全等三角形过程训练(二)(人教版)(含答案)
人教版初二上数学全等三角形专题练习二(含解析)

全等三角形1.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A、6B、4C、23D、52.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个3.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm4.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.55.如图,已知在△ABC中,CD是AB边上的高线, BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD =3,BD=5,则四边形ABCD的面积为_______.7.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED 的面积是.8.如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是2,那么△A1B1C1的面积是.9.如图,AB=AD,只需添加一个条件,就可以判定△ABC≌△ADE.10.如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是.11.如图,∠A=90°,∠ABC的角平分线交AC于E,AE=3,则E到BC的距离为.12.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=4,O为AC的中点,OE⊥OD 交AB于点E.若AE=3,则OD的长为.13.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.15.(1)如图1,△ABC和△CDE都是等边三角形,且B,C,D三点共线,连接AD,BE 相交于点P,求证:BE = AD;(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,连接AD,BE和CF交于点P,下列结论正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.16.已知:如图,E、F是□ABCD的对角线AC上的两点,AE=CF.求证:(1)△ABE≌△CDF;(2)BE∥DF.17.如图,在△ABC中,∠ACB=90°,AC=BC,AE为BC边上的中线,CD⊥AE于点F,BD⊥BC于点B.(1)试说明:AE=CD;(2)若AC=10cm,求线段BD的长.18.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=12AC,则四边形ABCD是什么特殊四边形?请证明你的结论.19.如图,阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形请用二种不同的方法证明.20.如图,在△ABC中,AB=5,AD=4,BD=DC=3,且DE⊥AB于E,DF⊥AC于点F.(1)请写出与A点有关的三个正确结论;(2)DE 与DF在数量上有何关系?并给出证明.21.已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.22.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF ≌△CEB ;(2)AF=2CD .23.在△ABC 中, ∠C=90°,BD 是△ABC 的角平分线,P 是射线AC 上任意一点(不 与A,D,C 三点重合),过P 作PQ ⊥AB,垂足为Q,交直线BD 于E.(1)如图①,当点P 在线段AC 上时,说明∠PDE=∠PED.(2)如图②,作∠CPQ 的角平分线交直线AB 于点F,则PF 与BD 有怎样的位置关系?24.已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD 。
八年级数学全等三角形的判定(二)(SAS)(人教版)(基础)(含答案)

全等三角形的判定(二)(SAS)(人教版)(基础)一、单选题(共7道,每道14分)1.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°答案:B解题思路:由题意得:AB=ED,BC=DC,∠B=∠D=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∴∠1+∠2=∠BAC+∠2=180°.故选B试题难度:三颗星知识点:略2.如图,将两根钢条,的中点O连在一起,使,可以绕着点自由旋转,就做成了一个测量工件,则的长等于内槽宽,那么判定的理由是( )A.SSSB.ASAC.SASD.AAS答案:C解题思路:∵AA′,BB′的中点O连在一起,∴OA=OA′,OB=OB′,在△OAB和△OA′B′中,,∴(SAS).故选C试题难度:三颗星知识点:略3.如图,已知AB∥DE,AB=DE,BE=CF,∠B=32°,∠A=78°,则∠F等于( )A.55°B.65°C.60°D.70°答案:D解题思路:∵AB∥DE∴∠B=∠DEF∵BE=CF∴BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS)∴∠F=∠ACB=180°-32°-78°=70°故选D试题难度:三颗星知识点:略4.如图,线段AD,CE相交于点B,BC=BD,AB=EB,则下列说法不正确的是( )A.△ABC≌△EBDB.AC=EDC.∠CBD=∠ED.∠ACB=∠EDB答案:C解题思路:在△ABC和△EBD中∴△ABC≌△EBD(SAS)所以AC=ED,∠ACB=∠EDB故选项A,B,D正确,选项C错误故选C试题难度:三颗星知识点:略5.如图,已知∠ABC=∠DEF,AB=DE,若以“SAS”为依据来证明△ABC≌△DEF,还要添加的条件为( )A.∠A=∠DB.AC=DFC.∠ACB=∠FD.BC=EF或BE=CF答案:D解题思路:在△ABC和△DEF中,已知∠ABC=∠DEF,AB=DE要以“SAS”为依据来证明△ABC≌△DEF,只需要BC=EF故需添加的条件为BC=EF或BE=CF故选D试题难度:三颗星知识点:略6.如图所示,要测量池塘两岸相对的两点A,B之间的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.可以说明△DEC≌△ABC,得ED=AB,那么量出DE的长,就能求A,B两点间的距离.判定△DEC≌△ABC最恰当的理由是( )A.SSSB.ASAC.SASD.ASS答案:C解题思路:要证两个三角形全等要找三组条件,由题意知CD=CA,CE=CB,根据对顶角相等,又有∠DCE=∠ACB,所以可以根据SAS得到△DEC≌△ABC.故选C试题难度:三颗星知识点:略7.如图所示,要测量池塘AB宽度,在池塘外选取一点P,连接AP,BP并分别延长,使PC=PA,PD=PB,连接CD,测得CD长为10m,则池塘宽度AB为________m,理由是________.上述两个空格处应填( )A.5,SSSB.10,SASC.5,SASD.10,SSS答案:B解题思路:由题意可得,在△APB和△CPD中∴△APB≌△CPD(SAS)∴AB=CD=10m故选B试题难度:三颗星知识点:略。
2020年秋人教版八年级数学上册第12章《全等三角形证明过程训练》(讲义及答案)

人教版八年级数学上册第12章全等三角形证明过程训练(讲义、随堂测试、习题)➢ 课前预习1. 判定三角形全等的方法有______,______,______,______.要证三角形全等需要找_____组条件,其中必须有_____.2. 在做几何题时,我们往往借助对图形的标注来梳理信息,进而把条件直观化,请学习下图中的标注.①如图1,在四边形ABCD 中,AB ∥CD ,AD ∥BC .②如图2,在四边形ABCD 中,连接BD ,∠ABD =∠CDB ,∠ADB =∠CBD ,∠A =∠C .③如图3,在四边形ABCD 中,连接AC ,BD 相交于点O ,AO =OC ,BO =DO .D C BA ××AB CDOABCD图1图2图33. 数学推理中,有理有据地思考和表达是一项基本的数学素养,请走通思路后,完整书写过程.如图是一个易拉罐的纵截面示意图,易拉罐的上下底面互相平行(AB ∥CD ),用吸管吸饮料时,若∠1=110°,求∠2的度数.➢ 知识点睛1. 直角三角形全等的判定定理:_________________________.2. 已知:如图,在△ABC 与△A′B′C′中,∠C =∠C′=90°,AB =A′B′,AC =A′C′.321DC BA求证:△ABC ≌△A′B′C′.C'B'A'CB A证明:如图,在Rt △ABC 和Rt △A′B′C′中AB A'B'AC A'C'=⎧⎨=⎩(已知)(已知) ∴Rt △ABC ≌Rt △A′B′C′(HL )➢ 精讲精练1. 如图,AC =AD ,∠C ,∠D 是直角,将上述条件标注在图中,则___________≌___________,从而BC ________BD .D CBA 2. 如图,DE ⊥AB 于E ,DF ⊥AC 于F ,AE =AF ,则_____≌______,从而DE =______.ABCD EF3. 已知:如图,AB =CD ,AF =CE ,DE ⊥AC 于E ,BF ⊥AC 于F .求证:△ABF ≌△CDE .ABCDEF4.已知:如图,∠B=∠D=90°,如果要使△ABC≌△ADC,那么还需要一个条件,这个条件可以是_________________,理由是____________;这个条件也可以是_______________,理由是____________;这个条件也可以是_______________,理由是____________;这个条件还可以是_______________,理由是____________.ABC D ABCDE Fl第4题图第5题图5.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则EF的长为_________.6.已知:如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E.求证:△ACD≌△AED.E DC7. 已知:如图,点B ,E ,C ,F 在同一直线上,AC ∥DF 且AC =DF ,BE =CF .求证:△ABC ≌△DEF .FE DC B A8. 如图,在正方形ABCD 中,∠A =∠ABC =90°,AB =BC ,E ,F 分别是AB ,AD 上的点,已知CE ⊥BF ,垂足为M . 求证:BE =AF .ABCDEFM9. 已知:如图,在△ABC 中,∠ACB =90°,AC =BC ,D 为AB 上一点,连接CD ,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F .求证:CF =AE .10. 已知:如图,在△ABC 中,∠B =∠C =60°,D ,E ,F 分别为边BC ,AB ,AC 上的点,且BE =CD ,∠EDF =60°.求证:ED =DF .FED CBAAB DE F【参考答案】➢课前预习1.SAS,SSS,ASA,AAS3,边2.略3.解:如图∵AB∥CD∴∠1=∠3∵∠1=110°∴∠3=110°∵∠2+∠3=180°∴∠2=180°-∠3=180°-110°➢ 知识点睛 1. SAS ,SSS ,ASA ,AAS ,HL ➢精讲精练1. Rt △CAB ,Rt △DAB ,=2. Rt △AED ,Rt △AFD ,DF3. 证明:如图,∵DE ⊥AC ,BF ⊥AC ∴∠DEC =∠BFA =90° 在Rt △ABF 和Rt △CDE 中,AB CD AF CE =⎧⎨=⎩(已知)(已知) ∴Rt △ABF ≌Rt △CDE (HL ) 4. AB =AD ,HLBC =DC ,HL ∠BAC =∠DAC ,AAS ∠BCA =∠DCA ,AAS 5. 36. 证明:如图,∵DE ⊥AB ∴∠DEA =90° ∵∠C =90° ∴∠C =∠DEA ∵AD 平分∠BAC ∴∠CAD =∠EAD 在△ACD 和△AED 中C DEA CAD AED AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边) ∴△ACD ≌△AED (AAS ) 7. 证明:如图,21A BC DE F第8题图∵AC ∥DF∵BE =CF ∴BE +EC =CF +EC 即BC =EF在△ABC 和△DEF 中1 2 AC DF BC EF =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已证) ∴△ABC ≌△DEF (SAS ) 8. 证明:如图,∵∠ABC =90° ∴∠ABF+∠MBC =90° ∵AE ⊥BF ∴∠CMB =90° ∴∠MBC +∠BCE =90° ∴∠ABF =∠BCE 在△ABF 和△BCE 中A EBC AB BC ABF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩(已知)(已知)(已证) ∴△ABF ≌△BCE (ASA )∴AF =BE (全等三角形对应边相等) 9. 证明:如图,第9题图321A BDE F∵∠ACB =90° ∴∠1+∠2=90° ∵AE ⊥CD ,BF ⊥CD ∴∠F =∠AEC =90° ∴∠3+∠2=90° ∴∠1=∠3在△BCF 和△CAE 中1 3 F AEC BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(已知) ∴△BCF ≌△CAE (AAS )∴CF =AE (全等三角形对应边相等) 10. 证明:如图,∵∠B =60° ∴∠1+∠2=120° ∵∠EDF =60° ∴∠2+∠3=120° ∴∠1=∠3在△BDE 和△CFD 中1 3 BE CD B C ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(已知)(已知) ∴△BDE ≌△CFD (ASA )∴ED =DF (全等三角形对应边相等)全等三角形证明过程训练(随堂测试)1. 已知:如图,在△ABC 中,AD ⊥BC 于点D ,E 为AD 上一点,且BE =AC ,如果要使△BDE ≌△ADC ,那么还需要一个条件,这个条件可以是____________________,理由是_________;这个条件也可以是__________________,理由是_________; 这个条件也可以是__________________,理由是_________; 这个条件还可以是__________________,理由是_________.2. 已知:如图,在△ABC 中,D 为BC 边的中点,过点C 作 CF ⊥AD 于点F ,过点B 作BE ⊥AD ,交AD 的延长线于点E . 求证:CF =BE . 证明:如图,ED CB A 第10题图321A BCD E FF DCA【参考答案】1. DE =DC ,HLBD =AD ,HL ∠EBD =∠CAD ,AAS ∠BED =∠C ,AAS 2. 证明:如图,∵CF ⊥AD ,BE ⊥AD ∴∠CFD=∠BED =90° ∵D 为BC 边的中点 ∴CD =BD在△CFD 和△BED 中∴△CFD ≌△BED (AAS )∴CF =BE (全等三角形对应边相等)全等三角形证明过程训练(习题)1 2 CFD BED CD BD ∠=∠⎧⎪=⎨⎪=⎩(已证)∠∠(对顶角相等)(已证)第2题图➢ 例题示范例1:已知:如图,在正方形ABCD 中,AB =CB ,∠ABC =90°.E 为正方形内一点,BE ⊥BF ,BE =BF ,EF 交BC 于点G . 求证:AE =CF . 【思路分析】 ① 读题标注:② 梳理思路:要证AE =CF ,可以把它们放在两个三角形中证全等.观察发现,放在△ABE 和△CBF 中进行证明.要证全等,需要三组条件,其中必须有一组边相等. 由已知得,AB =CB ;BE =BF ;根据条件∠ABC =90°,BE ⊥BF ,推理可得∠1=∠2. 因此由SAS 可证两三角形全等.【过程书写】(在演草部分先进行规划,然后书写过程) 证明:如图 ∵BE ⊥BF ∴∠EBF =90° ∴∠2+∠EBC =90° ∵∠ABC =90° ∴∠1+∠EBC =90° ∴∠1=∠2在△ABE 和△CBF 中12AB CB BE BF =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知)∴△ABE ≌△CBF (SAS )∴AE =CF (全等三角形对应边相等)➢ 巩固练习11. 如图,PD ⊥AB ,PE ⊥AC ,垂足分别为点D ,E ,且PD =PE ,将上述条件标注在图中,易得___________≌___________,从而AD =__________.21G FE DCB A GABC DEF第1题图第2题图12. 已知:如图,AB ⊥BD 于点B ,CD ⊥BD 于点D ,如果要使△ABD ≌△CDB ,那么还需要添加一组条件,这个条件可以是_______________,理由是_____________;这个条件也可以是_____________,理由是_____________;这个条件也可以是_____________,理由是_____________;这个条件还可以是_____________,理由是_____________.13. 已知:如图,C 为BD 上一点,AC ⊥CE ,AC =CE ,∠ABC =∠CDE =90°.若AB =4,DE =2,则BD 的长为______.14. 已知:如图,点A ,E ,F ,B 在同一条直线上,CE ⊥AB 于点E ,DF ⊥AB 于点F ,BC =AD ,AE =BF . 求证:△CEB ≌△DFA .15. 如图,点C ,F 在BE 上,∠1=∠2,BF =EC ,∠A =∠D .求证:△ABC ≌△DEF .PEDCBADC B A ED CBAF E DC BA16. 已知:如图,点A ,B ,C ,D 在同一条直线上,且AC =BD ,BE ∥CF 证:△ABE ≌△DCF .17. 已知:如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D ,E ,AD 与CE 相交于点H ,AE =CE . 求证:AH =CB .FDCBA HEA➢思考小结1.要证明边或者角相等,可以考虑边或者角所在的两个三角形_______;要证明三角形全等,需要准备_____组条件,其中有一组必须是_______相等.2.阅读材料我们是怎么做几何题的?例1:已知:如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠B=∠D.EBC A第一步:读题标注,把题目信息转移到图形上(请把条件标注在图上)第二步:分析特征走通思路①要求∠B=∠D,考虑放在两个三角形里面证全等,把∠B放在△ABC中,把∠D放在△ADE中,只需要证明这两个三角形全等即可.②要证明△ABC≌△ADE,需要找三组条件,由已知得AB=AD,AC=AE,还差一组条件,根据∠BAE=∠DAC,同时加上公共角∠CAE,可得∠BAC=∠DAE,利用SAS可得两个三角形全等.第三步:规划过程过程分成三块:①由∠BAE=∠DAC,可得∠BAC=∠DAE;②由SAS得△ABC≌△ADE;③由全等得∠B=∠D.第四步:过程书写【参考答案】➢巩固练习1.Rt△ADP,Rt△AEP,AE2.AD=CB,HLAB=CD,SAS∠A=∠C,AAS∠ADB=∠CBD,ASA3. 64.证明:如图,∵CE ⊥AB ,DF ⊥AB ∴∠CEB =∠DFA =90° ∵AE =BF ∴AE +EF =BF +EF 即AF =BE在Rt △CEB 和Rt △DFA 中BC AD BE AF =⎧⎨=⎩(已知)(已证) ∴Rt △CEB ≌Rt △DFA (HL ) 5. 证明:如图,∵BF =EC ∴BF +FC =EC+FC 即BC =EF在△ABC 和△DEF 中1 2 A D BC EF =⎧⎪=⎨⎪=⎩∠∠(已知)∠∠(已知)(已证) ∴△ABC ≌△DEF (AAS ) 6. 证明:如图,∵AC =BD ∴AC -BC =BD -BC 即AB =DC ∵BE ∥CF ∴∠1=∠2 ∵∠1+∠3=180° ∠2+∠4=180° ∴∠3=∠4 ∵AE ∥DF ∴∠A =∠D在△ABE 和△DCF 中3 4 AB DC A D =⎧⎪=⎨⎪=⎩∠∠(已证)(已证)∠∠(已证) ∴△ABE ≌△DCF (ASA ) 7. 证明:如图,第5题图4321A B CDF∵AD ⊥BC ∴∠ADC =90° ∴∠1+∠2=90° ∵CE ⊥AB∴∠AEH =∠CEB =90° ∴∠3+∠4=90° ∵∠2=∠4 ∴∠1=∠3在△AEH 和△CEB 中3 1 AEH CEB AE CE =⎧⎪=⎨⎪=⎩∠∠(已证)(已知)∠∠(已证) ∴△AEH ≌△CEB (ASA )∴AH =CB (全等三角形对应边相等)➢ 思考小结1. 全等;3,边第6题图3124AB DEH。
初中数学人教版八年级上册第十二章《全等三角形》练习册(含答案12.2 三角形全等的判定

初中数学人教版八年级上册实用资料12.2三角形全等的判定基础巩固1.(题型三)如图12-2-1,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )______A.带①去B.带②去C.带③去D.带①和②去图12-2-12.(题型一)如图12-2-2,在∆ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )图12-2-2A.∆ABD≌∆ACDB.∆BDE≌∆CDEC.∆ABE≌∆ACED.以上都不对3.(题型一、四)如图12-2-3,∆BDC′是将长方形纸片ABCD沿着BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )图12-2-3A.1对B.2对C.3对D.4对4.(题型三)如图12-2-4,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE,AD=8,则AC= .图12-2-45.(题型二、三、四、五)如图12-2-5,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请你添加一个适当的条件,使∆ABC≌∆DEF.添加的条件是.图12-2-56.(题型三)如图12-2-6,AB∥CD,AD,BC交于点O,EF过点O分别交AB,CD于点E,F,且AE=DF.求证:O是EF的中点.图12-2-67.(题型二)[福建泉州中考]如图12-2-7,∆ABC,∆CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:∆CDA≌∆CEB.图12-2-7能力提升8.(题型一、二)下列说法中,正确的是()A.两边及一组角对应相等的两个三角形全等B.有两边分别相等,且有一角为30°的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等9.(题型四)如图12-2-8,在∆ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,AD=3,则点D到BC的距离是( )图12-2-8A.3B.4C.5D.610.(题型二)如图12-2-9,在∆ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.图12-2-9(1)求证:∆ABE≌∆CBD.(2)若∠CAE=30°,求∠BDC的度数.11.(题型三)[湖北宜昌中考]杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图12-2-10,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.图12-2-1012.(题型四、五)如图12-2-11,CD⊥AB于点D,BE⊥AC于点E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.图12-2-1113.(题型二、三)如图12-2-12,AB∥CD,OA=OD,AE=DF.求证:EB∥CF.图12-2-1214.(题型四)在数学习题课后,老师布置了一道课后练习题:如图12-2-13,在Rt∆ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P,D分别在AO和BC上,PB=PD,DE⊥AC 于点E.求证:∆BPO≌∆PDE.图12-2-13(1)理清思路,完成解答,本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论:若PB平分∠ABO,其余条件不变.求证:AP=CD.答案基础巩固1. C 解析:③保留了原来三角形的两个角和它们的夹边,可以根据“ASA”来配一块与原来一样的玻璃,所以应带③去.故选C.2. C 解析:∵AB=AC,EB=EC,AE=AE,∴△ABE≌△ACE(SSS).故选C.3. D 解析:∵△BDC′是将长方形纸片ABCD沿对角线BD折叠得到的,∴△C′DB≌△CDB.∵AB=DC,AD=BC,BD=BD,∴△ABD≌△CDB(SSS),∴△ABD≌△C′DB.在△ABO和△C′DO中,易知AB=C′D,∠A=∠C′=90°.又∵∠AOB=∠C′OD,∴△ABO≌△C′DO(AAS).故选D.4. 8 解析:∵∠CBE=∠DBE,∴∠ABC=∠ABD.在△ABC和△ABD中,,,, ABC ABDAB ABCAB DAB∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC≌△ABD(ASA),∴AC=AD=8.5. BC=EF(或BF=CE或AC=DF或∠A=∠D或∠C=∠F或AC∥DF,答案不唯一) 解析:∵AB⊥CF,DE⊥CF,∴△ABC和△DEF都是直角三角形.又∵AB=DE,∴可以添加的条件有:BC=EF(或BF=CE),△ABC≌△DEF(SAS);AC=DF,Rt△ABC≌Rt△DEF (HL);∠A=∠D,△ABC≌△DEF(ASA);∠C=∠F(或AC∥DF),△ABC≌△DEF(AAS).6. 证明:∵AB∥CD,∴∠EAO=∠FDO,∠AEO=∠DFO.在△AEO和△DFO中,,,, EAO FDOAE DFAEO DFO ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△AEO≌△DFO(ASA),∴OE=OF. ∴O是EF的中点.7.证明:∵△ABC,△CDE均为等腰直角三角形,且∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∠ACB-∠ACE=∠DCE-∠ACE, ∴∠ECB=∠DCA.在△CEB和△CDA中,,,,BC ACECB DCA EC DC=∠=∠=⎧⎪⎨⎪⎩∴△CEB≌△CDA(SAS).能力提升8. C 解析:选项A属于“SSA”,不是判定三角形全等的条件,错误;选项B,如图D12-2-1的两个等腰三角形的腰长相等,且有一角为30°,但这两个等腰三角形不全等,错误;选项C可利用“SSS”和“SAS”证明两个三角形全等,正确;选项D中的高有可能在三角形内部,也有可能在三角形外部,是不确定的,不符合全等的条件,D错误.故选C.图D12-2-1图D12-2-29. A 解析:如图D12-2-2,过点D作DE⊥BC,垂足为E,则DE的长即是点D到BC的距离.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,90,,,A DEBABD EBDBD BD∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△ABD≌△EBD(AAS),∴DE=AD=3,即点D到BC的距离是3.故选A.10.(1)证明:∵∠ABC=90°,D为AB的延长线上一点,∴∠ABE=∠CBD=90°.在△ABE和△CBD中,,,,AB CBABE CBD BE BD=∠=∠=⎧⎪⎨⎪⎩∴△ABE≌△CBD(SAS).(2)解:∵AB=CB,∠ABC=90°,∴∠CAB=45°.∵∠CAE=30°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°.∵△ABE≌△CBD,∴∠BCD=∠BAE=15°.∴∠BDC=90°-∠BCD=90°-15°=75°.11. 解:∵AB∥CD,∴∠ABO=∠CDO.∵OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.∵相邻两平行线间的距离相等,∴OD=OB.在△ABO和△CDO中,,,,ABO CDOAOB COD OB OD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△ABO≌△CDO(ASA),∴CD=AB=20米.12. 证明:∵OD⊥AB,OE⊥AC,∴∠BDO=∠CEO=90°.在△BOD和△COE中,90,,,BDO CEOBOD COEBD CE∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△BOD≌△COE(AAS),∴OD=OE.在Rt△AOD和Rt△AOE中,OA=OA, OD=OE,∴Rt△AOD≌Rt△AOE(HL),∴∠DAO=∠EAO,即AO平分∠BAC.13. 证明:∵AB∥CD(已知),∴∠3=∠4(两直线平行,内错角相等).在△DCO和△ABO中,34(),,12, OD OA∠=∠=∠=∠⎧⎪⎨⎪⎩已证(已知)(对顶角相等)∴△DCO≌△ABO(ASA),∴OC=OB(全等三角形的对应边相等). ∵AE=DF,OA=OD,∴OD+DF=OA+AE,即OF=OE.在△COF和△BOE中,(),(),12, OC OBOF OE==∠=∠⎧⎪⎨⎪⎩已证已证(对顶角相等)∴△COF≌△BOE(SAS),∴∠F=∠E(全等三角形的对应角相等).∴EB∥CF(内错角相等,两直线平行).14. 证明:(1)∵PB=PD,∴∠2=∠PBD.∵AB=BC,∠ABC=90°,∴∠C=45°.∵BO⊥AC,∴∠1=45°.∴∠1=∠C=45°.∵∠3=∠PBC-∠1,∠4=∠2-∠C,∴∠3=∠4.∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°.在△BPO和△PDE中,34,,,BOP PED BP PD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△BPO≌△PDE(AAS).(2)由(1)得,∠3=∠4.∵BP平分∠ABO,∴∠ABP=∠3.∴∠ABP=∠4.在△ABP和△CPD中,,4,,A CABPPB PD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△ABP≌△CPD(AAS),∴AP=CD.。
人教版八年级数学上册第十二章全等三角形专项测试题(二)含答案解析

八年级数学人教版第十二章全等三角形专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,在四边形中,,,若连接、相交于点,则图中全等三角形共有()A. 对B. 对C. 对D. 对【答案】B【解析】解:在和中,,,,在和中,,,,和中,,.故答案为:对2、如图,,,要使,需要添加下列选项中的()A.B.C.D.【答案】D【解析】解:,,,,在和中,,故答案为:3、如图,,若,,,则等于( ).A. 不能确定B.C.D.【答案】B【解析】解:....,....故正确答案是:.4、如图:将沿方向平移得到,若的周长为,则四边形的周长为______.A.B.C.D.【答案】A【解析】解:根据题意得:,,,,,,,,故正确答案是:.5、已知的三个内角三条边长如图所示,则甲、乙、丙三个三角形中,和全等的图形是( ).A. 只有丙B. 只有乙C. 乙和丙D. 甲和乙【答案】C【解析】解:甲图与只有两边对应相等,角不是两边的夹角,故甲与不全等.而乙根据与全等,丙根据与全等.故答案应选:乙和丙.6、如图,已知,,有下列结论:①;②;③;④.其中正确的有( ).A. 个B. 个C. 个D. 个【答案】A【解析】解:,,,,,,.,.故答案应选:个.7、如图,在平面直角坐标系中,以为圆心,适当长为半径画弧,交袖于点,交轴于点,再分别以点、为圆心,大于的长为半径画弧,两弧在第二象限交于点.若点的坐标为(,),则与的数量关系为()A.B.C.D.【答案】C【解析】解:根据作图方法可得点在第二象限角平分线上,则点横纵坐标的和为,故,整理得:8、如图,在中,,则()是的角平分线.A.B.C.D.【答案】B【解析】解:,,,是的角平分线.故答案为:.9、如图,在和中,已知,还需添加两个条件才能使,不能添加的一组条件是()A. ,B. ,C. ,D. ,【答案】B【解析】解:,,,根据可判定两三角形全等,故本选项不符合;,,,根据可判定两三角形全等,故本选项不符合;,,,由于不能判定两三角形全等,故本选项符合;,,,根据可判定两三角形全等,故本选项不符合.故正确答案是:,.10、下列条件中,能判定两个直角三角形全等的是()A. 两条直角边对应相等B. 一条边对应相等C. 两锐角对应相等D. 一锐角对应相等【答案】A【解析】解:两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除“一锐角对应相等”、“一条边对应相等”;而“两锐角对应相等”构成了,不能判定全等;“两条直角边对应相等”构成了,可以判定两个直角三角形全等.11、在如图中,,于,于,、交于点,则下列结论中不正确的是()A. 点是的中点B.C. 点在的平分线上D.【答案】A【解析】解:,于,于,,,故本选项正确;,,,,,,点在的平分线上,故本选项正确;,,,,,,正确;是的中点,无法判定,故本选项错误.12、如图,,,,则()A.B.C.D.【答案】C【解析】解:,在和中,.13、下列各组图形中,一定是全等图形的是()A. 两个直角边相等的等腰直角三角形B. 两个斜边相等的直角三角形C. 两个面积相等的长方形D. 两个周长相等的等腰三角形【答案】A【解析】解:两个周长相等的等腰三角形,不一定是全等图形,故“两个周长相等的等腰三角形”不符合题意;两个面积相等的长方形,不一定是全等图形,故“两个面积相等的长方形”不符合题意;两个斜边相等的直角三角形,不一定是全等图形,故“两个斜边相等的直角三角形”不符合题意;两个直角边相等的等腰直角三角形,一定全等,故“两个直角边相等的等腰直角三角形”符合题意.故正确答案是:两个直角边相等的等腰直角三角形14、下列说法正确的是()A. 形状相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等【答案】C【解析】解:形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;面积相等的两个三角形全等,说法错误;完全重合的两个三角形全等,说法正确;所有的等边三角形全等,说法错误.15、如图,在下列选项中的四个图案中,与下面图案全等的图案是()A.B.C.D.【答案】B【解析】解:能够完全重合的两个图形叫做全等形,旋转后与题干中的图形重合.故正确答案是:二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,已知,,,则____,理由是_____.【答案】,两边及其夹角相等的两个三角形是全等三角形.【解析】解:,,,在和中,,,,.故答案为:,两边及其夹角相等的两个三角形是全等三角形.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.【答案】全等【解析】解:解决难以测量或无法测量的线段(或角)的关键:构建全等三角形,得到线段相等或角相等.故答案为:全等.18、如图所示,,且,则.【答案】30【解析】解:即:故正确答案为19、如图,在中,,.按以下步骤作图:以点为圆心,小于的长为半径画弧,分别交、于点、;分别以点、为圆心,大于的长为半径画弧,两弧相交于点作射线交边于点.则的度数为.【答案】65【解析】解:根据已知条件中的作图步骤知,是的平分线,,在中,(直角三角形中的两个锐角互余);故答案是:.20、如图,,其中,则.【答案】130【解析】解:由,得,,所以.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.【解析】证明:在和中.,,..22、如图,若通过平移得到,你能找出图中的等量关系吗?【解析】解:相等的线段有:,,;相等的角有:,,.故正确答案是:,.23、如图所示,已知点在上,点在上,、交于点,,,试判断和有什么关系?说明你的理由.【解析】解:在和中,,又故正确答案为:。
人教版八年级上《第12章全等三角形》单元测试(2)含答案解析

《第12章全等三角形》一、选择题1.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′5.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA6.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角7.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠28.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F9.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB 于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE ≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④10.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个二、填空题11.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).12.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.14.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据可得到△AOD≌△COB,从而可以得到AD= .15.如图,∠A=∠D=90゜,AC=DB,欲证OB=OC,可以先利用“HL”说明得到AB=DC,再利用证明△AOB≌得到OB=OC.16.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.17.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(共29分)18.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.20.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.23.已知:如图,在四边形ABCD中,E是AC上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.《第12章全等三角形参考答案与试题解析一、选择题1.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′【考点】全等三角形的判定.【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.【解答】解:A、若添加BC=BˊCˊ,可利用SAS进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS进行全等的判定,故本选项错误;故选C.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定,要认真确定各对应关系.5.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA【考点】全等三角形的判定;等边三角形的性质.【专题】压轴题.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.【点评】此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.6.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.7.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.8.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【考点】全等三角形的判定.【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选C.【点评】本题考查了全等三角形的判断方法;一般三角形全等判定的条件必须是三个元素,并且一定有一组对应边相等,要找准对应边是解决本题的关键.9.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB 于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE ≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④【考点】全等三角形的判定;等腰三角形的性质.【分析】根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.【解答】解:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE (ASA);③△BDA≌△CEA (ASA);④△BOE≌△COD (AAS或ASA).故选D.【点评】此题考查等腰三角形的性质和全等三角形的判定,难度不大.10.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个【考点】全等图形.【专题】常规题型.【分析】根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.【解答】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.【点评】本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.二、填空题11.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.12.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.【考点】全等三角形的性质.【分析】已知中AD=BC,说明二者为对应边,而AB是公共边,即AB的对应边是BA,所以B的BD对应边只能是AC,根据对应边所对的角是对应角可得答案为∠ABC.【解答】解:∵△ABD≌△BAC,AD=BC,∴∠BAD的对应角是∠ABC.【点评】本题考查了全等三角形性质的应用,确认两条线段或两个角相等,往往利用全等三角形的性质求解.13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等的性质可得点D到AC的距离等于点D到AB的距离DE 的长度.【解答】解:如图,∵AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC,∴DE=DF,∵DE=3cm,∴DF=3cm,即点D到AC的距离为3cm.故答案为:3cm.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.14.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据可得到△AOD≌△COB,从而可以得到AD= .【考点】全等三角形的判定与性质.【专题】计算题.【分析】判定三角形全等,由题中条件,即要利用两边夹一角进行求解,所以找出对应角即可判定其全等,再有全等三角形的性质得出对应边相等.【解答】解:要判定△AOD≌△COB,有OA=OC,OD=OB,所以再加一夹角∠AOD=∠COB,根据两边夹一角,即可判定其全等,又有全等三角形的性质可得AD=CB.故答案为∠COB,SAS,CB.【点评】本题主要考查了全等三角形的判定及性质问题,应熟练掌握.15.如图,∠A=∠D=90゜,AC=DB,欲证OB=OC,可以先利用“HL”说明得到AB=DC,再利用证明△AOB≌得到OB=OC.【考点】全等三角形的判定与性质.【分析】根据HL证Rt△BAC≌Rt△CDB,推出AB=DC,根据AAS证△AOB≌△DOC.【解答】解:∵在Rt△BAC和Rt△CDB中∴Rt△BAC≌Rt△CDB(HL),∴AB=DC,在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:△ABC≌△DCB,AAS,△DOC.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.16.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.【考点】全等三角形的性质.【分析】第三边所对的角即为前两边的夹角.分两种情况,一种是两个锐角或两个钝角三角形,另一种是一个钝角三角形和一个锐角三角形.【解答】解:当两个三角形同为锐角或同为钝角三角形时,易得两三角形全等,则第三边所对的角是相等关系;当一个钝角三角形和一个锐角三角形时(如图),则第三边所对的一个角与另一个角的邻补角相等,即这两个角是互补关系.故填“相等或互补”.【点评】本题考查全等三角形的性质,应注意的是,两边相等不一定角相等,解题时要多方面考虑.17.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(共29分)18.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【考点】全等三角形的性质.【专题】证明题.【分析】(1)根据△EFG≌△NMH,∠F与∠M是对应角可得到两个三角形中对应相等的三边和三角;(2)根据(1)中的对等关系即可得MN和HG的长度.【解答】解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.【点评】本题考查了全等三角形全等的性质及比较线段的长短,熟练找出两个全等三角形的对应角、对应边是解此题的关键.20.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.【考点】全等三角形的应用.【专题】计算题;作图题.【分析】根据BC=CD,∠CED=∠CAB,∠ACB=∠ECD,即可求证△ABC≌△EDC,根据全等三角形对应边相等的性质可以求得AB=DE.【解答】解:∵DE∥AB,∴∠CED=∠CAB,∴△ABC≌△EDC(AAS),∴AB=ED,答:DE的长就是A、B之间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中正确的求证△ABC≌△EDC是解题的关键.21.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】根据AB∥DE,BC∥EF,可证∠A=∠EDF,∠F=∠BCA;根据AD=CF,可证AC=DF.然后利用ASA即可证明△ABC≌△DEF.【解答】证明:∵AB∥DE,BC∥EF∴∠A=∠EDF,∠F=∠BCA又∵AD=CF∴AC=DF∴△ABC≌△DEF.(ASA)【点评】此题主要考查学生对全等三角形的判定的理解和掌握,此题难度不大,属于基础题.四、解答题(共20分)22.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据已知利用HL即可判定△BEC≌△DEA;(2)根据第一问的结论,利用全等三角形的对应角相等可得到∠B=∠D,从而不难求得DF⊥BC.【解答】证明:(1)∵BE⊥CD,BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.【点评】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.23.已知:如图,在四边形ABCD中,E是AC上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.【考点】全等三角形的判定与性质.【专题】证明题.【分析】因为∠1=∠2,∠3=∠4,AC=CA,根据ASA易证△ADC≌△ABC,所以有DC=BC,又因为∠3=∠4,EC=CE,则可根据SAS判定△CED≌△CEB,故∠5=∠6.【解答】证明:∵,∴△ADC≌△ABC(ASA).∴DC=BC.又∵,∴△CED≌△CEB(SAS).∴∠5=∠6.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.知识像烛光,能照亮一个人,也能照亮无数的人。
2021年人教版八年级数学上三角形全等的判定(2)边角边同步练习课时作业含答案解析

2021年三角形全等的判定(2)边角边一.选择题(共2小题)1.如图,已知AB=AE,AC=AD,再需要哪两个角对应相等,就可以应用SAS判定△ABC≌△AED.()A.∠A=∠A B.∠C=∠D C.∠B=∠E D.∠BAC=∠EAD 2.如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的是()A.∠BAD=∠CAE B.△ABD≌△ACE C.AB=BC D.BD=CE二.解答题(共4小题)3.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,MB=NC.求证:DM=DN.4.如图所示,AD是△ABC的中线,在AD及其延长线上截取DE=DF,连接CE、BF,试判断△BDF与△CDE全等吗?BF与CE有何位置关系?并说明原因.5.已知,如图△ABC中,AM是BC边上的中线,求证:AM<12(AB+AC).6.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.2021年三角形全等的判定(2)边角边参考答案与试题解析一.选择题(共2小题)1.如图,已知AB =AE ,AC =AD ,再需要哪两个角对应相等,就可以应用SAS 判定△ABC≌△AED .( )A .∠A =∠AB .∠C =∠D C .∠B =∠E D .∠BAC =∠EAD【分析】观察图形,找着已知条件在图形上的位置,然后结合全等的判定方法可得.【解答】解:有AB =AE ,AC =AD ,必须加它们的夹角,所以是∠BAC =∠EAD ,D 是正确的;A 、B 、C 都不能应用SAS 判定△ABC ≌△AED .故选:D .【点评】若有两边一角对应相等时,角必须是两边的夹角,要结合图形做题,由位置定方法.2.如图,已知AB =AC ,AD =AE ,∠BAC =∠DAE .下列结论不正确的是( )A .∠BAD =∠CAEB .△ABD ≌△ACEC .AB =BCD .BD =CE【分析】先证明△BAD ≌△CAE ,根据全等三角形的性质,一一判断即可.【解答】证明:∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,故A 正确,在△BAD 和△ACE 中,{BA =CA ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE ,故B 正确,∴BD =EC ,故D 正确,∴C 错误,故选:C .【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.二.解答题(共4小题)3.如图,在△ABC 中,已知AB =AC ,AD 平分∠BAC ,点M ,N 分别在AB ,AC 边上,MB =NC .求证:DM =DN .【分析】根据等式的性质得出AM =AN ,根据SAS 证明△AMD 和△AND 全等,利用全等三角形的性质解答即可.【解答】证明:∵AB =AC ,MB =NC ,∴AB ﹣MB =AC ﹣NC ,即AM =AN ,又∵AD 平分∠BAC ,∴∠MAD =∠NAD ,在△AMD 和△AND 中,{AM =AN ∠MAD =∠NAD AD =AD,∴△AMD ≌△AND (SAS ),∴DM =DN .【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的性质,证明三角形全等是解题的关键.4.如图所示,AD 是△ABC 的中线,在AD 及其延长线上截取DE =DF ,连接CE 、BF ,试判断△BDF 与△CDE 全等吗?BF 与CE 有何位置关系?并说明原因.【分析】结论:①△BDF ≌△CDE ②BF ∥CE ,①根据两边和夹角对应相等的两个三角形全等即可判断;②根据内错角相等两直线平行即可判断.【解答】解:结论:①△BDF ≌△CDE ②BF ∥CE .理由:①∵AD 是△ABC 中线,∴BD =DC ,在△BDF 和△CDE 中,{BD =CD ∠BDF =∠EDC DF =DE,∴△BDF ≌△CDE .②∴△BDF ≌△CDE ,∴∠F =∠CED ,∴BF ∥CE .【点评】本题考查全等三角形的判断和性质、两直线平行的判定等知识,解题的关键是熟练掌握全等三角形的判定,属于中考常考题型.5.已知,如图△ABC 中,AM 是BC 边上的中线,求证:AM <12(AB +AC).【分析】可延长AM到D,使MD=AM,连CD,则△ABM≌△DCM得AB=CD,进而在△ACD中利用三角形三边关系,证之.【解答】证明:延长AM到D,使MD=AM,连CD,∵AM是BC边上的中线,∴BM=CM,又AM=DM,∠AMB=∠CMD,∴△ABM≌△DCM,∴AB=CD,在△ACD中,则AD<AC+CD,即2AM<AC+AB,AM<12(AB+AC).【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,应熟练掌握.6.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF =∠CHE ,所以∠ABD =∠ACG .再由AB =CG ,BD =AC ,利用SAS 可得出三角形ABD 与三角形ACG 全等,由全等三角形的对应边相等可得出AD =AG ,(2)利用全等得出∠ADB =∠GAC ,再利用三角形的外角和定理得到∠ADB =∠AED +∠DAE ,又∠GAC =∠GAD +∠DAE ,利用等量代换可得出∠AED =∠GAD =90°,即AG 与AD 垂直.【解答】(1)证明:∵BE ⊥AC ,CF ⊥AB ,∴∠HFB =∠HEC =90°,又∵∠BHF =∠CHE ,∴∠ABD =∠ACG ,在△ABD 和△GCA 中{AB =CG ∠ABD =∠ACG BD =CA,∴△ABD ≌△GCA (SAS ),∴AD =GA (全等三角形的对应边相等);(2)位置关系是AD ⊥GA ,理由:∵△ABD ≌△GCA ,∴∠ADB =∠GAC ,又∵∠ADB =∠AED +∠DAE ,∠GAC =∠GAD +∠DAE ,∴∠AED =∠GAD =90°,∴AD ⊥GA .【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案) (77)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案)已知一个三角形的两条边长为1cm和2cm,一个内角为45°.(1)请你利用如图45°角,画出一个满足题设条件的三角形.(2)你是否还能画出既满足题设条件,又与(1)中所画的不全等的三角形?若能,请用“尺规作图”画出,若不能,请说明理由.(3)如果将题设条件改为“一个三角形的两条边长为3cm和4cm,一个内角为45°”,画出满足这一条件的,且彼此不全等的所有三角形.(要求在图中标记3cm和4cm的边长)【答案】(1)见解析;(2)不能,见解析;(3)见解析.【解析】【分析】(1)作AC=1cm,AB=2cm,连接BC,则△ABC就是要作的三角形;(2)若AB=2,则点B到∠A,则可判断BC边不能取1cm,于是可判断所画的三角形只能为1cm和2cm的两边夹45°;(3)分情况讨论:45°所对的边长为3cm;45°所对的边长为4cm;45°的邻边为3cm和4cm,分别作图即可.【详解】解:(1)如图1,△ABC为所作;(2)不能,理由:若AB=2,则点B到∠A,所以BC边不能取1,所以所画的三角形只能为1cm和2cm的两边夹45°;(3)如图,【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.62.如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB 交DE的延长线于点F.求证:△ADE≌△CFE.【答案】证明见解析.【解析】【分析】根据AAS或ASA证明△ADE≌△CFE即可. 【详解】证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,ADF FA ACF AE CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE≌△CFE(AAS).【点睛】此题考查全等三角形的判定,解题关键在于掌握AAS或ASA即可.63.如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:AD=AE【答案】见解析.【解析】【分析】根据ASA △ADC ≌△AEB ,即可得出结论.【详解】证明:在△ABE 和△ACD 中,A A AB AC B C ∠∠∠⎧⎪∠⎪⎨⎩=== ∴△ABE ≌△ACD (ASA )∴AE=AD【点睛】本题主要考查了全等三角形的判定及性质问题,应熟练掌握.64.如图所示,△ABC 是等腰直角三角形,∠A =90°,AB =AC ,D 是斜边BC 的中点,E ,F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE =15,CF =8,求△AEF 的面积.【答案】60【解析】【分析】由“ASA ”可证△AED △△CFD ,可得AE =CF =8,可得AF =BE =15,即可求解.【详解】解:△在Rt △ABC 中,AB =AC ,AD 为BC 边的中线,△△DAC =△BAD =△C =45°,AD △BC ,AD =DC ,又△DE △DF ,AD △DC ,△△EDA+△ADF =△CDF+△FDA =90°,△△EDA =△CDF在△AED 与△CFD 中,EDA CDF AD CDEAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△AED △△CFD (ASA ).△AE =CF =8,△AB ﹣AE =AC ﹣CF ,△AF =BE =15,△△EAF =90°,△S △AEF =12×AE ×AF =60. 【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,求AE=CF 是本题的关键.65.如图,在ABC ∆中,AB AC =,D 为射线BC 上一动点(不与点C 、B 重合),在AD 的右侧作ADE ∆,使得AE AD =,DAE BAC α∠=∠=,连接CE .(1)当点D 从点B 开始运动时,BCE ∠的度数等于______(用含α的式子表示);(2)当点D 运动到线段CB 上何处时,AC DE ⊥,并说明理由;(3)当90α=时,若6BC =,2CD =,求DE 的值.【答案】(1)180°-α.;(2)当点D 运动到CB 中点时,AC ⊥DE ,证明见解析;(3)DE 的值为.【解析】【分析】(1)由DAE BAC α∠=∠=得知∠BAD=∠CAE ,结合AB=AC,AD=AE 证明△ABD 与△ACE 全等,所以∠ABC=∠ACE ,进一步得出∠BCE=∠ACB +∠ACE=∠ABC +∠ACB ,从而得出答案即可;(2)当点D 运动到CB 中点时,AC ⊥DE ,根据AB=AC 得知∠BAD=∠CAD ,再结合∠BAD=∠CAE 得出∠CAD=∠CAE ,最后根据AD=AE 即可证明出结论;(3)首先分D 点在线段BC 上以及在BC 延长线上两种情况分开讨论,其中利用△ABD 与△ACE 全等求出相应的边长,最后利用勾股定理求长即可.【详解】(1)∵DAE BAC α∠=∠=,∴∠BAD +∠DAC=∠DAC +∠CAE ,∴∠BAD=∠CAE ,又∵AB=AC 、AD=AE,∴△ABD ≌△ACE ,∴∠ABD=∠ACE ,∴∠BCE=∠ACE +∠ACB=∠ABD +∠ACB=180°-∠BAC ,即∠BCE=180°-α.(2)当点D 运动到CB 中点时,AC ⊥DE ,证明如下:∵AB=AC ,点D 是CB 中点,∴∠BAD=∠CAD,又∵∠BAD=∠CAE,∴∠CAD=∠CAE ,∵AD=AE,∴AC ⊥DE.(3)①当D 点在线段BC 上时,如图1,∵6BC =,2CD =,∴BD=BC -CD=4,由(1)得△ABD ≌△ACE ,∴BD=CE=4,∵DAE BAC α∠=∠==90°,∴∠BCE=180°-90°=90°,∴在Rt △DCE 中,;②当D 点在BC 延长线上时,如图2:∵6BC =,2CD =,∴BD=BC +CD=8,由(1)得△ABD ≌△ACE ,∴BD=CE=8,∵DAE BAC α∠=∠==90°,∴∠BCE=180°-90°=90°即∠ECD=90°,∴在Rt △DCE 中,综上所述,DE 的值为【点睛】本题主要考查了动点问题与全等三角形以及勾股定理的综合运用,熟练掌握相关概念是解题关键.66.如图,ABC 是等边三角形,点 D ,E 分别在 AB ,BC 边上,且 AD BE =,求证:CD AE =.【答案】详见解析【解析】【分析】根据已知推出△ADC ≌△BEA,即可求证CD AE =【详解】证明:在等边 ABC △ 中,AB AC =,BAC ABC ∠=∠ , 在 ADC 和 BEA △ 中,,{,,AD BE DAC EBA AC AB =∠=∠= ADC BEA ∴≅.(SAS )AE CD ∴=.【点睛】本题主要考查全等三角形的判定67.如图AE AF =,AB AC =,DE BA ⊥,点E 为垂足,DF AC ⊥,点F 为垂足,求证:BD CD =.【答案】见解析【解析】【分析】根据DE BA ⊥与DF AC ⊥,得90AED AFD ∠=∠=︒,证明()Rt AEC Rt AFD HL ∆∆≌,则有DE=DF ,再证明()BED CFD SAS ∆∆≌则可证明BD CD =.【详解】解: DE BA ⊥,DF AC ⊥90AED AFD ∴∠=∠=︒在Rt AED ∆和Rt AFD ∆中,AE AF AD AD =⎧⎨=⎩()Rt AEC Rt AFD HL ∆∆∴≌DE DF ∴= =AE AF ,AB AC =BE CF ∴=在BED ∆和CFD ∆中,BE CF E F DE DF =⎧⎪∠=∠⎨⎪=⎩()BED CFD SAS ∆∆∴≌BD CD ∴=【点睛】本题考查了全等三角形的判定与性质,熟练掌握判定三角形全等的判定定理是解题的关键.68.如图,C BDE ∠=∠,AE BE =,点D 在AC 边上,DEC BEA ∠=∠.(1)求证:AEC BED ∆∆≌;(2)若40DEC ∠=︒,则BDA ∠的度数.【答案】(1)见解析;(2)40︒【解析】【分析】(1)根据已知条件即可判断△AEC ≌△BED ;(2)由(1)可知:A B ∠=∠,根据DEC BEA ∠=∠,得=40BEA ∠︒,再根据三角形的外角的性质,从而可求出∠BDA 的度数;【详解】(1)证明:DEC BEA ∠=∠BED AEC ∠=∠∴在AEC ∆和BED ∆中,C BED AEC BED AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AEC BED AAS ∆∆∴≌(2)由AEC BED ∆∆≌可得A B ∠=∠,DEC BEA ∠=∠=40BEA ∠︒∴AOB ∠是AOD ∆和BOE ∆的外角AOB A ADO B BEO ∴∠=∠+∠=∠+∠A B ∠=∠40BDA BEA ∴∠=∠=︒【点睛】本题考查了全等三角形,熟练掌握全等三角形的性质与判定以及外角的性质是解题的关键.69.如图,A 、B 两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN ,且使MN AB ⊥于点B ,在BN 上截取BC CD =,过点D 作DE MN ⊥,使点A 、C 、E 在同一直线上,则DE 的长就是A 、B 两建筑物之间的距离,请说明理由.【答案】见解析【解析】【分析】根据已知条件证明在ABC ∆和EDC ∆全等,即可证明AB DE =.【详解】解:AB MN ⊥∵,=90ABC ∠︒∴,同理=90EDC ∠︒,=ABC EDC ∠∠∴,在ABC ∆和EDC ∆中,==ABC EDC BC CDBCA DCE ∠∠⎧⎪=⎨⎪∠∠⎩()ACB ECD ASA ∆∆∴≌,AB DE ∴=.【点睛】本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.70.在Rt △ABC 中,AB =AC ,OB =OC ,∠A =90°,∠MON =α,分别交直线AB 、AC 于点M 、N .(1)如图1,当α=90°时,求证:AM =CN ;(2)如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系,并证明;(3)如图3,当α=45°时,旋转∠MON ,问线段之间BM 、MN 、AN 有何数量关系?并证明.【答案】(1)证明见解析;(2)BM =AN +MN ,理由见解析;(3)MN=AN+BM.理由见解析.【解析】【分析】是一个等腰直角三角(1)根据题意AB=AC,∠BAC=90°,得出ABC形,再根据三线合一得出OA=OB=OC,从而∠ABO=∠ACO=∠BAO=∠CAO=45°,且AO⊥BC,从而得出∠MON=∠AOC=90°,再又因为等角的余角相等,所以∠AOM=∠CON,所以通过证明△AOM≌△CON得出AM=CN(2)根据题意,在BA上截取BG=AN,连接GO,AO,先证明△BGO≌△AON,再证明△GMO≌△NMO得出GM=MN,从而证明出BM =AN+MN(3)根据题意,过点O作OG⊥ON,连接AO,先证明△NAO≌△GBO,得到AN=GB,GO=ON,再证明△MON≌△MOG得到MN=MG,从而进一步证明出MN=AN+BM【详解】证明:(1)如图1,连接OA,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠MON=∠AOC=90°,∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,∴△AOM≌△CON(ASA)∴AM=CN;(2)BM=AN+MN,理由如下:如图2,在BA上截取BG=AN,连接GO,AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∵BG=AN,∠ABO=∠NAO=45°,AO=BO,∴△BGO≌△AON(SAS)∴OG=ON,∠BOG=∠AON,∵∠MON=45°=∠AOM+∠AON,∴∠AOM+∠BOG=45°,且∠AOB=90°,∴∠MOG=∠MON=45°,且MO=MO,GO=NO,∴△GMO≌△NMO(SAS)∴GM=MN,∴BM=BG+GM=AN+MN;(3)MN=AN+BM,理由如下:如图3,过点O作OG⊥ON,连接AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠GBO=∠NAO=135°,∵MO⊥GO,∴∠NOG=90°=∠AOB,∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,∴△NAO≌△GBO(ASA)∴AN=GB,GO=ON,∵MO=MO,∠MON=∠GOM=45°,GO=NO,∴△MON≌△MOG(SAS)∴MN=MG,∵MG=MB+BG,∴MN=AN+BM.【点睛】本题主要考查了全等三角形的综合运用与证明,充分熟悉相关概念及作出正确的辅助线是关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形过程训练(二)(人教版)
一、单选题(共6道,每道16分)
1.如图,已知,在△ABC中,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F.
求证:△AED≌△AFD.
证明:如图,
_____________________
在△AED和△AFD中
_____________________
∴△AED≌△AFD(AAS)
①;②;③;
④;⑤.
以上空缺处依次所填最恰当的是( )
A.①③
B.①④
C.①⑤
D.②⑤
答案:B
解题思路:
试题难度:三颗星知识点:全等三角形的判定
2.如图:AB∥DE,AB=ED,BF=DC.求证:△ABC≌△EDF.
证明:如图,
∵BF=DC
∴BF+FC=DC+CF
即BC=DF
_____________________
在△ABC和△EDF中
_____________________
∴△ABC≌△EDF(______)
①;②;
③;④;⑤;
⑥SAS;⑦SSA.
以上空缺处依次所填最恰当的是( )
A.①③⑥
B.①④⑥
C.②④⑥
D.②⑤⑦
答案:C
解题思路:
试题难度:三颗星知识点:全等三角形的判定
3.已知:如图,在四边形ABCD中,AB∥CD且AD∥BC.求证:△ABD≌△CDB.
证明:如图,
_____________________
在△ABD和△CDB中
_____________________
∴△ABD≌△CDB(ASA)
①;②;③;④.以上空缺处依次所填最恰当的是( )
A.①④
B.①③
C.②④
D.②③
答案:A
解题思路:
试题难度:三颗星知识点:全等三角形的判定
4.如图,在△ABC中,∠ACD=90°,AC=BC,AE⊥BF于点E,交BC于点D.求证:△ADC≌△BFC.
证明:如图,
_____________________
∵AE⊥BF
∴∠BED=90°
∴∠CBF+∠2=90°
∵∠1=∠2
∴∠CAD=∠CBF
在△ADC和△BFC中
_____________________
_____________________
①;②;
③;④;⑤;⑥.以上空缺处依次所填最恰当的是( )
A.①③⑥
B.②③⑥
C.①④⑤
D.②④⑤
答案:B
解题思路:
试题难度:三颗星知识点:全等三角形的判定
5.如图,在Rt△ACB中,∠ACB=90°,AC=BC,点D是AB边上一点,BF⊥CD于点F,AE⊥CD 交CD的延长线于点E.求证:△ACE≌△CBF.
下列证明△ACE≌△CBF的条件中,错误的是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:全等三角形的判定
6.已知:如图,在△ABC中,AC=BC,∠ACB=90°,∠A=∠ABC=45°,CD是∠ACB的角平分线,点E是AB边上一点.BF⊥CE于点F,交CD于点G.求证:△ACE≌△CBG.
小明是这样想的,要证明△ACE≌△CBG,那么必须有三组条件,题目中已经给出了AC=BC,因此还需要寻找另外的两组条件,请你选出小明要找的另外两组条件是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:全等三角形的判定
第11页共11页。