的位置对球门AB的张角大,如果你是教练,请评一评他们两个人谁的位置对球门AB的张角大?为什么?26.如图①,四边形ABCD 与四边形CEFG 都是矩形,点E ,G 分别在边CD ,CB 上,点F 在AC 上,AB =3,BC =4(1)求AF BG的值; (2)把矩形CEFG 绕点C 顺时针旋转到图②的位置,P 为AF ,BG 的交点,连接CP (Ⅰ)求AF BG 的值; (Ⅱ)判断CP 与AF 的位置关系,并说明理由.27.解下列方程(1)x 2+12x +27=0(2)3x 2-2=5x28.如图1,四边形ADBC 内接于O ,AB 为O 的直径,对角线AB 、CD 相交于点E .图1 图2图3(1)求证:90BCD ABD ∠+∠=︒;(2)如图2,点G 在AC 的延长线上,连接BG ,交O 于点Q ,CA CB =,ABD ABG ∠=∠,作GH CD ⊥,交DC 的延长线于点H ,求证:GQ = (3)如图3,在(2)的条件下,过点B 作//BF AD ,交CD 于点F ,3GH CH =,若CF =O 的半径.参考答案1.A【解析】【分析】①当a是负数且绝对值大于b(正数)时,不成立;②4,再求其算术平方根即可;③当点在直线上时,没有与已知直线平等的直线;④根据一元二次方程根的判别式进行判断.【详解】①当a=-5时,b=2时,a2>b2,a<b,故①错误;=4,故其算术平方根为2,故②错误;③当点在直线上时,没有与已知直线平行的直线,正确说法是:过直线外一点有且只有一条直线与已知直线平行,故③错误;④关于x的方程mx2+2x+1=0没有实数根,那么m的取值范围是m>1,故此选项错误.所以正确的有0个.故选:A.【点睛】考查了算术平方根的定义、一元二次方程根的判别式等知识,正确把握相关性质是解题关键.2.A【解析】【分析】设圆锥的底面圆半径为r,先利用圆的周长公式计算出剩下的扇形的弧长,然后把它作为圆锥的底面圆的周长进行计算即可.【详解】设圆锥的底面圆半径为r,∵半径为9cm的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=×2π×9=12π,∴2πr=12π,∴r=6.【点睛】本题考查了圆锥的有关计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长.也考查了圆的周长公式.3.A【解析】【分析】连接OC ,证明OD ⊥AC 即可解决问题.【详解】解:连接OC ,∵弧CD=弧BC ,∴60DOC BOC ∠=∠=︒,60AOD ∠=︒,∴AOD DOC ∠=∠,∴弧AD=弧CD ,∴OD AC ⊥,90AEO ∠=︒,设AO r =,则1OE r =-,∵·cos60OE AO =︒, ∴112r r -=,2r =,∴AE =故选:A.【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.4.C【解析】利用一元二次方程的定义和判别式的意义得到m≠0且△=(﹣2)2﹣4m≥0,然后求出两不等式的公共部分即可.【详解】根据题意得m≠0且△=(﹣2)2﹣4m≥0,解得m≤1且m≠0.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.C【解析】【分析】根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【详解】A、一个游戏中奖的概率是1100,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;D. 若甲组数据的方差为2s甲,乙组数据的方差为2s乙,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.6.B【解析】根据降价后的价格=原价(1-降低的百分率),本题可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【详解】设平均每次降价的百分率为x,由题意得出方程为:1185(1−x)2=580.故选:B.【点睛】本题考查的是由实际问题列出一元二次方程,正确列出方程是解题的关键.7.C【解析】【分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:,则.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.8.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【详解】解:这组数据中出现次数最多的数据为:5.故众数为5,故选:D.【点睛】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.9.C【解析】【分析】最短弦是过A点垂直于OA的弦.根据垂径定理和勾股定理求解.【详解】由垂径定理得,该弦应该是以OA为中垂线的弦BC.连接OB.已知OB=5,OA=3,由勾股定理得AB=4.所以弦BC=8.故选C.【点睛】此题主要考查了学生对垂径定理及勾股定理的理解运用.10.C【解析】【分析】由于从9个人中挑选5位,则应根据中位数的意义进行解答.【详解】∵从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,∴则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的中位数,故选C .【点睛】本题考查了统计的相关知识,涉及了平均数、中位数、众数、方差等,要结合具体的问题对统计量进行合理的选择和恰当的运用.11.13【解析】【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合S 3时才发光,所以小灯泡发光的概率等于1.3【详解】根据题意,三个开关,只有闭合3S 小灯泡才发光,所以小灯泡发光的概率等于13. 故答案为:13【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.12.53π﹣ 【解析】【分析】如图,图中S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE .根据已知条件易求得OB =OC =OD =2,BC=CE =4.∠ECB=60°,∠OEC=30°,所以由扇形面积公式、三角形面积公式进行解答即可 【详解】解:如图,连接CE .∵AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB ,∴∠ACB =90°,OB =OC =OD =2,BC =CE =4.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在直角△OEC 中,OC =2,CE =4,∴∠CEO =30°,∠ECB =60°,OE =∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =2604360 π ﹣14 π×22﹣12×2×=53π﹣,故答案为:53π﹣【点睛】此题考查扇形面积的计算,掌握运算法则是解题关键13.2【解析】【分析】根据平均数的计算方法求得a 的值,再利用方差公式计算这组数据的方差即可.【详解】∵数据2,4,5,a ,1的平均数为a , ∴(2 +4+5+a+1)=a ,∴a=3,∴s 2=[(2-3)2+(4-3)2+(5-3)2+(3-3)2+(1-3)2]=2.故答案为:2.【点睛】本题考查了平均数及方差的计算公式,熟知平均数及方差的计算公式是解决问题的关键. 14.m =0或m =﹣2.【解析】【分析】由韦达定理得出x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,结合x 1﹣x 2=2知122x m x m =-+⎧⎨=-⎩,代入x 1x 2=﹣4m 可得关于m 的方程,解之可得答案.【详解】解:∵关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,∴x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,又∵x 1﹣x 2=2,∴1212222x x m x x +=-+⎧⎨-=⎩, 解得:122x m x m =-+⎧⎨=-⎩, 代入x 1x 2=﹣4m 得﹣m (﹣m+2)=﹣4m ,解得:m =0或m =﹣2,故答案为:m =0或m =﹣2.【点睛】本题主要考查一元二次方程根与系数的关系,根据韦达定理及x 1﹣x 2=2得出关于m 的方程是解题的关键.15.3【解析】【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【详解】∵圆锥的母线长是5cm ,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:215=65ππ⨯, ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=62ππ=3cm , 故答案为:3.【点睛】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.8.【解析】【分析】根据已知条件得到2+2017a+a2=0,2+2017b+b2=0,ab=2,代入代数式即可得到结论.【详解】∵a,b是方程x2+2017x+2=0的两个根,∴2+2017a+a2=0,2+2017b+b2=0,ab=2,∴(2+2019a+a2)(2+2019b+b2)=(2+2017a+2a+a2)(2+2017b+2b+b2)=4ab=8,故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.17.110【解析】【分析】根据圆内接四边形的任意一个外角等于它的内对角解答.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠BAE=∠BCD=110°,故答案为:110.【点睛】本题考查了圆内接四边形的性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.18.相交或相切【解析】【分析】根据直线与圆的位置关系即可得出结论.【详解】解:∵点P在直线l上,且点P到圆心O的距离为4cm,等于直径,∴点P在⊙O上∴直线l与⊙O相交或相切故答案为:相交或相切【点睛】本题考查直线与圆的位置关系,解题的关键是熟知直线与圆的三种位置关系.19.【解析】【分析】如图作△ABC 的内切圆,切点分别为 E ,F ,G ,根据切线长定理即可解决问题;【详解】解:如图作△ABC 的内切圆,切点分别为 E ,F ,G ,∵BE =BF ,AF =AG ,CE =CG ,∴BE ==, 故答案为. 【点睛】本题考查角平分线的性质,三角形的内切圆,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.0x =或9x =-【解析】【分析】因式分解法求解可得.【详解】解:()90x x +=,0x ∴=或90x +=,解得:0x =或9x =-,故答案为:0x =或9x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(1)见解析(2)15 4【解析】【分析】(1)由△ADE沿直线AB翻折得到△ADF,得到∠DAE=∠DAF,∠AED=∠F=90°,由于OA=OD,于是得到∠DAE=∠ODA,根据平行线的判定定理得到OD∥AF,根据平行线的性质得到OD⊥DF,于是得到结论;(2)连接DC,由于AC是O的直径,即CD⊥AB;又FD与BC均是O的切线且相交于点G由切线长定理可得:GD=GC,于是得到∠GDC=∠GCD,由于GD是Rt△BDC斜边上的中线,即GD=12BC,由于△ADE沿直线AB翻折得到△ADF,得到sin∠DAE=sin∠DAF=35,解直角三角形得到sin∠DAC=DCAC=10DC=35,得DC=6,由勾股定理得AD=8;根据三角形相似即可得到结论.【详解】(1)证明:∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∠AED=∠F=90°,又∵OA=OD,∴∠DAE=∠ODA,∴∠DAF=∠ODA,∴OD∥AF,∴∠ODF+∠F=180°,∴∠ODF=90°,∴OD⊥DF,∴DF是O的切线;(2)连接DC,∵AC是圆O的直径,∴∠ADC=90°,即CD⊥AB;又∵FD与BC均是圆O的切线且相交于点G,由切线长定理可得:GD=GC,∴∠GDC=∠GCD,又∵Rt△BDC中,∠GCD+∠B=90°,∠GDC+∠GDB=90°,∴∠B=∠GDB,∴GD=GB,∴GD是Rt△BDC斜边上的中线,即GD=12 BC,∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∴sin∠DAE=sin∠DAF=35,又∵圆O的半径为5,∴AC=10,Rt△DAC中,∠ADC=90°,∴sin∠DAC=DCAC=DC10=35,得DC=6,由勾股定理得AD=8;在Rt △ADC 与Rt △ACB 中,∠ADC=∠ACB=90°,∠DAC=∠BAC ,∴Rt △ADC ∽Rt △ACB , ∴CD AD BC AC =,即6810BC =,解得BC=152; ∴GB=GD=12BC=154. 【点睛】本题考查的知识点是切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质. 22.(1)12m >;(2)2m =. 【解析】【分析】 ()1由0>得840m ->,解之可得;()2由()1221x x m +=+,2122x x m =+,结合1212x x x x +=得()2212m m +=+,解之可得m 的值,依据()1中的结果取舍即可得.【详解】解:()()()221[21]412m m =-+-⨯⨯+ 2248448m m m =++--840m =->,12m ∴>; ()()12221x x m +=+,2122x x m =+,∴由1212x x x x +=得()2212m m +=+,解得:10m =,22m =, 12m >, 2m ∴=.【点睛】本题主要考查根的判别式、根与系数的关系,关键是掌握1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =.23.(1)a=40,b=94,c=99;(2)八年级,见解析;(3)参加此次竞赛活动成绩优秀的人数是468人.【解析】【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【详解】解:(1)3120%10%1004010a ⎛⎫=---⨯= ⎪⎝⎭, ∵八年级10名学生的竟赛成绩的中位数是第5和第6个数据的平方数,∴ 9494942b +== ∵在七年级10名学生的竟赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468人, 答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问24.(1)详见解析;(2)4+【解析】【分析】(1)先作出ABC 的外接圆,再作AB 边上的高,继而作出此高的中垂线,与外接圆的交点即为所求;(2)作以AB 为弦且AB 所对圆心角为90°的O ,则垂直于弦AB 的直径与优弧的交点即为使三角形面积最大的点C ,根据作图得出AB 边上的高可得答案.【详解】∠即为所求.解:()1如图1所示,ABD()2如图2所示,作以AB为弦,且AB所对圆心角为90的O,C点轨迹为圆上不与AB重合的任一点,∴当C在位置上时,高最长,故面积最大,=,AB4AP BP OP2∴===,则OC OA==∴=+PC2ABC ∴的面积为(11AB PC 42422⋅⋅=⨯⨯+=+故答案为:4+.【点睛】 本题主要考查作图复杂作图,解题的关键判断出点C 是以AB 为弦的圆上、圆的确定及线段的中垂线的尺规作图等知识点.25.一样大,理由见解析.【解析】【分析】根据圆周角定理,即可确定两角的大小.【详解】解:甲、乙两个人所在的位置对球门AB 的张角一样大.根据圆周角定理的推论可得∠ADB=∠ACB.【点睛】本题的解答关键是对圆周角定理的灵活运用.圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半;即同弦或等弦所对的圆周角相等.26.(1)54AF BG =;(2)(Ⅰ)54AF BG =;(Ⅱ)CP ⊥AF ,理由:见解析. 【解析】【分析】(1)根据矩形的性质得到∠B =90°,根据勾股定理得到AC =5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF ,根据旋转的性质得到∠BCG =∠ACF ,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC =∠AFC ,推出点C ,F ,G ,P 四点共圆,根据圆周角定理得到∠CPF =∠CGF =90°,于是得到结论.【详解】(1)∵四边形ABCD 是矩形,∴∠B =90°,∵AB =3,BC =4,∴AC=5,∴54 ACBC=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴54 CF CACG CB==,∵FG∥AB,∴54 AF CFBG CG==;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵54 AC CFBC CG==,∴△BCG∽△ACF,∴54 AF ACBG BC==;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.27.(1)x 1=-3,x 2=-9;(2)x 1=2,x 2=-13. 【解析】【分析】 (1)直接把等号左边进行因式分解,然后可得x+3=0,x+9=0,再解即可;(2)先整理成一般形式,然后用公式法解答即可.【详解】(1)(x+3)(x+9)=0,x+3=0,x+9=0,解得:x 1=-3,x 2=-9;(2) 3x 2-2=5x整理为:3x 2-5x-2=0,这里,a=3,b=-5,c=-2,b 2-4ac=(-5)2-4×3×(-2)=49>0,∴ ∴x 1=2,x 2=13-.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.28.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)根据圆周角定理即可证明;(2)作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ ,证明AMG QAG ∆≅∆,得到45GMH AMD ∠=∠=︒,易求得GQ =;(3)延长MG 交DB 于N ,延长BF 交6030m n =⎧⎨=-⎩于W ,则四边形AMND 是正方形,求出13EF ED =,设EF x =,则3ED x =,列式求出EF ,易得AB ,问题得解. 【详解】解:(1)证明:AB Q 是直径90BCD ABD ∴∠+∠=︒BCD DAB ∠=∠90DAB DBA ∴∠+∠=︒(2)证明:作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ,AB Q 是直径,90AQB ∴∠=︒,90ACB ∠=︒ABD ABG ∠=∠AQ AD ∴=CA CB =45CBA CAB ∴∠=∠=︒45ADM ∴∠=︒AM AD ∴=AM AQ ∴=BAD BAQ ∠=∠,45BAQ QAG ∠+∠=︒45BAD GAM ∴∠+∠=︒GAQ GAM ∴∠=∠AMG QAG ∴∆≅∆90AMG ∴∠=︒45GMH AMD ∴∠=∠=︒MG ∴=GQ ∴=(3)延长MG 交DB 于N ,∴四边形AMND 是正方形延长BF 交6030m n =⎧⎨=-⎩于W //BW MN BWG MGA ∴∠=∠BWG BGW ∴∠=∠BG BW ∴=MG BD BW +=WF MG ∴=FC MC ∴=BAD BCD HGC ∠=∠=∠,3HG CH =1tan 3BAD ∴∠=13BD BF AD AD ∴== 13EF ED ∴= 设EF x =,则3ED x =222EC CM DE =+222((3)x x ∴+=+x ∴=DF =4BD =,12AD =AB ∴=r =【点睛】本题是圆和四边形的综合问题,考查了圆周角定理、三角形全等的判定和性质以及三角函数等知识点,涉及知识点较多,图形较为复杂,能够作出辅助线是解题关键.。
金考卷:苏科版江苏省2019-2020学年七年级数学上学期期末原创卷二(含解析版答案)

……………………:______江苏省2019-2020学年上学期期末原创卷(二)七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:苏科版七上全册。
第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.结果为正数的式子是 A .6(1)- B .25-C .|3|--D .31()3-2.下列各组中的两个单项式,属于同类项的一组是 A .23a b 与23ab B .2x 与2xC .23与2aD .4与12-3.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C4.如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是A .文B .明C .诚D .信5.如图所示,AC ⊥BC 于C ,CD ⊥AB 于D ,图中能表示点到直线(或线段)的距离的线段有A .1条B .2条C .3条D .5条6.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人 A .赚16元 B .赔16元C .不赚不赔D .无法确定第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分) 7.比较大小,4-__________3(用“>”“<”或“=”填空).8.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是__________℃. 9.多项式2526235x y x y --+的一次项系数、常数项分别是__________.10.已知2(3)30m m xm --+-=是关于x 的一元一次方程,则m =__________.11.如果21a -与()22b +互为相反数,那么ab 的值为__________. 12.已知3x =是方程()427k x k x +--=的解,则k 的值是__________.13.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD =56°23′,则∠BOC 的度数为__________.……○………………内……………… 此……○………………外………………14.如图,长方形纸片的长为6cm ,宽为4cm ,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________.15.小颖按如图所示的程序输入一个正整数x ,最后输出的结果为656,请写出符合条件的所有正整数x 的值为__________.16.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2020个图形中共有__________个〇.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分7分)计算:(1)212(3(24)2-÷---; (2)﹣24+16÷(﹣2)3×|﹣3﹣1|. 18.(本小题满分7分)解方程:(1)98512x x -+-+=; (2)11(2)(3)32x x +=+. 19.(本小题满分7分)先化简,再求值:()22234232322⎛⎫--++- ⎪⎝⎭xy x xy y x xy ,其中x =3,y =–1. 20.(本小题满分8分)如图,已知线段a ,b ,用尺规作一条线段c ,使c =2b –a .21.(本小题满分8分)如图,已知∠AOB =90°,∠EOF =60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠COB 和∠AOC 的度数.22.(本小题满分7分)某船从A 地顺流而下到达B 地,然后逆流返回,到达A 、B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A 、C 两地之间的路程为10千米,求A 、B 两地之间的路程.23.(本小题满分8分)有8袋大米,以每袋25kg 标准,超过的千克数记作正数,不足的千克数记作负数,称后记录如下:1.2+,0.1-, 1.0+,0.6-,0.5-,0.3+,0.4-,0.2+.(1)这8袋大米中,最轻和最重的这两袋分别是多少千克? (2)这8袋大米一共多少千克?24.(本小题满分82(10y -=).(1)求x y ,的值;(2)求()()()()()()1111112220192019xy x y x y x y +++⋯+++++++的值.25.(本小题满分8分)老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的:()()421132x x -=-+⋯①,84136x x -=--⋯②, 83164x x +=-+⋯③, 111x =-⋯④,111x =-⋯⑤, 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在__________(填编号);然后,你自己细心地接下面的方程: (1)()()335221x x +=-;(2)2157146y y ---=.26.(本小题满分9分)网上办公,手机上网已成为人们日常生活的一部分,我县某通信公司为普及网络使用,特推出以下两种电话拨号上网收费方式,用户可以任选其一. 收费方式一(计时制):0.05元/分;收费方式二(包月制):50元/月(仅限一部个人电话上网); 同时,每一种收费方式均对上网时间加收0.02元/分的通信费. 某用户一周内的上网时间记录如下表:(1)计算该用户一周内平均每天上网的时间.(2)设该用户12月份上网的时间为x 小时,请你分别写出两种收费方式下该用户所支付的费用.(用含x 的代数式表示)(3)如果该用户在一个月(30天)内,按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?并说明理由.27.(本小题满分11分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折. (1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和(10)a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若60a =,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2019-2020学年上学期期末原创卷A 卷七年级数学·全解全析1.【答案】A【解析】A 、6(1)-=1,故A 正确;B 、25-=–25,–52表示5的2次幂的相反数,为负数,故B 错误;C 、|3|--=–3,故错误;D 、31(3-=–127,故错误.故选A . 2.【答案】D【解析】A .23a b 与23ab ,字母相同,但各字母次数不同,故错误; B .2x 与2x,字母相同,但各字母次数不同,故错误; C .23与2a ,一个为常数项,一个的次数是2,故错误; D .4与12-,均为常数项,故正确;所以答案为:D 3.【答案】C【解析】由A 表示–2,B 表示–1,C 表示0.75,D 表示2. 根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点. 故答案为C . 4.【答案】A【解析】这是一个正方体的平面展开图,共有六个面,其中面“文"与“善"相对,面“明"与面“信"相对,“诚”与面“友"相对.故选A . 5.【答案】D【解析】表示点C 到直线AB 的距离的线段为CD ,表示点B 到直线AC 的距离的线段为BC ,表示点A 到直线BC 的距离的线段为AC ,表示点A 到直线DC 的距离的线段为AD ,表示点B 到直线DC 的距离的线段为BD ,共五条.故选D . 6.【答案】B【解析】设此商人赚钱的那件衣服的进价为x 元,则(125%)120x +=,得96x =;设此商人赔钱的那件衣服进价为y 元,则(125%)120y -=,解得160y =; 所以他一件衣服赚了24元,一件衣服赔了40元, 所以卖这两件衣服总共赔了4024=16-(元). 故选B . 7.【答案】<【解析】4 3.-<故答案为:.< 8.【答案】–1【解析】根据题意得:–5+4=–1(℃),∴调高4℃后的温度是–1℃.故答案为:–1. 9.【答案】3-,5【解析】多项式2526235x y x y --+的一次项的系数是–3,常数项是5.故答案为:–3,5. 10.【答案】–3【解析】根据一元一次方程满足的条件可得:21m -=且m –3≠0,解得:m =–3. 11.【答案】–1【解析】由题意可得:221(2)0a b -++=,∴210,20a b -=+=,解得1,22a b ==-, ∴1(2)12ab =⨯-=-.故答案为:–1. 12.【答案】2【解析】把x =3代入方程得:7k ﹣2k ﹣3=7,解得k =2.故答案为:2. 13.【答案】146°23′【解析】∵EO ⊥AB 于点O ,∴∠EOA =90°,又∵∠EOD =56°23′,∴∠COB =∠AOD =∠EOD +∠EOA =90°+56°23′=146°23′.故答案为:146°23′.14.【答案】16【解析】设剪去的长方形的长为a ,宽为b ,a +b =6, 则左下角长方形的长为a ,宽为4–b ,周长为8+2a –2b , 右上角长方形的长为b ,宽为4–a ,周长为8+2b –2a , 所以阴影部分周长和为:8+2a –2b +8+2b –2a =16, 故答案为:16. 15.【答案】5、26、131【解析】由题意得:运行一次程序5x +1=656,解得x =131;运行二次程序5x +1=131,解得x =26;运行三次程序5x +1=26,解得x =5;运行四次程序5x +1=5,解得x =0.8(不符合,即这次没有运行), ∴符合条件的所有正整数x 的值为131、26、5. 故答案为:131、26、5. 16.【答案】6061【解析】观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…, 第n 个图形共有:1+3n ,∴第2020个图形共有1+3×2020=6061,故答案为:6061. 17.【解析】(1)原式54(2)2=-÷-- 2425=-⨯+825=-+25=;(3分) (2)原式=–16+16÷(–8)×4 =–16+(–2)×4 =–16–8 =–24.(7分)18.【解析】(1)去分母得:–10x +2=–9x +8,移项合并得:–x =6, 解得x =–6;(3分) (2)去分母得:2x +4=3x +9, 解得x =–5.(7分)19.【解析】原式=4xy –3x 2+6xy –4y 2+3x 2–6xy =4xy –4y 2.(4分)当x =3,y =–1时,原式=4×3×(–1)–4×(﹣1)2 =–12–4 =–16.(7分)20.【解析】如图所示,线段AD 即为所求.……○………………○…………(8分)21.【解析】90AOB ∠=,OE 平分AOB ∠,45BOE ∴∠=,又60EOF ∠=,604515FOB ∴∠=-=,(4分)OF 平分BOC ∠,21530COB ∴∠=⨯=,3090120AOC BOC AOB ∴∠=∠+∠=+=.(8分)22.【解析】设A 、B 两码头之间的航程为x 千米,则B 、C 间的航程为(x –10)千米,由题意得,1078282x x -+=+-,(4分) 解得x =32.5.答:A 、B 两地之间的路程为32.5千米.(7分)23.【解析】(1)这8袋大米中,最轻和最重的这两袋分别是24.4千克,26.2千克;(4分)(2)258( 1.2)(0.1)( 1.0)(0.6)(0.5)(0.3)(0.4)(0.2)⨯+++-+++-+-+++-+201.1=(千克). 答:这8袋大米一共201.1千克.(8分)24.【解析】(1)根据题意得2010x y -=-=,,解得21x y ==,;(4分) (2)原式111121324320212020=+++⋯+⨯⨯⨯⨯ 111111112233420202021=-+-+-+⋯+-112021=-20202021=.(8分) 25.【解析】小明错在①;故答案为:①;(2分)(1)去括号得:91542x x +=-, 移项合并得:517x =-, 解得 3.4x =-;(5分)(2)去分母得:()()32125712y y ---=, 去括号得:63101412y y --+=, 移项合并得:41y -=,解得0.25y =-.(8分)26.【解析】(1)该用户一周内平均每天上网的时间:354033503474048++++++=40(分钟).答:该用户一周内平均每天上网的时间是40分钟;(3分)(2)采用收费方式一(计时制)的费用为:0.05×60x +0.02×60x =4.2x (元), 采用收费方式二(包月制)的费用为:50+0.02×60x =(50+1.2x )(元);(6分) (3)40分钟=23h . 若一个月内上网的时间为30x =20小时,则计时制应付的费用为4.2×20=84(元),包月制应付的费用为50+1.2×20=74(元). 由84>74,所以包月制合算.(9分)27.【解析】(1)设每个足球的定价是x 元,则每套队服是(x +50)元,根据题意得2(x +50)=3x ,解得x =100,x +50=150.答:每套队服150元,每个足球100元;(4分) (2)到甲商场购买所花的费用为:150×100+100(a ﹣10010)=(100a +14000)元, 到乙商场购买所花的费用为:150×100+0.8×100•a =(80a +15000)元;(8分) (3)当60a =时,到甲商场购买所花的费用为:100×60+14000=20000(元), 到乙商场购买所花的费用为:80×60+15000=19800(元), 所以到乙商场购买合算.(11分)。
2021-2022学年度九年级数学第一学期期末学业水平测试(含答案)

2021−2022学年度九年级数学第一学期期末学业水平测试(含答案)(时间120分钟 满分120分)一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求) 1.30°角的正切值为( )A B .12C .2D 2.如图,D 为△ABC 边BC 上一点,要使△ABD ∽△CBA ,应该具备下列条件中的( ) A .AC ABCD CD=B .AB BCCD AD=C .AB BDCB AB=D .AC CBCD AC=3.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y += B .21()12y -=C .211()22y +=D .213()24y -=4.将抛物线22y x =-向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为( ) A .2(2)5y x =-- B .2(2)3y x =+- C .2(2)5y x =+-D .2(2)3y x =--第2题图第5题图5.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得AC=BD=12cm ,C ,D 两点之间的距离为3cm ,圆心角为60°,则图②中摆盘的面积是( ) A .452πcm 2 B .24πcm 2 C .36πcm 2 D .72πcm 26.方程29180x x -+=的两个根分别是等腰三角形的底和腰,则这个等腰三角形的周长为( ) A .12B .15C .12或15D .187.下列关于圆的说法中,正确的是( ) A .等圆中,相等的弦所对的弧也相等 B .过圆心且平分弦的直线一定垂直于这条弦C .经过半径的端点且垂直于这条半径的直线是圆的切线D .三角形的内心一定在三角形内部,且到三条边的距离相等 8.如果P (m,y 1)Q (-3, y 2)在反比例函数ky x=(k >0)的图象上,且y 1>y 2,则m 的取值范围是( )A .m <-3 B.m >0或m <-3C.-3<m <0D.m >-39.某小区2019年屋顶绿化面积为22000m ,计划2021年绿化面积要达到2880m 2.设该小区2019年至2021年屋顶绿化面积的年平均增长率为x ,则可列方程为( ) A .2000(12)2880x +=B .2000(1)2880x +=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=10.如图,△ABC 中,∠A =90°,AC =3,AB =4,半圆的圆心O 在BC 上,半圆与AB ,AC 分别相切于点D ,E ,则半圆的半径为( ) A .127B .712C .72D .111.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数cyx 在同一平面直角坐标系中的图象可能是()A.B.C.D.12.某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于24分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果)13.若正六边形的边长为2,则此正六边形的边心距为________.14.如图,在Rt△ABC中,∠C=90°,sin A=35,AB=10,D是AC的中点,则BD=______.第11题图第12题图15.如图,在△ABC 中,∠A =70°,∠B =55°,以BC 为直径作⊙O ,分别交AB 、AC于点E 、F ,则的度数为________.16.某种服装平均每天可以销售20件,每件盈利32元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,若每天要盈利900元,每件应降价 元. 17.如图,矩形ABCD 的边长AB =3cm ,AC =cm ,动点M 从点A 出发,沿AB 以1cm/s 的速度向点B 匀速运动,同时动点N 从点D 出发,沿DA 以2cm/s 的速度向点A 匀速运动.若△AMN 与△ACD 相似,则运动的时间t 为_____s .三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.) 18. (本题满分12分,每小题4分)解方程: (1)21202x x +-=(用配方法); (2)3x (x ﹣1)=2(1﹣x );(3)2x 2x ﹣5=0;第14题图第15题图 第17题图19. (本题满分6分)如图,在□ABCD中,点E在BC上,∠CDE=∠DAE.(1)求证:△ADE∽△DEC;(2)若AD=6,DE=4,求CE的长.第19题图20.(本题满分6分)如图,用长为24m的篱笆,一面利用墙(墙的最大可用长度为10m)围成中间有一道篱笆的长方形花圃,现要围成面积为45m2的花圃,求AB的长是多少?第20题图21.(本题满分8分)如图,在斜坡P A 的坡顶平台处有一座信号塔BC ,在坡顶A 处测得该塔的塔顶B 的仰角为76︒,在坡底的点P 处测得塔顶B 的仰角为45︒,已知斜坡长P A=26m ,坡度为1:2.4,点A 与点C 在同一水平面上,且AC ∥PQ ,BC ⊥AC .请解答以下问题:(1)求坡顶A 到地面PQ 的距离;(2)求信号塔BC 的高度.(结果精确到1m ,参考数据:sin760.97︒≈,cos760.24︒≈,tan76 4.00︒≈)22.(本题满分7分)关于x 的一元二次方程2(2)420k x x --+=有两个不相等的实数根. (1)求k 的取值范围;(2)如果符合条件的最大整数k 是关于k 的一元二次方程210k mk ++=的根,求m 的值.第21题图23.(本题满分8分)如图,AB 为⊙O 的直径,C ,D 是⊙O 上的点,P 是⊙O 外一点,AC ⊥PD 于点E ,AD 平分∠BAC .(1)求证:PD 是⊙O 的切线;(2)若DE =3,∠BAC=60°,求⊙O 的半径.24.(本题满分10分)如图,直线y mx n =+与双曲线ky x=相交于()1,2,(2,)A B b -两点,与x 轴交于点E ,与y 轴相交于点C .(1)求m, n 的值;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积;(3)在x 轴上是否存在异于D 点的点P ,使PAB DAB S S ∆∆=若存在,直接写出P 点坐标;若不存在,说明理由.第23题图第24题图25.(本题满分12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且∠OBC=30°.OB=3OA.(1)求抛物线y=ax2+bx+3的解析式;(2)点P为直线BC上方抛物线上的一动点,P点横坐标为m,过点P作PF∥y轴交直线BC于点F,写出线段PF的长度l关于m的函数关系式;(3)过点P作PD⊥BC于点D,当△PDF的周长最大时,求出△PDF周长的最大值及此时点P的坐标.第25题图参考答案一、选择题 (共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果)14. 15. 70°; 16. 2; 17. 1.5或2.4三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.) 18. (本题满分12分,每小题4分)(1)x 114-, x 2=144--; (2)x 1=1, x 2=-23;(3)x 1x 2 19. (本题满分6分)证明:(1)四边形ABCD 是平行四边形//AD BC ∴, …………1分ADE CED =∠∴∠. CDE DAE ∠=∠,∴ADE DEC △∽△. ……………3分 (2)~ADE DEC ∆∆,AD DE DE EC∴=, ……………4分 6AD =,4DE =,83CE ∴=. ……………6分20. (本题满分6分)设花圃的宽AB 为x 米,则BC=(24-3x )米,由题意得:x (24-3x )=45, ……………3分 整理得:28150x x -+=,解得:15=x ,23x =, ……………5分 检验:当5x =时,24-3x =9<10,符合题意; 当3x =时,24-3x =15>10,不合题意,舍去,∴AB 的长是5m . ……………6分 21. (本题满分8分) 解:(1)如图,过点A 作AH ⊥PQ ,垂足为H ,斜坡AP 的坡度为1:2.4,152.412AH PH ∴==. 设5AH k =,则12PH k =, 在Rt AHP ∆中,由勾股定理,得()()222251213AP AH PH k k k =+=+=.1326k ∴=,解,得2k =.1(0)AH m ∴=.答:坡顶A 到地面PQ 的距离为10m . ……………4分 (2)如图,延长BC 交PQ 于点D , 由题意可知四边形AHDC 是矩形,10CD AH ∴==,AC DH =.45BPD ∠=︒,90BDP ∠=︒,PD BD ∴=.12224PH =⨯=m ,设BC x =,则1024x DH +=+. ()14AC DH x ∴==-m .在Rt ABC ∆中,tan tan 76BC BAC AC ∠=︒=,即4.0014xx ≈-. 解得19()x m ≈.答:信号塔BC 的高度约为19m . ……………8分 22. (本题满分7分)(1)方程2(2)420k x x --+=是关于x 的一元二次方程,20k ∴-≠,解得2k ≠,又一元二次方程2(2)420k x x --+=有两个不相等的实数根,∴其根的判别式2(4)42(2)0k ∆=--⨯->,解得4k <, ……………3分 ∴k 的取值范围是4k <且2k ≠; ……………4分 (2)由(1)得:3k =, ……………5分3k =是一元二次方程210k mk ++=的根,23310m +∴+=,解得103m =-. ……………7分 23. (本题满分8分) (1)证明:连接OD , ……………1分∵AD 平分∠BAC , ∴∠BAD =∠DAE , ∵OA=OD ,∴∠ODA =∠OAD , ∴∠ODA =∠DAE ,∴OD ∥AE , ……………2分 ∴∠ODP=∠AEP ∵AC ⊥PD ,∴∠ODP=∠AEP=90°, ∴OD ⊥PE ,∵OD 是⊙O 的半径,∴PD 是⊙O 的切线; ……………4分 (2)解:连接BD ,∵AD 平分∠BAC ,∠BAC=60°, ∴∠BAD=∠DAE=30°,∵AC ⊥PE ,∴AD=2DE= ……………5分 ∵AB 为⊙O 的直径, ∴∠ADB=90°, ∴AB=2BD ,设BD=x ,则AB=2x , ∵AD 2+BD 2=AB 2,∴()222(2x x +=∴BD=2,AB=4, ……………7分 ∴AO=2,∴⊙O 的半径为2. ……………8分 24. (本题满分10分)解:(1)∵点A (-1,2)在双曲线ky x=上,∴12k -=, 解得,2k =-, ……………1分 ∴反比例函数解析式为:2y x=-, (2,)B b = ∴212b =-=-, 则点B 的坐标为(2,-1), ……………2分 把A (-1,2),B(2,-1)代入y mx n =+得:122m nm n-=+⎧⎨=-+⎩, 解得11m n =-⎧⎨=⎩; ……………4分(2)对于y =-x +1,当x =0时,y =1, ∴点C 的坐标为(0,1), ∵点D 与点C 关于x 轴对称,∴点D 的坐标为(0,-1), ……………5分 ∴△ABD 的面积=12×2×3=3; ……………7分 (3)P 点坐标为(-1,0)或(3,0).(写对1个得2分) ………10分 25. (本题满分12分)解:(1)由抛物线的表达式知,OC =3,则OB=tan 30OC︒=33=3OA ,解得OA =3,故点A ,B ,C 的坐标分别为(-3,0)、(33,0)、(0,3) ……………2分 将A (-3,0),B (33,0)代入y=ax 2+bx +3,得: a =-13,b=233∴2123333y x x =-++; ……………4分(2)延长PF 交x 轴于点E ,由B ,C 的坐标得,直线BC 的表达式为y=3-x +3, ……………5分设点P (m ,2123333m m ),则点F (m ,3-m+3),∴l =2133333m m ⎛⎫⎛⎫-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-+=2123333m m +m -3=213m -+, ……………8分 (3)∵∠DPF=90°-∠DFP=90°-∠EFB=∠ABC=30°,在Rt △PDF 中,PD=cos30︒⋅PF=2PF ,DF=sin30︒⋅PF=12PF ,△PDF 的周长=PD+PF+DF=(2+1+12)PF =32+PF ,则△PDF 的周长PF ……………9分 ∴当l 取到最大值时,△PDF 的周长取到最大值.当m l 最大=94, ……………10分此时,△PDF 的周长,∴点P 的坐标为(2,154),△PDF 的周长最大值为278+.………12分。
2019-2020学年苏州市区九年级上册数学期末考试试卷(有答案)苏科版-最新推荐

苏州市区学校 2019-2020学年度第 二 学 期 期终考试 试卷九 年级 数学本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0. 5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0. 5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上.1. 数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 (▲) A .-3+5B. -3-5C. |-3+5|D. |-3-5|2. 下列计算正确的是 (▲) A .330--= B .02339+= C .331÷-=- D .()1331-⨯-=-3.下列运算正确的是 (▲)A .x 4+x 2=x 6B .x 2•x 3=x 6C .(x 2)3=x 6D .x 2﹣y 2=(x ﹣y )24. 我市5月的某一周七天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是 (▲) A .23,24 B .24,22 C .24,24 D .22,245.已知M =a ﹣1,N =a 2﹣a (a 为任意实数),则M 、N 的大小关系为 (▲)A .M <NB .M =NC .M >ND .不能确定6. 在平面直角坐标系中,将二次函数22y x =的图象向上平移2个单位,所得函数图象的解析式为(▲) A .222y x =+B .222y x =-C .22(2)y x =-D .22(2)y x =+7. 由二次函数22(3)1y x =-+,可知 (▲)A.其图像的开口向下B.其图像的对称轴为直线3x =-C.其最小值为1D.当3x <时,y 随x 的增大而增大8. 下列命题中,正确的是 (▲) A .平面上三个点确定一个圆 B .等弧所对的圆周角相等 C .平分弦的直径垂直于这条弦 D .与某圆一条半径垂直的直线是该圆的切线9. 如图,过⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,OP 交⊙O 于点C ,点D 是优弧AMB 上不与点A 、点B 重合的一个动点,连接AD 、CD ,若∠APB =80°,则∠ADC 的度数是 (▲)A .15°B .20°C .25°D .30°10. 如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标的最大值为 (▲) A .-3 B .1 C .5 D .8MP第9题 第10题 第18题二、填空题 本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应位置上.11. 当x ▲ 时,分式无意义.12.花粉的质量很小,一粒某种植物花粉的质量约为0.000037mg ,已知1g =1000mg ,那么0.000037mg 可以用科学记数法表示为 ▲ .13.计算:222a a b b b a ⎛⎫-÷= ⎪⎝⎭▲ . 14.在一个暗箱中,只装有a 个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,则a = ▲ . 15. 一圆锥的侧面积为15π,底面半径为3,则该圆锥的母线长为 ▲ .16. 已知抛物线234y x x =+-与x 轴的两个交点为()1,0x 、()2,0x 则212315x x -+= ▲ .17. 已知抛物线y =x 2-2mx -4 (m >0)的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为 ▲ 。
浙教版2019-2020九年级数学第一学期期末模拟测试题2(基础 附答案详解)

浙教版2019-2020九年级数学第一学期期末模拟测试题2(基础 附答案详解)一、单选题1.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD=DB ,OC=5,CD=2,则AB长为( )A.3B.4C.6D.82.已知抛物线y =ax 2﹣2ax ﹣2开口向下,(﹣2,y 1)、(3,y 2)、(0,y 3)为抛物线上的三个点,则( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 2>y 1>y 3D .y 1>y 3>y 2 3.从上面看如图中的几何体,得到的平面图形正确的是( )A .B .C .D .4.二次函数y =x 2﹣1的顶点坐标为( )A .(0,﹣1)B .(1,0)C .(﹣1,0)D .(0,1)5.若A B CA B C '''∆∆~,相似比为1:2,则A B C ∆与A B C '''∆的周长的比为( ) A .2:1 B .1:2 C .4:1 D .1:46.2c o s 60︒的值等于( ) A.12 B.1 C.2 D.3 7.观察下列每组图形,相似图形是( )A .B .C .D .8.下列模拟掷硬币的实验不正确的是( ) A .用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B .袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C .在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D .将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号9.下列立体图形中,从正面看,看到的图形是圆形的是( )A .B .C .D .10.下列运算正确的是A .236a a a =B .()239a a =C .2142-⎛⎫-=- ⎪⎝⎭D .()00s i n 301π-= 二、填空题11.二次函数21y x =-图像的顶点坐标是_____.12.在一个不透明的盒子中装有a 个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a 的值约为_____.13.如图,在▱ABCD 中,点E 在BC 上,AE 、BD 相交于点F ,若BE :EC =1:2,则△BEF 与四边形FECD 的面积比等于_____.14.写出两个三视图形状都一样的几何体:__________、__________.15.若二次函数y =ax 2﹣bx+5(a≠5)的图象与x 轴交于(1,0),则b ﹣a+2014的值是_____.16.已知:如图,在A B C 中,点D 在BC 上,点E 在AC 上,DE 与AB 不平行.添加一个条件______,使得C D E ∽C A B ,然后再加以证明.17.设一圆的半径为r ,则圆的面积S=______,其中变量是_____.18.如图是小孔成像原理的示意图,根据图中标注的尺寸,如果物体AB 的高度为36cm ,那么它在暗盒中所成的像CD 的高度应为______cm .19.如果函数y =(m ﹣1)x 2+x(m 是常数)是二次函数,那么m 的取值范围是_____.三、解答题21.汕头有丰富的旅游资源、小陈利用假日来汕头游玩,上午从A 、B 、C 三个景点中任意选择一个游玩,下午从D 、E 两个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果,并求小陈恰好选中景点B 和E 的概率.22.如图,正方形ABCD 的对角线相交于点O ,∠CAB 的平分线分别交BD 、BC 于E 、F ,作BH ⊥AF 于点H ,分别交AC 、CD 于点G 、P ,连结GE 、GF .(1)试判断四边形BEGF 的形状并说明理由.(2)求A E P G的值.23.如图,抛物线223y x m x m =-+与x 轴交于,A B 两点,与y 轴交于点()0,3C -.(1)求该抛物线的解析式;(2)若点E 为线段O C 上一动点,试求2AE EC 的最小值; (3)点D 是y 轴左侧的抛物线上一动点,连接AC ,当D A B A C O=∠∠时,求点D 的坐标.24.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=23,过A,D两点作⊙O,交AB于点E(1)求弦AD的长;(2)如图1,当圆心O在AB上,且点M是圆O下方的半圆上的一动点,连接DM交AB于点N,求当△DEM是等腰三角形时,求ON的长;(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB (垂足为H)并交⊙O于点P,问:当⊙O变动时DP-DQ的值变不变?若不变,请求出其值;若变化,请说明理由.25.如图,已知抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A、B两点(点A在点B 的左侧),与y轴相交于点C,点D是第四象限内该抛物线上一动点,连AC、AD与抛物线对称轴分别交于点M、N,延长DC交抛物线对称轴于点E.(1)直接写出线段AB的长;(2)若∠CAB=∠DAB,求E MN M的值;(3)若在第三象限内该抛物线上有一点P,使得以A、B、P为顶点的三角形与△ABC 相似,求点P的坐标.26.在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧).(1)当a=﹣1时,求A,B两点的坐标;(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.①当a=2时,求PB+PC的值;②若点B在直线l左侧,且PB+PC≥14,结合函数的图象,直接写出a的取值范围.27.已知,如图,直线交于,两点,是直径,平分交于,过作于.(1)求证:是的切线;(2)若,,求的半径.28.心理学家发现,在一定时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y值越大,表示接受能力越强.(1)当x在什么范围内时,学生的接受能力逐步增强?在什么范围内学生的接受能力逐步减弱?(2)若用10分钟提出概念,学生的接受能力y的值是多少?(3)如果用8分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.参考答案1.D【解析】【分析】已知:AD=BD,在Rt△OBD中,OD=OC-CD=3,利用勾股定理得到BD=4,所以AB=2BD=8.【详解】解:∵AD=BD,∴半径OC⊥AB于点D,在Rt△OBD中,OD=OC-CD=3,∴BD=4,∴AB=2BD=8,故选D.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.2.A【解析】【分析】将抛物线解析式配方成顶点式,得到其对称轴位置,再根据开口向下知离对称轴的水平距离越小,对应的函数值越大,据此求解可得.【详解】∵y=ax2-2ax-2=a(x-1)2-a-2,且抛物线开口向下,∴离对称轴x=1的水平距离越小,对应的函数值越大,∴y3>y2>y1,故选:A.【点睛】考查的是二次函数的性质,在解答此题时要先确定出抛物线的对称轴及开口方向,再根据离对称轴的水平距离越小,对应的函数值越大进行解答.3.B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看是,故选B .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.A【解析】【分析】由抛物线解析式可求得其顶点坐标.【详解】解:∵y =x 2﹣1,∴抛物线顶点坐标为(0,﹣1),故选:A .【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x ﹣h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ).5.B【解析】【分析】直接利用相似三角形的性质求解.【详解】 A B CA B C'''∆∆~,相似比为1:2, ∴A B C ∆与ABC'''的周长的比为1:2. 故选:B .【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.相似三角形的面积的比等于相似比的平方.6.B【解析】【分析】清楚cos60°=12即可求解【详解】2cos60°=212=1故正确答案为B【点睛】此题主要考查特殊角的三角函数值,解答此题的关键是熟练记忆一些特殊角的三角函数值7.C【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】A.两图形形状不同,故不是相似图形;B.两图形形状不同,故不是相似图形;C.两图形形状相同,故是相似图形;D.两图形形状不同,故不是相似图形.故选C.【点睛】本题考查了相似图形的定义,掌握相似图形形状相同是解题的关键.8.D【解析】【分析】掷硬币只有两种情况,根据此要求利用排除法即可得到答案.【详解】掷硬币只有两种情况正面和反面,但在D中,1、3、5属于奇数,2、4属于偶数,每次随机抽取一张,它们被抽中的概率不相等,故不正确.故选D【点睛】此题重点考察学生对等概率事件的理解,抓住等概率是解题的关键.9.A【解析】【分析】根据三视图的性质得出主视图的形状进而得出答案.【详解】解:A .球从正面看到的图形是圆,符合题意;B.圆柱从正面看到的图形是矩形,不符合题意;C.圆锥从正面看到的图形是三角形,不符合题意;D.正方体从正面看到的图形是正方形,不符合题意;故选:A .【点睛】此题主要考查了简单几何体的三视图,得出主视图形状是解题关键. 从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,.10.D【解析】【分析】根据同底数幂乘法、幂的乘方、负指数幂、0指数幂的运算法则逐一进行计算即可.【详解】A. 235·a a a=,故A 选项错误; B. ()236a a =,故B 选项错误; C. 2142-⎛⎫-= ⎪⎝⎭,故C 选项错误;D. ()00s i n 301π-=,故D 选项正确, 故选D.【点睛】本题考查了同底数幂乘法、幂的乘方、负指数幂、0指数幂的运算,熟练掌握各运算的运算法则是解题的关键.注意要掌握特殊角的三角函数值.11.(0,-1)【解析】【分析】二次函数的性质类型的题目,根据题意,把二次函数的一般形式转化为顶点式解析式;再根据顶点式解析式即可求出二次函数的顶点坐标.【详解】因为y=x2-1=(x-0)2-1,即当x=0时,y=-1,所以二次函数y=x2-1的顶点坐标为(0,-1).答案为:(0,-1).【点睛】本题考查的知识点是二次函数的性质,解题关键是要把二次函数解析式转化为顶点式. 12.30.【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在20%左右得到比例关系,列出方程求解即可.【详解】由题意可得,6a×100%=20%,解得,a=30.故答案为:30.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.13.1:11【解析】【分析】设△BEF的面积为S.求出四边形EFDC的面积即可解决问题.【详解】解:设△BEF的面积为S.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴BE EFAD AF,△BEF∽△DAF,∵BE:EC=1:2,∴BE:BC=BE:AD=1:3,∴EF:AF=1:3,∴S△ABF=3S,S△ADF=9S,S△ABD=S△BCD=12S,∴S四边形EFDC=11S,∴△BEF与四边形FECD的面积比=1:11,故答案为1:11.【点睛】本题考查相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.14.球;正方体.【解析】【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可,答案不唯一,【详解】解:三视图形状都一样的几何体为球、正方体.故答案为:球、正方体(答案不唯一).【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.15.2019.【解析】【分析】把(1,0)代入y=ax2-bx+5得a-b+5=0,然后利用整体代入的方法计算b-a+2014的值.【详解】解:把(1,0)代入y=ax2-bx+5得a-b+5=0,所以b-a=5,所以b-a+2014=5+2014=2019. 故答案为2019. 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程. 16.C D E A ∠=∠【解析】 【分析】由本题图形相似已经有一个公共角,再找一组对应角相等或公共角的两边对应成比例即可. 【详解】解:添加条件为:C D E A ∠∠=, 理由:CC ∠∠=, CDE A∠∠=, C D E ∴∽C A B .故答案为:C D E A ∠∠=. 【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键. 17.πr 2 r 【解析】 【分析】根据圆的面积公式,可得函数关系式,根据在变化的过程中,在变化的量是变量,可得变量,根据在变化过程中,不变的量是常量,可得常量. 【详解】解:根据圆的面积公式,得 S =πr 2, 变量是r . 【点睛】本题考查了函数关系式,利用圆的面积公式求函数关系式是解题关键,本题考查了函数关系式,利用圆的面积公式求函数关系式是解题关键,18.16 【解析】【分析】正确理解小孔成像的原理,因为A B//C D所以A B O∽C D O,则有AB45CD20=而AB的值已知,所以可求出CD.【详解】A B O∽C D OAB45CD20∴=,又A B36=C D16∴=.【点睛】相似比等于对应高之比在相似中用得比较广泛.19.m≠1【解析】【分析】依据二次函数的二次项系数不为零求解即可.【详解】∵函数y=(m-1)x2+x(m为常数)是二次函数,∴m-1≠0,解得:m≠1,故答案为:m≠1.【点睛】本题考查了二次函数的定义,掌握二次函数的特点是解题的关键.20.【解析】【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解.【详解】正多边形的边数是:360°÷60°=6.正六边形的边长为2cm ,由于正六边形可分成六个全等的等边三角形, 且等边三角形的边长与正六边形的边长相等,所以正六边形的面积2216s i n 602m 2=⨯⨯︒⨯.故答案是:【点睛】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.21.表见解析,小陈恰好选中景点B 和E 的概率为16. 【解析】 【分析】用列表法即可得到小陈所有可能的游玩方式,然后求出恰好选中B 、E 的情况占总情况的多少即可. 【详解】 解:列表如下由表可知,共有6种等可能结果,其中小陈恰好选中景点B 和E 的只有1种结果, ∴小陈恰好选中景点B 和E 的概率为16. 【点睛】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.(1)四边形BEGF 是菱形;(2). 【解析】 【分析】(1)先证明△AHG ≌△AHB ,得出GH =BH ,由线段垂直平分线的性质得出EG =EB ,FG =FB ;再证出∠BEF =∠BFE ,得出EB =FB ,因此EG =EB =FB =FG ,即可得出结论; (2)设OA =OB =OC =a ,菱形BEGF 的边长为b ,由菱形的性质CG =GF =b ,(也可由△OAE ≌△OBG 得OG =OE =a ﹣b ,OC ﹣CG =a ﹣b ,得CG =b );然后在Rt △GOE 中,由勾股定理可得a 和b 的关系,通过相似三角形△CGP ∽△AGB 的对应边成比例得到:PG CGGB AG=,即可得到答案. 【详解】(1)四边形BEGF 是菱形.理由如下:∵∠GAH =∠BAH ,AH =AH ,∠AHG =∠AHB =90°,∴△AHG ≌△AHB ,∴GH =BH ,∴AF 是线段BG 的垂直平分线,∴EG =EB ,FG =FB .∵∠BEF =∠BAF +∠ABE =67.5°,∠BFE =90°﹣∠BAF =67.5°,∴∠BEF =∠BFE ,∴EB =FB ,∴EG =EB =FB =FG ,∴四边形BEGF 是菱形. (2)设OA =OB =OC =a ,菱形BEGF 的边长为b .∵四边形BEGF 是菱形,∴GF ∥OB ,∴∠CGF =∠COB =90°,∴∠GFC =∠GCF =45°,∴CG =GF =b .∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°∵BH ⊥AF ,∴∠GAH +∠AGH =90°=∠OBG +∠AGH ,∴∠GAH =∠OBG ,∴△OAE ≌△OBG ,∴OG =OE =a ﹣b ,AE =BG .∵在Rt △GOE 中,GE =,∴b =a ﹣b ),整理得:a =b ,∴AC =2a =(2)b ,AG =AC ﹣CG =(1)b .∵PC ∥AB ,∴△ABG ∽△CPG ,∴B G A G bP GC G b===∴1AE PG =【点睛】本题考查了正方形的性质、全等三角形的判定与性质、线段垂直平分线的性质、菱形的判定和相似三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.23.(1)223y x x =+-;(2)222A E E C +=;(3)D 的坐标为1013,39⎛⎫- ⎪⎝⎭ 或811,39⎛⎫-- ⎪⎝⎭. 【解析】 【分析】(1)把点()0,3C 代入抛物线表达式即可求出m ,即可得到抛物线的解析式;(2)连接B C ,过点A 作A F B C ⊥于点F ,交y 轴于点E ,当A E F 、、 三点共线时,2AE 最小值为AF ,再根据由三角形面积公式得:11•·22B C A F A B O C =,即可求出22A F =;(3) 过D 点作x 轴的垂线,交x 轴于点H ,设点D 的坐标为()2,23mm m +- ,利用t a n t a n D A B A C O∠=∠即BH AOAH CO=,代入即可求出m 的值,再求出D 点坐标 【详解】解:(1)把点()0,3C 代入抛物线表达式得:9630m m ++= , 解得:1m =-故该抛物线的解析式为:223y x x =+- (2)连接B C ,过点A 作A F B C⊥于点F ,交y 轴于点E由223y x x =+-,得:()3,0B - ,()0,3C - O B O C ∴= ,即45A B C ∠=,4,32A B B C ∴== 由三角形面积公式得:11•·22B C A F A B O C= 即:11324322A F ⨯⨯=⨯⨯ ,解得:22A F =在R t C E F∆中,22EF EC =,22A E E CA EE F A F∴+=+= ∴当A E F 、、 三点共线时,2AE EC +最小值为22A F =2222A E E C ∴+= (3)过D 点作x 轴的垂线,交x 轴于点H ,设点D 的坐标为()2,23mm m +-D A B A C O∠=∠ t a n t a n D A B A C O∴∠=∠,即BH AOAH CO= 223113m m m +-∴=-或223113m m m --+=-解得:103m =-或1(舍去1m =),或1m =或83- (舍去1m =) 过点D 的坐标为1013,39⎛⎫- ⎪⎝⎭ 或811,39⎛⎫-- ⎪⎝⎭【点睛】此题主要考查二次函数综合,解题的关键是熟知三角函数的定义与性质及最值的求法.24.(1)AD=3;(2)ON等于12或32-12;(3)当⊙O变动时DP-DQ的值不变,DP-DQ=3,见解析.【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=12AD=32,ON=33DN=12;当MD=ME,DE为底边,作DH⊥AE,由于AD=3,∠DAE=30°,得到DH=32,∠DEA=60°,DE=1,于是OE=DE=1,OH=12,又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到NH=DH=32,于是得到结论;(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ,则DP-DQ=CQ-DQ=CD,而△ADC为等边三角形,CD=AD=,即可得到DP-DQ的值.【详解】解:(1)∵∠BAC=90°,点D是BC中点,3,∴AD=123;(2)连DE、ME,如图,∵DM>DE,当ED和EM为等腰三角形EDM的两腰,∴OE⊥DM,又∵AD=AC,∴△ADC为等边三角形,∴∠CAD=60°,∴∠DAO=30°,∴∠DON=60°,在Rt△ADN中,DN=12AD=32,在Rt△ODN中,ON=33DN=12,∴当ON等于1时,三点D、E、M组成的三角形是等腰三角形;当MD=ME,DE为底边,如图3,作DH⊥AE,∵3,∠DAE=30°,∴3∠DEA=60°,DE=1,∴△ODE 为等边三角形,∴OE=DE=1,OH=12, ∵∠M=∠DAE=30°,而MD=ME ,∴∠MDE=75°,∴∠ADM=90°-75°=15°,∴∠DNO=45°,∴△NDH 为等腰直角三角形,∴,∴;综上所述,当三点D 、E 、M 组成的三角形是等腰三角形时,ON 等于12-12;(3)当⊙O 变动时DP-DQ 的值不变,,理由如下:连AP 、AQ ,如图2,∵∠C=∠CAD=60°,而DP ⊥AB ,∴AC ∥DP ,∴∠PDB=∠C=60°,又∵∠PAQ=∠PDB ,∴∠PAQ=60°,∴∠CAQ=∠PAD ,∵AC=AD ,∠AQC=∠P ,∴△AQC ≌△APD (AAS ),∴DP=CQ ,∴.【点睛】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.25.(1)AB =4;(2)54EM N M = ;(3)点P 的坐标为(﹣4)或(﹣6,﹣) 【解析】【分析】(1)利用二次函数图象上点的坐标特征求出点A ,B 的坐标,进而可求出线段AB 的长; (2)利用二次函数图象上点的坐标特征可求出点C 的坐标,由点A ,C 的坐标,利用待定系数法可求出直线AC 的解析式,由∠CAB =∠DAB 可得出直线AD 过点(0,3a ),利用待定系数法可求出直线AD 的解析式,联立直线AD 和抛物线解析式成方程组,解方程组可求出点D 的坐标,由点C ,D 的坐标,利用待定系数法可求出直线CD 的解析式,利用配方法可求出抛物线的对称轴,利用一次函数图象上点的坐标特征可求出点E ,M ,N 的坐标,进而可求出PM ,MN 的长,再将其代入54EM MM =即可求出结论; (3)由点P 在第三象限可知∠BAP =∠ACB ,分△BAP ∽△ACB 和△P AB ∽△ACB 两种情况考虑:①当△BAP ∽△ACB 时,∠BAC =∠PBA ,进而可得出BP ∥AC ,由直线AC 的解析式结合点B 的坐标可得出直线BP 的解析式,联立直线BP 和抛物线解析式成方程组,通过解方程组可求出点P 的坐标,由AC AB BA BP=可求出a 的值,再将其代入点P 的坐标中即可得出结论;②当△P AB ∽△ACB 时,∠ABP =∠CBA ,进而可得出直线BP 过点(0,3a ),利用待定系数法可求出直线BP 的解析式,联立直线BP 和抛物线解析式成方程组,通过解方程组可求出点P 的坐标,由BC BA BA BP=可求出a 的值,再将其代入点P 的坐标中即可得出结论.综上,此题得解.【详解】(1)当y =0时,ax 2+2ax ﹣3a =0,解得:x 1=﹣3,x 2=1,∴点A 的坐标为(﹣3,0),点B 的坐标为(1,0),∴AB =1﹣(﹣3)=4.(2)当x =0时,y =ax 2+2ax ﹣3a =﹣3a ,∴点C 的坐标为(0,﹣3a ).设直线AC 的解析式为y =kx +b (k ≠0),将A (﹣3,0),C (0,﹣3a )代入y =kx +b ,得:303k b b a -+=⎧⎨=-⎩,解得:3k a b a =-⎧⎨=-⎩, ∴直线AC 的解析式为y =﹣ax ﹣3a .∵∠CAB =∠DAB ,∴直线AD 过点(0,3a ),同理,可求出直线AD 的解析式为y =ax +3a .联立直线AD 和抛物线解析式成方程组,得:2323y a x a y ax a x a =+⎧⎨=+-⎩, 解得:1130x y =-⎧⎨=⎩,2225x y a =⎧⎨=⎩, ∴点D 的坐标为(2,5a ).利用待定系数法,可求出:直线CD 的解析式为y =4ax ﹣3a .∵y =ax 2+2ax ﹣3a =a (x +1)2﹣4a ,∴抛物线的对称轴为直线x =﹣1.当x =﹣1时,y =4ax ﹣3a =﹣7a ,y =﹣ax ﹣3a =﹣2a ,y =ax +3a =2a ,∴点E 的坐标为(﹣1,﹣7a ),点M 的坐标为(﹣1,﹣2a ),点N 的坐标为(﹣1,2a ), ∴EM =﹣5a ,MN =﹣4a , ∴54EM MM =. (3)∵点P 在第三象限,∴∠BAP >90°,∴只能∠BAP =∠ACB .分两种情况考虑:①当△BAP ∽△ACB 时,∠BAC =∠PBA ,∴BP ∥AC .∵直线AC 的解析式为y =﹣ax ﹣3a ,点B 的坐标为(1,0),∴直线BP 的解析式为y =﹣ax +a .联立直线BP 和抛物线解析式成方程组,得:223y a x a y a x a x a =-+⎧⎨=+-⎩,解得:1110x y =⎧⎨=⎩,2245x y a =-⎧⎨=⎩, ∴点P 的坐标为(﹣4,5a ).∵点A (﹣3,0),点C (0,﹣3a ),点B (1,0),∴A CB P,B C ,∴A C B AA B B P ,, 解得:a 1a 2, ∴点P 的坐标为(﹣4; ②当△P AB ∽△ACB 时,∠ABP =∠CBA ,∴直线BP 过点(0,3a ).利用待定系数法,可求出直线BP 的解析式为y =﹣3ax +3a ,联立直线BP 和抛物线解析式成方程组,得:23323y a x a y a x a x a =-+⎧⎨=+-⎩, 解得:1110x y =⎧⎨=⎩,22621x y a=-⎧⎨=⎩, ∴点P 的坐标为(﹣6,21a ),∴.B P∴4B C B A B A B P ==, 解得:a 1,a 2(舍去),∴点P 的坐标为(﹣6,﹣).综上所述:点P 的坐标为(﹣4)或(﹣6,﹣).【点睛】本题考查了二次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、二次函数的性质以及相似三角形的性质,解题的关键是:(1)利用二次函数图象上点的坐标特征,求出点A,B的坐标;(2)利用一次函数图象上点的坐标特征,求出点P,M,N的坐标;(3)分△BAP∽△ACB和△P AB∽△ACB两种情况,利用相似三角形的性质求出a的值.26.(1)A(-2,0),B(0,0);(2)①14;②或a≥2.【解析】【分析】(1)将a代入得到方程,解出方程的解即可得;(2)①将a代入得到方程,解出方程的解,然后得到C的纵坐标即可得;②先用a表示出PB+PC,然后得到联立方程组,,即可求得其范围.【详解】(1)当a=﹣1时,有y=-x2﹣2x令y=0,得-x2﹣2x=0解得.∵点A在点B的左侧∴A(-2,0),B(0,0).(2)①当a=2时,有y=2x2﹣2x令y=0,得2x2﹣2x=0解得∵点A在点B的左侧∴A(0,0),B(1,0)∴PB=2当x=3时,y c=∴PC=12∴PB+PC=14.②∵x=3时,∴C(3,9a-6)y=0时,x(ax-2)=0当即a>0时,PB=3-PC=9a-6PB+PC=3-+9a-6=9a--39a--3>149a-17≥令y1=9a-17,y2=双曲线y2=与直线y1=9a-17的交点为M、N,则其坐标为方程组的解,9a2-17a-2=0(9a+1)(a-1)=0或a=2即点N的横坐标为,点M的横坐标为2,∴9a-17≥的解集为:≤a<0或a≥2∴a≥2当<0即a<0时,B(0,0)PB=3PC=-(9a-6)=6-9aPB+PC=3+6-9a=9-9a,9-9a≥14综上所述, 或a≥2.【点睛】本题考查的知识点是二次函数综合题,解题关键是利用二次函数的性质解题. 27.(1)证明见解析;(2)半径是.【解析】【分析】(1)连接OD,根据圆的基本性质和平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【详解】(1)证明:连接.,.,..,.即.在上,为的半径,是的切线.(2)解:,,,.连接.是的直径,.,...则.的半径是.【点睛】本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.28.(1)在0≤x≤13时学生的接受能力逐步增强,在13<x≤30时学生的接受能力逐步减弱;(2)59 (3)学生的接受能力减弱了.【解析】【分析】(1)根据配方法,也可用公式法,将二次函数写成顶点式的形式,再利用函数性质求最值;(2)根据已知的函数关系,把x=10代入关系式;(3)把x=10代入关系式,比较函数值即可得出答案.【详解】(1)∵y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9,∴当0≤x≤13时,学生的接受能力逐步增强,当13≤x≤30时,学生的接受能力逐步减弱;(2)当x=10时,y=-0.1×102+2.6×10+43=59,∴第10分钟时,学生的接受能力是59,(3)当x=8时,y=-0.1×82+2.6×8+43=57.4,∵57.4<59,∴学生的接受能力减弱了.【点睛】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程、最值问题等,常用配方法结合图象解答问题将实际问题转化为求函数最值问题是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末测试卷(2)一.选择题1.下列函数不属于二次函数的是()A.y=(x﹣2)(x+1)B.y=(x+1)2C.y=2(x+3)2﹣2x2D.y=1﹣x22.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+33.已知抛物线y=x2﹣2x+c的顶点在x轴上,你认为c的值应为()A.﹣1 B.0 C.1 D.24.若抛物线y=x2﹣4x+2﹣t(t为实数)在0<x<的范围内与x轴有公共点,则t的取值范围为()A.﹣2<t<2 B.﹣2≤t<2 C.﹣<t<2 D.t≥﹣25.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)6.若2a=3b,则a:b等于()A.3:2 B.2:3 C.﹣2:3 D.﹣3:27.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,下列结论正确的有()①AD=BD=BC;②△BCD∽△ABC;③AD2=ACDC;④点D是AC的黄金分割点.A.1个 B.2个 C.3个 D.4个8.如图,在△ABC中,点D,E分别在AB,AC边上,且DE∥BC,若AD:DB=3:2,AE=6,则EC等于()A.10 B.4 C.15 D.99.如图,已知△ABC与△ADE中,∠C=∠AED=90°,点E在AB上,那么添加下列一个条件后,仍无法判定△ABC∽△DAE的是()A.∠B=∠D B.=C.AD∥BC D.∠BAC=∠D10.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为()A.3 B.C.3或D.4或11.如图,已知△OAB 与△OA′B′是相似比为1:2 的位似图形,点O为位似中心,若△OAB内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标为()A. C.12.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是()A.3cm B.2.5cm C.2.3cm D.2.1cm二.填空题13.如图,在边长为1的小正反形组成的网格中,△ABC的三个顶点均在格点上,则tanB的值为.14.在△ABC中,∠C=90°,△ABC的面积为6,斜边长为6,则tanA+tanB的值为.15.在等腰Rt△ABC中,AB=AC,则tanB=.16.用科学计算器计算:7﹣5sin37°=(结果精确到0.1).17.等腰△ABC中,当顶角A的大小确定时,它的对边BC与邻边(腰AB或AC)的比值确定,记为f(A),易得f(60°)=1.若α是等腰三角形的顶角,则f(α)的取值范围是.18.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是.三.解答题19.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x (m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1) 请直接写出k1、k2和b的值;(2) 设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(1) 若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.20.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1) 求抛物线的解析式(用一般式表示);(2) 点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3) 将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.21.我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1) 等边三角形“內似线”的条数为;(2) 如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3) 在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF 是△ABC的“內似线”,求EF的长.22.已知点O是正方形ABCD对角线BD的中点.(1) 如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2) 如图2,若点E是OD上一点,点F是AB上一点,且使==,请判断△EFC的形状,并说明理由;(3) 如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当=时,请猜想的值(请直接写出结论.23.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C 的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)24.为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本学校对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).(1) 在上面的统计表中m=,n=。
(2) 请你将条形统计图补充完整;(3) 该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?答案一.选择题1.下列函数不属于二次函数的是()A.y=(x﹣2)(x+1)B.y=(x+1)2C.y=2(x+3)2﹣2x2D.y=1﹣x2【考点】H1:二次函数的定义.【专题】选择题【难度】易【分析】将各函数关系式进行整理,然后再进行判断即可.【解答】A、整理得:y=x2﹣x﹣2,是二次函数,与要求不符;B、整理得:y=x2+x﹣,是二次函数,与要求不符;C、整理得:y=12x+18,不是二次函数,与要求相符;D、y=1﹣x2是二次函数,与要求不符.故选:C.【点评】本题主要考查的是二次函数的定义,熟练掌握二次函数的定义是解题的关键.2.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3【考点】H6:二次函数图象与几何变换.【专题】选择题【难度】易【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴抛物线由A点平移至C点,向左平移了4个单位,向下平移了2个单位;∵抛物线经过A点时,函数表达式为y=x2,∴抛物线经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14,故选A.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.3.已知抛物线y=x2﹣2x+c的顶点在x轴上,你认为c的值应为()A.﹣1 B.0 C.1 D.2【考点】H8:待定系数法求二次函数解析式.【专题】选择题【难度】易【分析】顶点在x轴上,所以顶点的纵坐标是0.【解答】解:根据题意(﹣2)2﹣4c=0,解得c=1.故选C.【点评】本题考查求顶点纵坐标的公式,比较简单.4.若抛物线y=x2﹣4x+2﹣t(t为实数)在0<x<的范围内与x轴有公共点,则t的取值范围为()A.﹣2<t<2 B.﹣2≤t<2 C.﹣<t<2 D.t≥﹣2【考点】HA:抛物线与x轴的交点.【专题】选择题【难度】易【分析】先利用配方法得到抛物线的顶点为(2,﹣t),再分类讨论:当抛物线与x轴的公共点为顶点时,﹣t=0,解得t=0;当抛物线在0<x<3的范围内与x 轴有公共点,如图,顶点在x轴下方,所以t>0,当抛物线在原点与对称轴之间与x轴有交点时,x=0,y>0,所以4﹣t>0,解得t<4;当抛物线在(3,0)与对称轴之间与x轴有交点时x=3,y>0,即1﹣t>0,解得t<1,所以此时t的范围为0<t<4,综上两种情况即可得到t的范围为0≤t<4.【解答】解:y=x2﹣4x+2﹣t=(x﹣2)2﹣2﹣t,抛物线的顶点为(2,﹣2﹣t),当抛物线与x轴的公共点为顶点时,﹣2﹣t=0,解得t=﹣2,当抛物线在0<x<的范围内与x轴有公共点,如图,﹣t﹣2<0,解得t>﹣2,则x=0时,y>0,即2﹣t>0,解得t<2;当x=时,y>0,即﹣﹣t>0,解得t<﹣,此时t的范围为t<﹣,综上所述,t的范围为﹣2≤t<2.故选B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标转化为解关于x的一元二次方程.运用数形结合的思想是解决本题的关键.5.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)【考点】HD:根据实际问题列二次函数关系式.【专题】选择题【难度】易【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【点评】此题主要考查了根据实际问题列二次函数解析式,关键是正确理解题意,找出题目中的等量关系,再列函数解析式.6.若2a=3b,则a:b等于()A.3:2 B.2:3 C.﹣2:3 D.﹣3:2【考点】S1:比例的性质.【专题】选择题【难度】易【分析】依据比例的基本性质:两内项之积等于两外项之积,分别对各选项计算,只有A选项符合题意.【解答】解:∵2a=3b,∴a:b=3:2.故选A.【点评】比例的变化可以依据比例的基本性质,等比性质与合比性质.7.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,下列结论正确的有()①AD=BD=BC;②△BCD∽△ABC;③AD2=ACDC;④点D是AC的黄金分割点.A.1个 B.2个 C.3个 D.4个【考点】S3:黄金分割;KH:等腰三角形的性质.【专题】选择题【难度】易【分析】在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,可推出△BCD,△ABD为等腰三角形,可得AD=BD=BC,①正确;由相似三角形的判定方法可得②正确;利用三角形相似的判定与性质得出③④正确,即可得出结果.【解答】解:①由AB=AC,∠A=36°,得∠ABC=∠C=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,∴①正确;②∵∠A=∠DBC,∠C=∠C,∴△BCD∽△ABC,∴②正确;③∵△BCD∽△ACB,∴BC:AC=CD:BC,∴BC2=CDAC,∵AD=BD=BC,AD2=CDAC,∴③正确;④设AD=x,AC=AB=1,CD=AC﹣AD=1﹣x,由AD2=CDAC,得x2=(1﹣x),解得x=±﹣1(舍去负值),∴AD=,∴④正确.正确的有4个.故选D.【点评】本题考查了等腰三角形的判定与性质,相似三角形判定与性质.明确图形中的三个等腰三角形的特点与关系是解决问题的关键.8.如图,在△ABC中,点D,E分别在AB,AC边上,且DE∥BC,若AD:DB=3:2,AE=6,则EC等于()A.10 B.4 C.15 D.9【考点】S4:平行线分线段成比例.【专题】选择题【难度】易【分析】根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵DE∥BC,∴==,即=,解得,EC=4,故选:B.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.9.如图,已知△ABC与△ADE中,∠C=∠AED=90°,点E在AB上,那么添加下列一个条件后,仍无法判定△ABC∽△DAE的是()A.∠B=∠D B.=C.AD∥BC D.∠BAC=∠D【考点】S8:相似三角形的判定.【专题】选择题【难度】易【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解答】解:∵∠C=∠AED=90°,∠B=∠D,∴△ABC∽△ADE,故A选项不能证明相似;∵∠C=∠AED=90°,,∴,即sin∠B=sin∠DAE,∴∠B=∠DAE,∴△ABC∽△DAE,故选项B可以证明相似;∵AD∥BC,∴∠B=∠DAE,∵∠C=∠AED=90°,∴△ABC∽△DAE,故选项C可以证明相似;∵∠BAC=∠D,∠C=∠AED=90°,∴△ABC∽△DAE,故选项D可以证明相似;故选A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.10.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为()A.3 B.C.3或D.4或【考点】S7:相似三角形的性质.【专题】选择题【难度】易【分析】根据题目中的条件和三角形的相似,可以求得CE的长,本题得以解决.【解答】解:∵△DCE和△ABC相似,∠ACD=∠ABC,AC=6,AB=4,CD=2,∴∠A=∠DCE,∴=或=,即=或=解得,CE=3或CE=故选C.【点评】本题考查相似三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似解答.11.如图,已知△OAB 与△OA′B′是相似比为1:2 的位似图形,点O为位似中心,若△OAB内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标为()A. C.【考点】SC:位似变换;D5:坐标与图形性质.【专题】选择题【难度】易【分析】由图中易得两对对应点的横纵坐标均为原来的﹣2倍,那么点P的坐标也应符合这个规律.【解答】解:∵P(x,y),相似比为1:2,点O为位似中心,∴P′的坐标是(﹣2x,﹣2y).故选:B.【点评】此题主要考查了位似变换,解决本题的关键是根据所给图形得到各对应点之间的坐标变化规律.12.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是()A.3cm B.2.5cm C.2.3cm D.2.1cm【考点】SA:相似三角形的应用.【专题】选择题【难度】易【分析】直接利用平行线分线段成比例定理列比例式,代入可得结论.【解答】解:由题意得:CD∥AB,∴=,∵AB=3.5cm,BE=5m,DE=3m,∴,∴CD=2.1cm,故选D.【点评】本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行相似或平行线分线段成比例定理列比例式,可以计算出结果.二.填空题13.如图,在边长为1的小正反形组成的网格中,△ABC的三个顶点均在格点上,则tanB的值为.【考点】T1:锐角三角函数的定义.【专题】填空题【难度】中【分析】根据在直角三角形中,正切为对边比邻边,可得答案.【解答】解:如图:,tanB==.故答案是:.【点评】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.在△ABC中,∠C=90°,△ABC的面积为6,斜边长为6,则tanA+tanB的值为.【考点】T1:锐角三角函数的定义.【专题】填空题【难度】中【分析】由△ABC的面积为6可得ab=12,再由勾股定理可得a2+b2=62=36,再由tanA+tanB=+=求解.【解答】解:∵△ABC的面积为6,∴ab=12.在Rt△ABC中,∠C=90°,AB=6,∴a2+b2=62=36,∴tanA+tanB====3,故答案为:3.【点评】本题考查锐角三角函数的概念和勾股定理,关键是掌握正切定义.15.在等腰Rt△ABC中,AB=AC,则tanB=.【考点】T5:特殊角的三角函数值.【专题】填空题【难度】中【分析】根据等腰直角三角形的性质,可得∠B,根据特殊角三角函数值,可得答案.【解答】解:由等腰Rt△ABC中,AB=AC,得∠B=45°.tanB=tan45°=1,故答案为:1.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.16.用科学计算器计算:7﹣5sin37°=(结果精确到0.1).【考点】T6:计算器—三角函数;1H:近似数和有效数字;25:计算器—数的开方.【专题】填空题【难度】中【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:7﹣5sin37°≈7×6.557﹣5×0.6018≈42.9.故答案为:42.9.【点评】本题考查了计算器的用法,旨在考查对基本概念的应用能力,需要同学们熟记精确度的概念.17.等腰△ABC中,当顶角A的大小确定时,它的对边BC与邻边(腰AB或AC)的比值确定,记为f(A),易得f(60°)=1.若α是等腰三角形的顶角,则f(α)的取值范围是.【考点】T7:解直角三角形;KH:等腰三角形的性质.【专题】填空题【难度】中【分析】根据三角形三边关系得到BC>0,BC<2AB,根据题意计算即可.【解答】解:∵BC>AB﹣AC,BC<AC+AB,∴BC>0,BC<2AB,∴0<<2,∴0<f(α)<2,故答案为:0<f(α)<2.【点评】本题考查的是等腰三角形的性质、三角形的三边关系,掌握三角形的三边关系定理、f(A)的定义是解题的关键.18.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是.【考点】X4:概率公式.【专题】填空题【难度】中【分析】由一个不透明的箱子里共有1个白球,2个红球,共3个球,它们除颜色外均相同,直接利用概率公式求解即可求得答案.【解答】解:∵一个不透明的箱子里有1个白球,2个红球,共有3个球,∴从箱子中随机摸出一个球是红球的概率是;故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.三.解答题19.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x (m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1) 请直接写出k1、k2和b的值;(2) 设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(1) 若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.【考点】HE:二次函数的应用.【专题】解答题【难度】难【分析】(1) 将x=600、y=18000代入y1=k1x可得k1;将x=600、y=18000和x=1000、y=26000代入y1=k2x+b可得k2、b.(2) 分0≤x<600和600≤x≤1000两种情况,根据“绿化总费用=种草所需总费用+种花所需总费用”结合二次函数的性质可得答案;(1) 根据种草部分的面积不少于700m2,栽花部分的面积不少于100m2求得x 的范围,依据二次函数的性质可得.【解答】解:(1) 将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代入,得:,解得:;(2) 当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最大值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增大而减小,∴当x=600时,W取最大值为32400,∵32400<32500,∴W取最大值为32500元;(3) 由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增大而减小,∴当x=900时,W取得最小值27900元.【点评】本题主要考查二次函数的应用,掌握待定系数法求函数解析式及分类讨论依据相等关系列出函数解析式是解题的关键.20.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1) 求抛物线的解析式(用一般式表示);(2) 点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3) 将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【考点】HF:二次函数综合题.【专题】解答题【难度】难【分析】(1) 由A、B的坐标,利用待定系数法可求得抛物线解析式;(2) 由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3) 由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1) ∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2) 由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S=ABOC=×5×2=5,△ABC=S△ABD,∵S△ABC∴S=×5=,△ABD设D(x,y),∴AB|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3) ∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1) 中注意待定系数法的应用,在(2) 中求得D点的纵坐标是解题的关键,在(1) 中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.21.我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1) 等边三角形“內似线”的条数为;(2) 如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC 的“內似线”;(3) 在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF 是△ABC的“內似线”,求EF的长.【考点】SO:相似形综合题.【专题】解答题【难度】难【分析】(1) 过等边三角形的内心分别作三边的平行线,即可得出答案;(2) 由等腰三角形的性质得出∠ABC=∠C=∠BDC,证出△BCD∽△ABC即可;(3) 分两种情况:①当==时,EF∥AB,由勾股定理求出AB==5,作DN⊥BC于N,则DN∥AC,DN是Rt△ABC的内切圆半径,求出DN=(AC+BC﹣AB)=1,由几啊平分线定理得出=,求出CE=,证明△CEF∽△CAB,得出对应边成比例求出EF=;②当==时,同理得:EF=即可.【解答】(1) 解:等边三角形“內似线”的条数为3条;理由如下:过等边三角形的内心分别作三边的平行线,如图1所示:则△AMN∽△ABC,△CEF∽△CBA,△BGH∽△BAC,∴MN、EF、GH是等边三角形ABC的內似线”;故答案为:3;(2) 证明:∵AB=AC,BD=BC,∴∠ABC=∠C=∠BDC,∴△BCD∽△ABC,∴BD是△ABC的“內似线”;(3) 解:设D是△ABC的内心,连接CD,则CD平分∠ACB,∵EF是△ABC的“內似线”,∴△CEF与△ABC相似;分两种情况:①当==时,EF∥AB,∵∠ACB=90°,AC=4,BC=3,∴AB==5,作DN⊥BC于N,如图2所示:则DN∥AC,DN是Rt△ABC的内切圆半径,∴DN=(AC+BC﹣AB)=1,∵CD平分∠ACB,∴=,∵DN∥AC,∴=,即,∴CE=,∵EF∥AB,∴△CEF∽△CAB,∴,即,解得:EF=;②当==时,同理得:EF=;综上所述,EF的长为.【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、三角形的内心、勾股定理、直角三角形的内切圆半径等知识;本题综合性强,有一定难度.22.已知点O是正方形ABCD对角线BD的中点.(1) 如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2) 如图2,若点E是OD上一点,点F是AB上一点,且使==,请判断△EFC的形状,并说明理由;(3) 如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当=时,请猜想的值(请直接写出结论.【考点】SO:相似形综合题.【专题】解答题【难度】难【分析】(1) ①由正方形的性质得出∠ABD=45°,∠BAD=∠ABC=∠BCD=∠ADC=90°,AE=CE,由HL证明Rt△AME≌Rt△ENC,得出∠AEM=∠ECN,再由角的互余关系即可得出结论;②由三角形内角和定理得出∠EAF=∠EFA,证出AE=FE,由等腰三角形的性质得出AM=FM,AF=2AM,求出=,由平行线分线段成比例定理得出=,得出=,即可得出结论;(2) 过点E作ME∥AD,交AB于点M,交CD于点N.同(1) 得:AE=CE,Rt△AME≌Rt△ENC,得出∠AEM=∠ECN,∵=,O是DB的中点,证出=,得出AF=2AM,即M是AF的中点,由线段垂直平分线的性质得出AE=FE,证出∠AEM=∠FEM,FE=CE,由角的互余关系证出∠CEF=90°,即可得出结论;(2) 同(1) 即可得出答案.【解答】(1) 证明:①∵四边形ABCD是正方形,∴∠ABD=45°,∠BAD=∠ABC=∠BCD=∠ADC=90°,AE=CE,∵ME∥AD,∴ME⊥AB,∠AME=∠BME=∠BAD=90°,∠ENC=∠ADC=90°,∴△BME是等腰直角三角形,四边形BCNM是矩形,∴BM=EM,BM=CN,∴EM=CN,在Rt△AME和Rt△ENC中,,∴Rt△AME≌Rt△ENC(HL),∴∠AEM=∠ECN,∵∠CEF=90°,∴∠FEM+∠CEN=90°,∵∠ECN+∠CEN=90°,∴∠FEM=∠ECN,∴∠AEM=∠FEM;②在△AME和△FME中,∠AME=∠FME=90°,∠AEM=∠FEM,∴∠EAF=∠EFA,∴AE=FE,∵ME⊥AF,∴AM=FM,∴AF=2AM,∵点E是OD的中点,O是BD的中点,∴=,∵ME∥AD,∴=,∴=,∴点F是AB的中点;(2) 解:△EFC是等腰直角三角形;理由如下:过点E作ME∥AD,交AB于点M,交CD于点N.如图所示:同(1) 得:AE=CE,Rt△AME≌Rt△ENC,∴∠AEM=∠ECN,∵=,O是DB的中点,∴=,∵ME∥AD,∴=,∵=,∴AF=2AM,即M是AF的中点,∵ME⊥AB,∴AE=FE,∴∠AEM=∠FEM,FE=CE,∵∠ECN+∠CEN=90°,∴∠FEM+∠CEN=90°,∴∠CEF=90°,∴△EFC是等腰直角三角形;(3) 解:当=时,=;理由同(1) .【点评】本题是综合题目,考查了正方形的性质、全等三角形的判定与性质、平行线分线段成比例定理、等腰直角三角形的判定、线段垂直平分线的性质、等腰三角形的判定与性质等知识;本题综合性强,有一定难度.23.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C 的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】解答题【难度】难【分析】作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan ∠CAH=tan55°x知CE=CH﹣EH=tan55°x﹣10,根据BE=DE可得关于x的方程,解之可得.【解答】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°x,∴CE=CH﹣EH=tan55°x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°x﹣10+35,解得:x≈45,∴CH=tan55°x=1.4×45=63,答:塔杆CH的高为63米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.24.为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本学校对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).(1) 在上面的统计表中m=,n=。