电力系统负荷预测方法及特点
电力系统负荷预测

摘要负荷预测是电力系统规划、计划、用电、调度等部门的基础工作。
讨论了年度负荷预测、月度负荷预测和短期负荷预测的特点、成熟方法,分析了负荷预测问题的各种解决方案,并指出未来的主要研究方向。
根据国内电力系统负荷预测的实践和国外的经验,对我国开展电力系统负荷预测工作提出了一些建议。
关键词:电力系统;负荷预测;模型;参数辨识第一章引言负荷预测是从已知的用电需求出发,考虑政治、经济、气候等相关因素,对未来的用电需求做出的预测。
负荷预测包括两方面的含义:对未来需求量(功率)的预测和未来用电量(能量)的预测。
电力需求量的预测决定发电、输电、配电系统新增容量的大小;电能预测决定发电设备的类型(如调峰机组、基荷机组等)。
负荷预测的目的就是提供负荷发展状况及水平,同时确定各供电区、各规划年供用电量、供用电最大负荷和规划地区总的负荷发展水平,确定各规划年用电负荷构成。
第二章负荷预测的方法及特点电力系统负荷预测的原理通常来说预测电力系统负荷最直接最有效的方法是建立一个负荷模型,该模型有两层含义:一是负荷的时空特性,二是负荷电压和频率特性。
对于负荷的时空特性指的是随着时间与空间的不同分布,负荷的分布也会不同。
这种负荷模型往往是比较复杂的,研究人员通常是采用负荷时间曲线来描述这种特性。
这样负荷曲线以时间为依据,就可以分为日负荷、周负荷、季负荷以及年负荷;如果换成以时空角度为划分依据,则此曲钱又可分为系统、节点和用户三种负荷曲线;若按照负荷的性质来分,负荷曲线又可以分为工业、农业、市政以及生活负荷等。
在一般的安全运行的过程中,负荷模型指的就是未来时空特性,因此也可以将此作为负荷预测模型。
通常负荷预测模型包含的内容是非常广泛的,在运行的过程中不仅能进行短期或者实时的负荷预测,还能在规划电力系统时做长期的预测。
负荷的预测通常采用的是概率统计,有效地分析工具即为时间序列分析,由于是预测未来的负荷,所以会存在或多或少误差。
对于未来负荷预测误差所产生的原因主要是一些不确定的因素与负荷变化的规律不一致,如某些自然灾害可能会导致停电,这样负荷曲线就会在事故时段出现一些突变。
电力系统的电力负荷预测方法

电力系统的电力负荷预测方法电力负荷预测是电力系统运行管理中至关重要的一环。
准确的负荷预测可以帮助电力公司优化发电计划、调度设备、调整能源需求和节约成本。
因此,研究和应用有效的电力负荷预测方法是电力行业的一个重要课题。
目前,电力负荷预测方法主要可以分为传统的统计方法和基于机器学习的方法。
传统的统计方法包括时间序列分析、回归分析和指数平滑等。
其中,时间序列分析主要关注历史负荷数据的模式和趋势,通过建立适当的模型来预测未来的负荷。
回归分析则是建立负荷与其他影响因素(如天气、社会经济因素等)之间的数学关系,并利用这些关系进行负荷预测。
指数平滑方法则是基于历史负荷数据的平滑处理,通过对历史负荷数据赋予权重来进行负荷预测。
这些方法简单易行,适用于一些负荷变化规律较为明显、受因素较少的场景。
然而,随着电力系统的复杂性不断增加,传统的统计方法的局限性也逐渐显现出来。
例如,统计方法通常假设历史数据与未来数据之间存在着稳定的关系,但在电力系统中,受到天气、经济、政策等诸多因素的影响,历史数据与未来数据之间的关系可能会发生变化。
此外,在处理大规模的历史负荷数据时,传统的统计方法也面临着计算效率低下的问题。
为了克服传统方法的局限性,基于机器学习的电力负荷预测方法逐渐被引入。
机器学习方法通过从大量历史负荷数据中学习和总结规律,来进行未来负荷的预测。
其中,常用的机器学习算法包括支持向量机、人工神经网络、决策树和随机森林等。
支持向量机是一种通过寻找最佳超平面来进行分类和回归分析的机器学习方法。
在电力负荷预测中,支持向量机可以根据历史负荷数据以及其他相关因素(如节假日、天气等)之间的关系,建立起一个适合负荷预测的模型。
人工神经网络则是模仿人脑神经元之间的连接和传递信息的机制,通过训练神经网络来进行负荷预测。
决策树方法则是通过对一系列问题进行决策,最终得出预测结果。
随机森林方法则是基于多个决策树的集成方法,通过多个决策树的投票来得出最终的预测结果。
电力系统中的电力负荷预测方法与算法研究

电力系统中的电力负荷预测方法与算法研究引言:在电力系统中,准确预测电力负荷对于实现稳定和可靠的电力供应至关重要。
电力负荷预测是指根据过去的用电数据和相关的环境和经济因素,预测未来一段时间(如天、周、月)内的电力负荷情况。
准确的负荷预测可以帮助电力公司优化电力调度,合理安排发电和输电,有效解决电力供需平衡问题,提高电网运行效率和经济性。
一、传统的电力负荷预测方法:1. 时间序列方法:时间序列方法是一种常用的负荷预测方法,其基本思想是通过分析负荷历史数据的变化趋势、周期性和规律性,预测未来的负荷情况。
常用的时间序列方法包括ARIMA模型、指数平滑模型和季节性分解方法等。
这些方法适用于短期负荷预测,但对于长期预测效果不佳。
2. 统计回归方法:统计回归方法通过建立负荷与相关因素(如气温、湿度、日照等)之间的函数关系,进行负荷预测。
常用的统计回归方法包括多元线性回归分析、多元非线性回归分析和逐步回归分析等。
这些方法适用于中期和长期负荷预测,并且考虑了外部因素的影响,但要求提供大量的相关数据。
二、基于机器学习的电力负荷预测方法:1. 神经网络方法:神经网络方法通过构建具有多层隐含层的人工神经网络模型,通过学习历史数据中的模式和规律,进行负荷预测。
常用的神经网络方法包括BP神经网络、RBF神经网络和CNN神经网络等。
这些方法适用于短期和中期负荷预测,可以更好地捕捉负荷的非线性关系。
2. 支持向量机方法:支持向量机方法通过将负荷预测问题转化为一个优化问题,通过寻找一个最优的超平面,将不同类别的样本分开。
常用的支持向量机方法包括线性支持向量机、非线性支持向量机和径向基函数支持向量机等。
这些方法适用于中期和长期负荷预测,并且具有较好的泛化能力。
3. 遗传算法方法:遗传算法方法通过模拟自然界的遗传和进化过程,寻找最优的解决方案。
常用的遗传算法方法包括基于交叉、变异和选择等操作的进化算法和遗传规划算法等。
这些方法适用于长期负荷预测,可以考虑多个因素之间的复杂关系。
电力系统中的电力负荷预测方法教程

电力系统中的电力负荷预测方法教程电力负荷预测是电力系统运行的重要组成部分,准确的负荷预测是保持电力系统的稳定运行、合理调度电力资源的关键。
在电力系统中,负荷预测的主要目标是预测未来一段时间内的电力负荷需求。
本文将介绍几种常用的电力负荷预测方法,包括传统的时间序列方法和基于机器学习的方法。
1. 时间序列方法时间序列方法是电力负荷预测中最常用的方法之一。
它基于历史负荷数据分析未来负荷的变化趋势。
时间序列方法需要建立模型来捕捉负荷数据的周期性和趋势性。
以下是一些常见的时间序列方法:1.1 移动平均法移动平均法是最简单的时间序列方法之一。
它通过计算每个时间点前几个时间点的负荷平均值来进行预测。
移动平均法适用于负荷呈现稳定的周期性变化的情况,但对于具有较大波动的负荷数据可能表现不佳。
1.2 指数平滑法指数平滑法是一种适用于具有趋势性的负荷数据的时间序列方法。
它根据历史数据的权重来预测未来负荷。
指数平滑法通过调整平滑系数来提高模型的准确性。
常见的指数平滑方法有简单指数平滑法和双指数平滑法。
1.3 季节分解法季节分解法是一种将负荷数据分解为趋势、季节和随机成分的方法。
该方法适用于数据存在明显的季节性变化的情况。
通过将负荷数据分解为不同的成分,可以更好地分析和预测负荷的未来变化。
2. 基于机器学习的方法随着机器学习算法的发展,越来越多的研究者开始将其应用于电力负荷预测领域。
相比于传统的时间序列方法,基于机器学习的方法可以更好地捕捉数据之间的非线性关系和复杂模式。
以下是一些常见的基于机器学习的方法:2.1 神经网络神经网络是基于人工智能领域的一种强大的模型,可用于负荷预测。
神经网络可以通过学习大量的历史负荷数据来预测未来负荷。
神经网络具有强大的适应性和非线性建模能力,但对于数据量较小的情况可能存在过拟合的问题。
2.2 支持向量机支持向量机是一种常用的机器学习算法,它可以通过寻找一个最优超平面来进行分类和回归问题。
电力系统负荷预测方法研究

电力系统负荷预测方法研究随着社会的不断发展,电力已经成为了现代工业、农业、交通等各行各业中不可或缺的基础设施之一。
而负荷预测就是电力系统中至关重要的环节。
一般而言,负荷预测包括长期预测、中期预测和短期预测三个层次。
其中长期预测可以用于电力生产和输电设施的投入规划,中期预测则用于电力系统运行调度和电力市场交易,而短期预测则主要涉及电力系统实时调度和安全运行管理等方面。
本文主要就电力系统负荷预测的方法进行讨论。
一、时间序列预测方法时间序列预测方法是目前电力系统负荷预测主要手段之一。
这种方法最重要的是基于一个假设,即历史负荷记录与未来负荷变化之间存在一定的规律,可以利用这种规律进行负荷预测。
时间序列预测方法通常分为单变量预测和多变量预测两种类型。
1. 单变量预测单变量预测并不涉及负荷变化所可能影响的其他因素,而是仅基于历史负荷数据来预测未来负荷变化。
该方法适用于短期预测,可使用的预测模型包括时间序列分析、单指数平滑法、双指数平滑法和三指数平滑法四种。
时间序列分析是以时间序列为基础的建模方法,它通常分为平稳时间序列和非平稳时间序列两个类别。
对于平稳时间序列,可使用ARMA模型进行建模和预测。
而对于非平稳时间序列,常使用ARIMA模型来进行预测。
单指数平滑法、双指数平滑法和三指数平滑法是基于加权平均值的方法,通过对历史数据进行平滑处理,然后预测未来数据。
其中,单指数平滑可用于短期预测,而双指数平滑和三指数平滑则可用于中期预测。
2. 多变量预测多变量预测是一种更加复杂的预测方法,它考虑了负荷变化可能涉及的其他因素。
这些因素可以是天气、经济、节假日、工业生产等等,不同的因素之间关系非常复杂。
因此,这种方法需要使用更加复杂的模型进行建模和预测,如神经网络、支持向量机、贝叶斯网络、决策树等等。
二、模糊数学预测方法模糊数学预测方法是一种基于模糊逻辑理论的预测方法。
这种方法主要是针对具有不确定性的问题,因此对于电力系统等涉及多种因素的负荷预测而言,能够有效地发挥作用。
电力系统负荷预测方法

电力系统负荷预测方法电力系统负荷预测是电力系统运行中的一个重要环节,它的准确性直接关系到电力系统的稳定性和可靠性。
随着电力系统的发展和电力市场的竞争,负荷预测的准确性和实时性变得越来越重要。
本文将介绍一些常用的电力系统负荷预测方法。
1.时间序列方法时间序列方法是一种常见的负荷预测方法,它是通过对历史负荷数据进行统计分析和建模来预测未来的负荷。
时间序列方法的基本原理是假设负荷数据是一个随时间的随机变量,并且随时间的变化是有规律的。
因此,该方法需要有足够的历史数据,并且需要对历史数据进行分析,以确定负荷变化的规律和趋势。
其中,常用的时间序列方法包括ARIMA模型和季节性趋势模型。
2.数据挖掘方法数据挖掘方法是一种通过挖掘大量数据来发现数据中隐藏的规律和知识的方法。
在电力系统负荷预测中,数据挖掘方法主要包括神经网络、支持向量机、决策树和回归分析等。
这些方法通过对历史负荷数据建立模型,并通过模型来预测未来的负荷。
其中,神经网络是最常用的方法之一,它是一种模拟人类神经系统的计算模型,可以对非线性系统进行建模和预测。
3.统计回归方法统计回归方法是一种基于统计学原理的预测方法,它主要通过对历史负荷数据进行回归分析来预测未来的负荷。
在电力系统负荷预测中,常用的统计回归方法包括线性回归和多元回归。
线性回归是一种基于线性关系的预测方法,它假设负荷数据与时间之间存在线性关系,并通过对历史数据进行线性拟合来预测未来的负荷。
多元回归是一种基于多个自变量的预测方法,它假设负荷数据与多个因素之间存在关系,并通过对历史数据进行多元回归分析来预测未来的负荷。
4.混合方法混合方法是一种将多种预测方法组合在一起的方法,它可以利用不同方法的优势来提高预测准确性。
在电力系统负荷预测中,常用的混合方法包括ARIMA模型和神经网络模型的组合、支持向量机和神经网络模型的组合等。
这些方法通过将不同的预测方法组合起来,可以提高预测准确性和稳定性。
电力系统负荷预测方法及特点

电力系统负荷预测方法及特点摘要:负荷预测在电力系统规划和运行中起着重要的作用,优势极其明显。
从根本上来讲,电力市场需求的预测就是负荷预测。
因此,电力系统负荷预测方法十分重要。
本文系统地介绍和分析了负荷的分类以及影响电力负荷的主要因素,最后总结了电力负荷预测的方法和特点,望对电力行业起到一定的促进作用。
关键词:电力系统;负荷预测;方法;特点负荷预测是基于已知的电力需求,并考虑到政治、经济、气候和其他相关因素来预测未来的电力需求。
负荷预测包括两个方面:预测未来的需求(电力)和预测未来的电力消耗(能源)。
电力需求的预测决定了发电、输配电系统的新容量和发电设备的类型(例如,峰值负载调制器、基本负载单元等)。
它的作用是记录符合发展状况和水平,如此同时确定计划年用电量、供电面积、最大供电负负荷和计划总负荷发展水平面积,并确定计划年度负荷。
1电力负荷分类电力负荷主要分为以下四类:1.1城市民用负荷城市民用负荷主要是城市居民的家庭负荷,它具有年均增长频繁,季节波动明显等特点。
在许多情况下,房屋负荷的季节变化直接影响系统峰值负荷的变化。
影响程度取决于城市居民的负荷对系统总负荷的比例。
1.2商业负荷商业负荷指的是商业部门电力使用中所产生的电力负荷。
它虽然要小于民用和工业负荷,但是对日负荷峰值高低也有极为明显影响。
1.3农村负荷农村负荷指的是农民民用、农业生产以及工商用电所产生的负荷。
因为农业的生产是随着季节而变化的,因此农村负荷的季节性比较明显。
电力负荷也会随着农业生产的增大而变大。
1.4工业负荷工业负荷通常被视为基本负荷,对气候影响不大,除少数地区外。
工业负荷在电力构成中的比重居首位,对确定电力总负荷起着重要作用。
不同国家的工业电力负荷占总负荷的比例是不同的。
工业化国家工业电力负荷的比例很小(例如,美国的1/3和日本的1/2),但发展中国家工业电力负荷的比例很大。
总的来说,工业负载比其他类型的负载更稳定,不受天气和其他因素的影响。
电力系统负荷预测

电力系统负荷预测随着能源需求的不断增长,电力系统负荷预测在能源行业中扮演着至关重要的角色。
准确地预测电力系统负荷可以帮助电力公司合理调度发电设备,提高电能利用率,实现能源资源优化配置。
本文将从负荷预测的意义、方法和挑战三个方面进行论述。
一、负荷预测的意义负荷预测是指通过对历史负荷数据和相关因素的分析,利用数学模型和算法预测未来特定时间段内的负荷水平。
负荷预测对于电力系统的运行与管理至关重要。
首先,它可以帮助电力公司制定合理的发电计划和能源采购策略,以满足用户的用电需求。
其次,负荷预测还可以帮助电力公司优化发电设备的调度,减少能源浪费和排放,提高能源利用率。
因此,准确地进行负荷预测对于节约能源、降低电力成本和保护环境都具有重要意义。
二、负荷预测的方法目前,负荷预测主要通过数学模型和算法来实现。
常用的负荷预测方法包括时间序列分析、回归分析、神经网络和支持向量机等。
时间序列分析是一种基于时间数据的统计分析方法,通过分析历史负荷数据的趋势和周期性,进行负荷预测。
它的优点是简单易行,适用于稳定和具有明显规律的负荷数据。
回归分析是一种建立因变量和自变量之间关系的统计方法,通过分析历史负荷数据与相关因素之间的关系,进行负荷预测。
这些相关因素包括气象因素、经济指标、季节因素等。
回归分析方法的优点是能够考虑多个因素的影响,并进行多变量预测。
神经网络是一种模拟人脑神经元网络的计算模型,通过训练网络模型,可以实现负荷预测。
神经网络方法的优点是具有较强的非线性建模能力,适用于复杂和非线性的负荷数据。
支持向量机是一种基于统计学习理论的预测模型,通过将输入数据映射到高维特征空间来实现负荷预测。
支持向量机方法的优点是能够有效地处理高维数据和小样本数据,并对异常数据具有较强的鲁棒性。
三、负荷预测的挑战负荷预测虽然具有重要意义,但也面临一些挑战。
首先,负荷数据具有不确定性和时变性,加之外部因素的干扰,负荷预测的准确性难以保证。
其次,负荷预测模型的建立需要大量历史数据进行训练,但由于电力系统的复杂性和数据采集的困难,历史负荷数据的获取可能存在一定的难度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统负荷预测方法及特点
1引言
负荷预测是从已知的用电需求出发,考虑政治、经济、气候等相关因素,对未来的用电需求做出的预测。
负荷预测包括两方面的含义:对未来需求量(功率)的预测和未来用电量(能量)的预测。
电力需求量的预测决定发电、输电、配电系统新增容量的大小;电能预测决定发电设备的类型(如调峰机组、基荷机组等)。
负荷预测的目的就是提供负荷发展状况及水平,同时确定各供电区、各规划年供用电量、供用电最大负荷和规划地区总的负荷发展水平,确定各规划年用电负荷构成。
2负荷预测的方法及特点
2.1单耗法
按照国家安排的产品产量、产值计划和用电单耗确定需电量。
单耗法分”产品单耗法"和“产值单耗法”两种。
采用”单耗法”预测负荷前的关键是确定适当的产品单耗或产值单耗。
从我国的实际情况来看,一般规律是产品单耗逐年上升,产值单耗逐年下降。
单耗法的优点是:方法简单,对短期负荷预测效果较好。
缺点是:需做大量细致的调研工作,比较笼统,很难反映现代经济、政治、气候等条件的影响。
2.2趋势外推法
当电力负荷依时间变化呈现某种上升或下降的趋势,并且无明显的季节波动,又能找到一条合适的函数曲线反映这种变化趋势时,就可以用时间t为自变量,时序数值y为因变量,建立趋势模型y=f(t)°当有理由相信这种趋势能够延伸到未来时,赋予
变量t所需要的值,可以得到相应时刻的时间序列未来值。
这就是趋势外推法。
应用趋势外推法有两个假设条件:①假设负荷没有跳跃式变化;②假定负荷的发展因素也决定负荷未来的发展,其条件是不变或变化不大。
选择合适的趋势模型是应用趋势外推法的重要环节,图形识别法和差分法是选择趋势模型的两种基本方法。
外推法有线性趋势预测法、对数趋势预测法、二次曲线趋势预测法、指数曲线趋势预测法、生长曲线趋势预测法。
趋势外推法的优点是:只需要历史数据、所需的数据量较少。
缺点是:如果负荷出现变动,会引起较大的误差。
2.3弹性系数法
弹性系数是电量平均增长率与国内生产总值之间的比值,根据国内生产总值的增长速度结合弹性系数得到规划期末的总用电量。
弹性系数法是从宏观上确定电力发展同国民经济发展的相对速度,它是衡量国民经济发展和用电需求的重要参数。
该方法的优点是:方法简单,易于计算。
缺点是:需做大量细致的调研工作。
2.4回归分析法
回归预测是根据负荷过去的历史资料,建立可以开展数学分析的数学模型。
用数理统计中的回归分析方法对变量的观测数据统计分析,从而实现对未来的负荷开展预测。
回归模型有一元线性回归、多元线性回归、非线性回归等回归预测模型。
其中,线性回归用于中期负荷预测。
优点是:预测精度较高,适用于在中、短期预测使用。
缺点是:①规划水平年的工农业总产值很难详细统计;②用回归分析法只能测算出综合用电负荷的发展水平,无法
测算出各供电区的负荷发展水平,也就无法开展具体的电网建设规划。
2.5时间序列法
就是根据负荷的历史资料,设法建立一个数学模型,用这个数学模型一方面来描述电力负荷这个随机变量变化过程的统计规律性;另一方面在该数学模型的根底上再确立负荷预测的数学表达式,对未来的负荷开展预测。
时间序列法主要有自回归AR(p)、滑动平均MA(q)和自回归与滑动平均ARMA(P,q)等。
这些方法的优点是:所需历史数据少、工作量少。
缺点是:没有考虑负荷变化的因素,只致力于数据的拟合,对规律性的处理缺陷,只适用于负荷变化比较均匀的短期预测的情况。
2.6灰色模型法
灰色预测是一种对含有不确定因素的系统开展预测的方法。
以灰色系统理论为根底的灰色预测技术,可在数据不多的情况下找出某个时期内起作用的规律,建立负荷预测的模型。
分为普通灰色系统模型和最优化灰色模型两种。
普通灰色预测模型是一种指数增长模型,当电力负荷严格按指数规律持续增长时,此法有预测精度高、所需样本数据少、计算简便、可检验等优点;缺点是对于具有波动性变化的电力负荷,其预测误差较大,不符合实际需要。
而最优化灰色模型可以把有起伏的原始数据序列变换成规律性增强的成指数递增变化的序列,大大提高预测精度和灰色模型法的适用范围。
灰色模型法适用于短期负荷预测。
灰色预测的优点:要求负荷数据少、不考虑分布规律、不考虑变化趋势、运算方便、短期预测精度高、易于检验。
缺点:一是当数据离散程度越大,即数据灰度越大,预测精度越
差;二是不太适合于电力系统的长期后推若干年的预测。
2.7德尔菲法
德尔菲法是根据有专门知识的人的直接经验,对研究的问题开展判断、预测的一种方法,也称专家调查法。
德尔菲法具有反应性、匿名性和统计性的特点。
德尔菲法的优点是:①可以加快预测速度和节约预测费用;②可以获得各种不同但有价值的观点和意见;③适用于长期预测,在历史资料缺陷或不可预测因素较多尤为适用。
缺点是:①对于分地区的负荷预测则可能不可靠;②专家的意见有时可能不完整或不切实际。
2.8专家系统法
专家系统预测法是对数据库里存放的过去几年甚至几十年的,每小时的负荷和天气数据开展分析,从而聚集有经验的负荷预测人员的知识,提取有关规则,按照一定的规则开展负荷预测。
实践证明,准确的负荷预测不仅需要高新技术的支撑,同时也需要融合人类自身的经验和智慧。
因此,就会需要专家系统这样的技术。
专家系统法,是对人类的不可量化的经验开展转化的一种较好的方法。
但专家系统分析本身就是一个耗时的过程,并且某些复杂的因素(如天气因素),即使知道其对负荷的影响,但要准确定量地确定他们对负荷地区的影响也是很难的。
专家系统预测法适用于中、长期负荷预测。
此法的优点是:①能聚集多个专家的知识和经验,最大限度地利用专家的能力;②占有的资料、信息多,考虑的因素也比较全面,有利于得出较为正确的结论。
缺点是:①不具有自学习能力,受数据库里存放的知识总量的限制;②对突发性事件和不断变化的条件适应性差。
2.9神经网络法
神经网络(ANN,ArtificialNeuralNetwork)预测技术,可以模仿人脑做智能化处理,对大量非构造性、非确定性规律具有自适应功能。
ANN应用于短期负荷预测比应用于中长期负荷预测更为适宜。
因为,短期负荷变化可以认为是一个平稳随机过程。
而长期负荷预测可能会因政治、经济等大的转折导致其模型的数学根底的破坏。
优点是:①可以模仿人脑的智能化处理;②对大量非构造性、非准确性规律具有自适应功能;③具有信息记忆、自主学习、知识推理和优化计算的特点。
缺点是:①初始值确实定无法利用已有的系统信息,易陷于局部极小的状态;②神经网络的学习过程通常较慢,对突发事件的适应性差。
2.10优选组合预测法
优选组合有两层含义
:一是从几种预测方法得到的结果中选取适当的权重加权平均;二是指在几种预测方法中开展比较,选择拟和度最正确或标准偏差最小的预测模型开展预测。
对于组合预测方法也必需注意到,组合预测是在单个预测模型不能完全正确地描述预测量的变化规律时发挥作用。
一个能够完全反映实际发展规律的模型开展预测完全可能比用组合预测方法预测效果好。
该方法的优点是:优选组合了多种单一预测模型的信息,考虑的影响信息也比较全面,因而能够有效地改善预测效果。
缺点是:①权重确实定比较困难;②不可能将所有在未来起作用的因素全包含在模型中,在一定程度上限制了预测精度的提高。
2.11小波分析预测技术
小波分析是一种时域-频域分析法,它在时域和频域上同时具有良好的局部化性质,并且能根据信号频率高低自动调节采样的
疏密,它容易捕捉和分析微弱信号以及信号、图像的任意细小部分。
其优点是:能对不同的频率成分采用逐渐精细的采样步长,从而可以聚集到信号的任意细节,尤其是对奇异信号很敏感,能很好的处理微弱或突变的信号,其目标是将一个信号的信息转化成小波系数,从而能够方便地加以处理、储存、传递、分析或被用于重建原始信号。
这些优点决定了小波分析可以有效地应用于负荷预测问题的研究。
3结束语
负荷预测是电力系统调度、实时控制、运行计划和发展规划的前提,是一个电网调度部门和规划部门所必须具有的基本信息。
提高负荷预测技术水平,有利于计划用电管理,有利于合理安排电网运行方式和机组检修计划,有利于节煤、节油和降低发电成本,有利于制定合理的电源建设规划,有利于提高电力系统的经济效益和社会效益。
因此,负荷预测已成为实现电力系统管理现代化的重要内容。