解一元一次方程(合并同类项与移项)-习题与答案
3.2解一元一次方程——合并同类项与移项(讲+练)

3.2解一元一次方程——合并同类项与移项合并同类项解方程的方法与步骤(1)合并同类项,即把含有未知数的同类项和常数项分别合并.(2)系数化为1,即在方程的两边同时除以未知数的系数.注意:(1)解方程中的合并同类项和整式加减中的合并同类项一样,它们的依据都是乘法分配律,实质都是系数的合并,目的是运用合并同类项,使方程变得更简单,为运用等式性质2求出方程的解创造条件;(2)系数为1或-1的项,合并时不能漏掉.题型1:解一元一次方程——合并同类项1.解下列方程∶(1)3x+2x+x=24; (2)-3x+6x=18.【答案】(1)x=4 (2)x=6【变式1-1】(1)5x-6x=-57 (2)13x-15x+x=-3.【答案】(1)x=57 (2)x=3移项解方程的方法与步骤1.移项把等式的某项变号后移到另一边,叫做移项.移项必须变号.2.移项的依据移项的依据是等式的性质1,在方程的两边加(或减)同一个适当的整式,使含未知数的项集中在方程的一边,常数项集中在另一边.3.解简单的一元一次方程的步骤(1)移项;(2)合并同类项;(3)系数化为1.注意:(1)移项通常把含有未知数的项移到“=”的左边,常数项移到“=”的右边(2)若将2=x变形为x=2,直接利用的是等式性质的对称性,不能改变符号.(3)方程中的每项都包括前面的符号.题型2:解一元一次方程——移项2.将下列方程移项(1)7+x=13,移项得x=13+7(2)5x=4x+8,移项得 5x-4x=8(3)3x-2=x+1,移项得 3x-x=2+1(4)8x=7x-2,移项得 8x-7x=-2(5)2x-1=3x+4,移项得 2x-3x=1+4【变式2-1】解下列方程(1)4x+2=3x-3; (2)4y=203y+16【答案】(1)x=-5 (2)y=-6【变式2-2】解下列方程(1)2x+3=4x-5; (2)9x-17=4x-2.【答案】(1)x=4 (2)x=3题型3:绝对值方程3.解方程 |2x-3|=1.【分析】解绝对值方程的关键是把绝对值符号去掉,将方程转化为普通方程求解.【解答】∶因为|2x-3|=1,所以2x-3=1或2x-3=-1,解得x=2或x=1.【变式3-1】如果|2x+3|=|1﹣x|,那么x的值为( )A.−23B.−32或1C.−23或﹣2D.−23或﹣4【分析】根据绝对值的意义得到2x+3=1﹣x或2x+3=﹣(1﹣x),然后解两个一次方程即可.【解答】解:∵|2x+3|=|1﹣x|,∴2x+3=1﹣x或2x+3=﹣(1﹣x),题型4:依题意构建方程求解4.代数式2x+5与x+8的值相等,则x的值是 .【答案】3【解析】【解答】解:∵代数式2x+5与x+8的值相等,∴2x+5=x+8,解得:x=3,故答案为:3.【分析】根据已知条件:2x+5与x+8的值相等,可得到关于x的方程,解方程求出x的值.【变式4-1】当x= 时,代数式6x+1与-2x-5的值互为相反数。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (80)

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)解方程:453x x -=.【答案】【解析】试题分析:①移项:把未知项移至等号左边,常数项移至等号右边;②合并同类项;③系数化为1:两边同除以未知数的系数.试题解析:解:453x x =-,移项得:-5x -3x =-4,合并同类项得:-8x =-4, 系数化为1得:x =12. 92.学完一元一次方程解法,数学老师出了一道解方程题目:123123x x +--=.李铭同学的解题步骤如下: 解:去分母,得3(x +1)-2(2-3x)=1;……①去括号,得3x +3-4-6x =1; ……②移项,得3x -6x =1-3+4; ……③合并同类项,得-3x =2; ……④系数化为1,得x =-23. ……⑤ (1)聪明的你知道李铭的解答过程在第_________(填序号)出现了错误,出现上面错误的原因是违背了____.(填序号)①去括号法则;②等式的性质1;③等式的性质2;④加法交换律.(2)请你写出正确的解答过程.【答案】解:(1)①②,③①;(2)x=7.9【解析】试题分析:李铭的解法出错在第①、②步,去分母时1没有乘以6,去括号时有一项没变号,方程去分母,去括号,移项合并,把x系数化为1,即可求出解.试题解析:(1)①②,③①(2)解:去分母,得3(x+1)-2(2-3x)=6;……①去括号,得3x+3-4+6x=6;……②移项,得3x+6x=6-3+4;……③合并同类项,得9x=7;……④.系数化为1,得x=7993.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b 满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;x﹣8的解.(2)点C在数轴上对应的数为x,且x是方程2x+1=12①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)点A表示的数是﹣3,点B表示的数是2;(2)①线段BC的长为8;②点P对应的数是3.5或﹣4.5.【解析】试题分析:(1)根据|a+3|+(b-2)2=0,可以求得a、b的值,从而可以求得点A、B表示的数;x-8可以求得x的值,从而可以得到点C表示的数,(2)①根据2x+1=12从而可以得到线段BC的长;解:(1)∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2(2)①2x+1=x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5.94.解方程(组):(1)3516x -=; (2) 2 234x y x y =⎧⎨-=⎩【答案】(1) 7x =;(2) 8 4x y =⎧⎨=⎩. 【解析】试题分析:(1)移项合并同类项,化系数为1,即可得出答案;(2)用代入法解答即可.试题解析:解:(1)移项得:3x =16+5,合并同类项得:3x =21,系数化为1得:x =7;(2)2234x y x y =⎧⎨-=⎩①② ,把①代入②,得:4y -3y =4,解得:y =4,把y =4代入①得:x =8,①84x y =⎧⎨=⎩. 95.解方程(x-3)(x+1)=x(2x+3)-(x 2+1).【答案】x =-25【解析】试题分析:先去括号,再移项,合并同类项,最后化系数为1,从而得到方程的解.试题解析:去括号,得22233231x x x x x x +--=+--,合并,得222331x x x x --=+-,移项,得222313x x x x ---=-+,合并同类项,得−5x =2,系数化为1,得25x =-. 96.解方程:6+1=45x x -.【答案】=3x -【解析】试题分析:本题考察了一元一次方程的解法,本题需移项,合并同类项,系数化为1几个步骤,移项时不要忘记变号.解:64=51x x ---2=6x -=3x - .∴=3x -是原方程的解.97.解方程(组):(1) 3516x -=; (2)2234x y x y =⎧⎨-=⎩【答案】(1)7x =; (2) 84x y =⎧⎨=⎩. 【解析】试题分析:(1)移项合并同类项,化系数为1即可;(2)直接用代入法解答即可.试题解析:解:(1)3x =16+5,3x =21,x =7;(2)2234x y x y =⎧⎨-=⎩①② ,把①代入②,得:4y -3y =4,解得:y =4,把y =4代入①,得:x =8.①84x y =⎧⎨=⎩. 98.阅读下列材料再解方程:23x +=,我们可以将2x +视为整体,由于绝对值为3的数有两个,所以2=3x +或2=-3x +,解得1x =或5x =-.请按照上面的解法解方程2113x +=. 【答案】0x =或3x =-.【解析】试题分析: 参照题目中所举的范例,可把2113x +=转化成2113x +=或2113x +=-两个方程,解这两个方程即可求得x 的值.试题解析: ∵2113x += , ∴2113x +=或2113x +=-, 解得:0x =或3x =-.99.小明设计了一个问题,分两步完成:(1)已知关于x 的一元一次方程(a ﹣2)x |a|﹣1+8=0,请画出数轴,并在数轴上标注a 与x 2对应的点,分别记作A ,B ;(2)在第1问的条件下,在数轴上另有一点C 对应的数为y ,C 与A 的距离是C 与B 的距离的5倍,且C 在表示5的点的左侧,求y 的值.【答案】(1)详见解析;(2)y =3.【解析】试题分析:(1)根据一元一次方程的定义可得|a|-1=1且a-2≠0,由此即可求得a 值,再解方程求得x 的值,即可得2x 的值,在数轴上表示即可;(2)根据等量关系:C 与A 的距离是C 与B 的距离的5倍,且C 在表示5的点的左侧,列出方程求解即可.试题解析:(1) 由一元一次方程的定义得,|a |-1=1.且a -2≠0,解得a =-2,则关于x 的一元一次方程()1280a a x --+=即为-4x +8=0,解得x =2,则24x =,在数轴上表示如图所示:(2) 依题意有[y -(-2)]=5(4-y ),解得y =3.点睛:本题主要考查了一元一次方程的定义、一元一次方程的解法及应用,解题关键是根据题意观察数轴,找出合适的等量关系列出方程,再求解.100.解下列方程: (1)4﹣35m=﹣m ; (2)56﹣8x=11+x ;(3)43x+1=5+13x ; (4)﹣5x+6+7x=1+2x ﹣3+8x .【答案】(1) m =-10;(2)x=5;(3)x=4;(4)x=1.【解析】试题分析:(1)移项、合并同类项后,系数化为1即可得方程的解;(2)移项、合并同类项后,系数化为1即可得方程的解;(3)移项、合并同类后项即可得方程的解;(4)移项、合并同类项后,系数化为1即可得方程的解.试题解析:(1) 移项,得-35m +m =-4. 合并同类项,得25m =-4. 系数化为1,得m =-10.(2) 移项,得-8x-x=11-56. 合并同类项,得-9x=-45. 系数化为1,得x=5.(3) 移项,得43x-13x=5-1.合并同类项,得x=4.(4) 移项,得-5x+7x-2x-8x=1-3-6. 合并同类项,得-8x=-8.系数化为1,得x=1.。
人教版解一元一次方程-合并同类项与移项(4)

(3)移项的作用是:使方程中含未知数x的项归到 方程的同一边(左边),不含未知数的的项归到 方程的另一边(右边)这样可以通过“合并”把 方程转化为x=a的形式。
大家有疑问的,可以询问和交流 可以互相讨论下,但要小声
把一些图书分给某班学生阅读,如果每 人分3本,则剩余20本;如果每人分4本, 则还缺25本,这个班有多少学生?
❖ 1、设这个班有x名学生。
❖ 那么每人分3本,共分出 3x 本,加上剩余的20 本,这批书共 (3x+20) 本。
❖ 每人分4本,需要 4x 本,减去25本,这批书共
❖ (4x-25) 本。
由方程 ① 到方程 ② , 这个变形相当于 把 ①中的 “– 2”这一项从左边移到了右边.
观察思考 “– 2”这项从左边移到了右边的过程中,
有些什么变化? 改变了符号.
*把原方程中的– 2 改变符号后,从方程的一边移到另
一边,这种变形 叫 移项 。
练习:下列移项是否确正: (1)由x 52x得x 2x 5 (×) (2)由2x 3 x 5得2x x 53 (×) (3)由2 1y1=3 1y2得2 1y3 1y=21(√) (4)由0.6x8 0.4x2得0.6x 0.4x 28
(×)
试一试 用新方法 解一元一次方程
哈哈,太简单了. 我会了.
解方程: -5x-3=-8 解: 移项,得: -5x =-8 +3
化简,得: -5x=-5
两边同时除以-5,得: x=1
试一试:解方程: 10x – 3=9
注意:移项要变号哟。
用移项的方法解下列方程:
(1) 3x+3=2x+7
一元一次方程解法合并同类项和移项

限时训练:解下列一元一次方程:
(1)7 2 x 3 4 x
解:移项,得 4x 2x 3 7 合并,得 2 x 4 系数化为 1 ,得 x 2
(2)1.8t 30 0.3t
解:移项,得 1.8t 0.3t 30 合并,得 1.5t 30 系数化为 1 ,得 x 20
系数化为1,得
x = 6. 4x-15 = 9 4x = 9+15
你能发现什 么吗?
x = 7.
2x = 5x -21 2x- 5x= -21
2
讲授新课
4x-15 = 9 4x = 9+15
4x –-15 15 = 9 4x = 9 +15 ①
②
由方程 ① 到方程 ② , 这个变形相当于 把 ①中的 “– 15”这一项 从方程的左边移到 了方程的右边.
合并
分析:解方程,就是把
7 x 140
系数化为1
方程变形,变为 x = a (a为常数)的形式.
x 20
某校三年共购买计算机140台,去年购买 数量是前年的2倍,今年购买数量又是去年的2 倍.前年这个学校购买了多少台计算机?
解: 设前年这个学校购买了计算机x台,则去年购买计算机
2x台,今年购买计算机4x台,依题意,得
x + 2x +4x = 140
合并同类项,得 7x =140
系数化为1,得 x = 20
答:前年这个学校购买了计算机20台.
上面解方程中“合并同类项”起了什么作用?
合并同类项起到了化简的作 用,把含有未知数的项合并为一 项,从而达到把方程简化为ax=b 的形式,其中a,b是常数.
请欣赏一首诗:
解一元一次方程专项训练(40道)(解析版)—2024-2025学年七年级数学上学期(人教版)

解一元一次方程专项训练(40道)目录【专项训练一、移项与合并同类项】 (1)【专项训练二、去括号】 (8)【专项训练三、去分母】 (11)【专项训练三、拓展】 (19)【专项训练一、移项与合并同类项】1.解方程.(1)124 2.4x-=(2)45258 x:=:2(3)()42:15x-=【答案】4x =-【分析】本题主要考查了解一元一次方程,按照移项,合并同类项,系数化为1的步骤解方程即可.【详解】解;3256x x -=+移项得:3562x x -=+,合并同类项得:28x -=,系数化为1得:4x =-.3.解方程:15%9%7%0.31x x -=+.【答案】5x =【分析】本题主要考查了解一元一次方程,根据解一元一次方程的步骤求解即可.【详解】解:15%9%7%0.31x x -=+,0.150.090.070.31x x -=+,移项得:0.150.070.310.09x x -=+,合并同类项得:0.080.4x =,系数化为1得:5x =.4.解下列方程:(1)6259x x -=-+;(2)0.4 2.8 3.6 1.6 1.7y y y+-=-(1)5278x x -=+;(2)1752x x -=+;(3)2.49.8 1.49x x -=-;(4)5671238x x x x -++=+-+.【答案】(1)5x =-(2)24x =-(3)0.8x =(4)1x =【分析】此题考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.(1)先移项、合并同类项,再将系数化为1即可得到方程的解;(2)先移项、合并同类项,再将系数化为1即可得到方程的解;(3)先移项、合并同类项,即可得到方程的解;(4)先移项、合并同类项,再将系数化为1即可得到方程的解【详解】(1)(1)36 57x+=;(2)61173x¸=;(3)218 1525x=;(4)319 112020x-=.(1)1154 x x-=(2)3136 712x¸=(3)83283 54x-´=(1)133 428x-=;(2)2.4 4.516 2.6x x+=-.(1)132354x x x -+=-+;(2)42147x x x -+-=-.(1)2.49.8 1.49y y -=-(2)3312x x -=+.【专项训练二、去括号】11.解方程:2(5)333(51)x x -=-+.【答案】=1x -【分析】此题考查了解一元一次方程,掌握去括号、移项、合并同类项、系数化为1解一元一次方程是解题的关键,根据去括号、移项、合并同类项、系数化为1求解即可;【详解】解:2(1)15(2)x x -=-+,221510x x -=--,251102x x +=-+,77x =-,=1x -.13.解方程:()()23531214x x x x -+-=.【答案】2x =-【分析】本题考查了一元一次方程的解法,解决本题的关键是先根据单项式乘以多项式去括号.先根据单项式乘以多项式去括号,再解一元一次方程,即可解答.【详解】解:2(35)3(12)14x x x x -+-=,去括号得:226103614x x x x -+-=,移项合并同类项得:714x -=,系数化为1得:2x =-.14.解方程:()()250%1831x x +=--【答案】4x =【分析】此题考查了解一元一次方程,掌握去括号、移项、合并同类项、系数化为1解一元一次方程是解题的关键.【详解】解:()()250%1831x x +=--去括号得211833x x +=-+移项得231813x x +=-+合并得520x =系数化为1得4x =.15.解方程:94(2)2(31)x x x -+=+.16.解方程:.解方程:.【答案】5x =-【分析】本题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的基本步骤,先去括号,然后移项合并同类项,最后未知数系数化为1即可.根据解一元一次方程的步骤进行求解即可.【详解】解:()()7211335x x -=+-去括号得:71411915x x -=+-,移项,合并同类项:210x -=,系数化为1得:5x =-.18.解下列方程(1)()3124x =-+(2)()12113x x x+--=-(1)()46252x x -=-;(2)()214x x -+=-;【答案】(1)2x =;(2)2x =.【分析】(1)本题考查解一元一次方程,掌握解一元一次方程步骤“去括号,移项,合并同类项,系数化为1”即可解题;(2)本题考查解一元一次方程,掌握解一元一次方程步骤“去括号,移项,合并同类项,系数化为1”即可解题;【详解】(1)解:()46252x x -=-,46104x x -=-,44106x x +=+,816x =,2x =;(2)解:()214x x -+=-,224x x --=-,242x x -=-+,2x -=-,2x =.20.解方程:()()4253521x x -+=--.【专项训练三、去分母】21.解下列方程:(1)221146x x ---=;(2)155x x +-=.【答案】(1)16x =-22.解方程:213 5102x x x-+--=.23.解方程:5121163x x--=-.【答案】1x=24.解方程:5121123x x +-=-;(1)223312x x x +-=--.(2)10.10.220.30.05x x x ++-=.26.解方程:2131 52x x+--=.27.解方程:323 0.20.5-+-=x x.28.解方程:341123+--=x x 29.解方程:0.12230.30.6x x x -+-=30.解方程:3532142y y y ---=-.31.解方程:2121163x x+--=.(1)141 23x x+=+;(2)4352 27x x-+=-.33.解方程:(1)222123x x --+=;(2)253432x x +--=;(1)()()()2234191y y y +--=-;(2)322132x x x +--=-.(3)()3151x x +=-;(4)2121136x x -+=-.(1)()()1123222x x -=--(2)3157146x x ---=【专项训练三、拓展】36.解关于x 的方程()()222a x x +=-37.解关于x 的方程:55ax a x +=+.【答案】当1a ¹时,5x =-;当1a =时,x 一切实数.【分析】本题考查了解一元一次方程,将原方程化为()()151a x a -=-,分两种情况:当1a ¹时;当1a =时,分别求解即可得出答案.【详解】解:55ax a x +=+Q ,()()151a x a \-=-当1a ¹时,5x =-,当1a =时,x 一切实数.38.已知关于x 的一元一次方程320222022x x n +=+的解为2022x =,求关于y 的一元一次方程()5232022522022y y n --=--的解.39.已知关于x 的方程有无数多个解,求常数a 、b 的值.40.当整数k为何值时,方程9314-=+有正整数解?并求出正整数解.x kx。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (146)

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)如果单项式2a mx y 与235a nx y --是关于x ,y 的单项式,且它们是同类项:(1)求()2002722a -的值;(2)若2amx y 235a nxy --=0,且xy ≠0,求200325m n ⎛⎫- ⎪⎝⎭的值.【答案】(1)1;(2)-1 【解析】 【分析】(1)先根据它们是同类项,列式23a a -=,求得a 的值,再代入求值即可; (2)由0xy ≠,得250m n +=,即25m n =-,再代入求值即可.【详解】∵单项式2a mx y 与235a nx y --是关于x ,y 的单项式,且它们是同类项, ∴23a a -=,解得3a =, (1)()2002722a -()20022122=-1=;(2)∵2a mx y 235a nx y --=0,且3a =,∴32mx y 35nx y -=0,即()3250m n x y -=,∵0xy ≠,∴250m n -=,即25m n =,∴200325m n ⎛⎫- ⎪⎝⎭200355n n ⎛⎫=- ⎪⎝⎭1=-.【点睛】本题考查了解一元一次方程以及同类项的概念,解题的关键是掌握解一元一次方程和同类项的概念.52.如图,点A 和点B 在数轴上对应的数分别为a 和b ,且()2680a b ++-=.(1)求线段AB 的长;(2)点C 在数轴上所对应的数为x ,且x 是方程24425x x --=+的解,点D 在线段AB 上,并且BD AD -BC =,请求出点D 在数轴上所对应的数;(3)在(2)的条件下,线段AD 和BC 分别以6个单位长度/秒和5个单位长度/秒的速度同时向右运动,运动时间为t 秒,M 为线段AD 的中点,N 为线段BC 的中点,若12MN =,求t 的值.【答案】(1) =4AB 1;(2)点D 在数轴上所对应的数为2-;(3)当t=3秒或 =27t 秒时线段=12MN . 【解析】 【分析】(1)根据平方的非负性,绝对值的非负性求出a=-6,b=8,得到OA=6,OB=8,即可求出AB ;(2)解方程求出x=14,得到点C 在数轴上所对应的数为14,设点D 在数轴上所对应的数为y ,根据BD AD -BC =,列式求出y ;(3)根据中点得到运动前M N ,两点在数轴上所对应的数分别为-4,11,运动t 秒后M N ,两点在数轴上所对应的数分别为-4+6t,11+5t ,再分M 、N 相遇前,相遇后两种情况分别列方程求出t.【详解】(1)解:∵2(6)0,80a b +≥-≥,且2(6)80a b ++-=, ∴2(6)0,80a b +=-=,∴a+6=0,b-8=0, ∴a=-6,b=8, ∴OA=6,OB=8, ∴AB=OA+OB=6+8=14, (2)解方程24425x x --=+,得 14x =,∴点C 在数轴上所对应的数为14,设点D 在数轴上所对应的数为y 点D 在线段AB 上,且BD AD BC -=,()66,8,1486AD y y BD y BC ∴--=+===-=-, ()866y y ∴--(+)=, 解这个方程,得2y =-,∴点D 在数轴上所对应的数为2-.(3)解:由(2)得A D B C ,,,四点在数轴上所对应的数分别为: 62814--,,,.∴运动前M N ,两点在数轴上所对应的数分别为-4,11,则运动 t 秒后M N ,两点在数轴上所对应的数分别为-4+6t,11+5t ,12MN =∴①线段AD 没有追上线段BC 时有:(11+5t)-(-4+6t)=12解得:3t = ;①线段AD 追上线段BC 后有:(-4+6t)-(11+5t)=12, 解得:27t =,∴综合上述:当t=3秒或27t =秒时线段12MN =.【点睛】此题考查线段的和差计算,平方及绝对值的非负性,数轴上两点之间的距离,数轴上动点问题,利用一元一次方程解决图形问题,注意分类讨论的解题思想.53.已知2|2|(53)0n m ++-=,求关于x 的方程1043mx x n +=+的解。
七年级数学上册 3-2 解一元一次方程(一)--合并同类项与移项 同步习题精讲精练【含答案】

3.2 解一元一次方程(一)-合并同类项与移项同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。
将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣42.若多项式3x+5与5x﹣7的值相等,则x的值为()A.6 B.5 C.4 D.33.如果单项式﹣xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A.x=1 B.x=﹣1 C.x=2 D.x=﹣24.下面4个方程的变形中正确的是()A.4x+8=0⟹x+2=0 B.x+7=5﹣3x⟹4x=2C.x=3⟹x=D.﹣4x=﹣2⟹x=﹣25.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个6.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b =0的解是()x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0 B.﹣1 C.﹣3 D.﹣47.某同学解方程5x﹣1=□x+3时,把“□”处的系数看错了,解得x=﹣4,他把“□”处的系数看成了()A.4 B.﹣9 C.6 D.﹣68.规定一种新运算:a⊗b=a2﹣2b,若2⊗[1⊗(﹣x)]=6,则x的值为()A.﹣1 B.1 C.2 D.﹣29.对于两个不相等的有理数a,b,我们规定符号max{a,b}表示a,b两数中较大的数,例如max{2,﹣4}=2.则方程max{x,﹣x}=3x+4的解为()A.﹣1 B.﹣2 C.﹣1或﹣2 D.1或210.已知a,b,c,d为有理数,现规定一种新的运算=ad﹣bc,那么当=18时,则x的值是()A.x=1 B.C.D.x=﹣1二、填空题11.设P=2y﹣2,Q=2y+3,且3P﹣Q=1,则y的值为.12.关于x的方程9x﹣2=kx+7的解是自然数,则整数k的值为.13.小华同学在解方程5x﹣1=()x+3时,把“()”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x=.14.已知关于x的方程2mx﹣6=(m+2)x有正整数解,则整数m的值是.15.用⊕表示一种运算,它的含义是:A⊕B=.如果,那么3⊕4=.16.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=2x﹣1的解为.三、解答题17.解一元一次方程:4x﹣1=2x+5.18.对任意有理数a、b,规定一种新运算“⊗”,使a⊗b=3a﹣2b,例如:5⊗(﹣3)=3×5﹣2×(﹣3)=21.若(2x﹣1)⊗(x﹣2)=﹣3,求x的值.19.对于两个非零常数a,b,规定一种新的运算:a※b=a﹣2b,例如,3※2=3﹣2×2=﹣1.根据新运算法则,解答下列问题:(1)求(﹣2)※5的值;(2)若2※(x+1)=10,求x的值.20.小东同学在解一元一次方程时,发现这样一种特殊现象:x+=0的解为x=﹣,而﹣=﹣1;2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x的方程ax+b=0(a≠0)的解为x=b﹣a,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x的方程ax+b=0(a≠0)为奇异方程,解关于y的方程:a(a﹣b)y+2=(b+)y.3.2 解一元一次方程(一)-合并同类项与移项同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。
人教版数学七年级上册:3.2 解一元一次方程(一)——合并同类项与移项 同步练习(附答案)

3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.对于方程8x +6x -10x =8,合并同类项正确的是( )A.3x =8B.4x =8C.-4x =8D.2x =82.方程x +2x =-6的解是( )A.x =0B.x=1 C.x =2 D.x=-2 3.方程2x +x +x 2=210的解是( )A.x =20B.x=40 C.x =60 D.x=804.下列各方程中,合并正确的是( )A.由3x -x =-1+3,得2x =4B.由23x +x =-7-4,得53x =-3C.由52-13=-x +23x ,得136=13xD.由6x -4x =-1+1,得2x =05.解下列方程:(1)6x -5x =3; (2)-x +3x =7-1;(3)x 2+5x 2=9; (4)6y +12y -9y =10+2+6.6.解方程:-23x +x =3.7.若式子3x -7和6x +13互为相反数,则x 的值为( )A.23B.32C.-32D.-238.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y -12y =12-■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y =-53,于是,他很快知道了这个常数,这个常数是 .9.解下列方程:(1)0.3x -0.4x =0.6; (2)5x -2.5x +3.5x =-10;(3)x -25x =3+6; (4)16x -3.5x -6.5x =7-(-5).第2课时 利用合并同类项解一元一次方程的实际问题1.某数的3倍与这个数的2倍的和是30,这个数为( )A.4B.5C.6D.72.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有 个.3.已知3个连续偶数的和为36,则这三个偶数分别是 .4.一条长1 210 m 的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m ,乙队每天挖90 m ,则挖好水渠需要几天?5.麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?6.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?7.有这样一列数,按一定规律排列成1,2,4,8,16,…,其中某三个相邻数的和是448,则这三个数是 .8.某人把360 cm长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4∶5,则这两个正方形的边长分别是 .9.在排成每行七天的日历表中取下一个3×3方块.若所有日期数之和为189,则n的值为 .10.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?11.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,求此人第六天走的路程.第3课时 利用移项解一元一次方程1.解方程2x -5=3x -9时,移项正确的是( )A.2x +3x =9+5B.2x -3x =-9+5C.2x -3x =9+5D.2x -3x =9-52.若式子x +2的值为1,则x 等于( )A.1B.-1C.3D.-33.解方程4x -2=3-x 的步骤是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A.①②③B.③②①C.②①③D.③①②4.下列四组变形属于移项的是( )A.由x -24=3,得x -2=12 B.由9x -3=x +5,得9x -3=5+xC.由5x =15,得x =3D.由1-7x =2-6x ,得-7x +6x =2-15.若3x +6=4,则3x =4-6,这个过程是 .6.解下列方程:(1)4-35m =7; (2)2x -3=3x +4.7.解方程:x -3=-12x -4.8.已知x =1是关于x 的方程a(x -2)=a +3x 的解,则a 的值等于( )A.32B.-32C.34D.-349.下列方程中与2x -4=x +2的解相同的方程为( )A.3x +4=xB.x -2=3C.3x +6=0D.x +1=2x -510.某同学在解方程5x -1=■x+3时,把■处的数字看错了,解得x =-43,则该同学把■看成了( )A.3B.-1289C.-8D.8 11.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x = .12.解下列方程:(1)3x +6=31-2x ; (2)x -2=13x +43.13.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?第4课时利用移项解一元一次方程的实际问题1.天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡.已知所有硬币的质量都相同,如果设一个硬币的质量为x克,可列出方程为( )A.2x+10=6x+5B.2x-10=6x-5C.2x +10=6x -5D.2x -10=6x +52.甲厂库存钢材100吨,每月用去15吨;乙厂库存钢材82吨,每月用去9吨.经过m 个月,两厂剩余钢材相等,则m 的值应为( )A.2B.3C.4D.53.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是 ,调往乙队的人数是 .4.七年级某班小组活动中,如果每组5人则余3人,每组6人则缺5人,则该班的学生人数为 人.5.小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.6.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A.x +1=2(x -2)B.x +3=2(x -1)C.x +1=2(x -3)D.x -1=x +12+17.“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x棵,通过分析题意,鸦的只数不变,则可列方程:.8.甲、乙两人同时从A地出发去B地,甲骑自行车,骑行速度为10 km/h,乙步行,行走速度为6 km/h.当甲到达B地时,乙距B地还有8 km.甲走了多长时间?A,B两地的路程是多少?9.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?10.我市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,那么树苗缺21棵;如果每隔6米栽1棵,那么树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是( )A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x参考答案:3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.B2.D3.C4.D5.(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9;解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.6.解方程:-23x +x =3.解:合并同类项,得13x =3.系数化为1,得x =9.7.D8. 3.9.(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53. (3)x -25x =3+6; 解:合并同类项,得35x =9. 系数化为1,得x =15.(4)16x -3.5x -6.5x =7-(-5).解:合并同类项,得6x =12.系数化为1,得x =2.第2课时 利用合并同类项解一元一次方程的实际问题1.C2. 24 .3. 10,12,14.4.解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x=5.5.答:挖好水渠需要5.5天.5.解:设麻商集团第二季度销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x台.根据总量等于各分量的和,得x+2x+4x=2 800.解得x=400.答:麻商集团第二季度销售冰箱400台.6.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为5x m3,根据题意,得x+5x=13 800.解得x=2 300.则5x=11 500.答:中、美两国人均淡水资源占有量各为2 300 m3,11 500 m3.7.64,128,256.8.40__cm,50__cm.9.21.10.解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x +5x =32.解得x =4.所以3x =3×4=12,5x =5×4=20.答:黑色皮有12块,白色皮有20块.11.解:设第一天走的路程为x 里,则后面5天走得路程分别为:12x 里,14x 里,18x 里,116x 里,132x 里.根据题意,得 则x +12x +14x +18x +116x +132x =378. 解得x =192.则132x =132×192=6. 答:此人第六天走的路程为6里.第3课时 利用移项解一元一次方程1.B2.B3.C4.D5. 移项.6.(1)4-35m =7;解:移项,得-35m =7-4.合并同类项,得-35m =3.系数化为1,得m =-5.(2)2x -3=3x +4.解:移项,得2x -3x =3+4.合并同类项,得-x =7.系数化为1,得x =-7.7.解:移项,得x +12x =-4+3.合并同类项,得32x =-1.系数化为1,得x =-23.8.B9.D10.D11. 13.12.(1)3x +6=31-2x ;解:移项,得3x +2x =31-6.合并同类项,得5x =25.系数化为1,得x =5.(2)x -2=13x +43. 解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.13.解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x 的方程4x -2m =3x +1的解是x =6m.将x =6m 代入4x -2m =3x +1,得24m -2m =18m +1.移项、合并同类项,得4m =1.所以m =14.第4课时 利用移项解一元一次方程的实际问题1.A2.B3. 10, 18.4. 43 .5.解:设小华现在的年龄为x 岁,则妈妈现在的年龄为(x +25)岁.根据题意,得 x +25=3x +5.解得x =10.答:小华现在的年龄为10岁.6.C7. 3x+5=5(x-1).8.解:设甲走了x h,则A,B两地的路程是10x km.根据题意,得10x=6x+8.解得x=2.则10x=20.答:甲走了2 h,A,B两地的路程是20 km.9.解:(1)设小明在买x元的书的情况下办会员卡与不办会员卡一样.则x=20+80%x.解得x=100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱. 10.A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2解一元一次方程-移项与合并同类项
测试题
一、 选择题
1. 解方程时,不需要合并同类项的是( )
A.2x=3x
B.2x+1=0
C.6x-1=5
D.4x=2+3x
2. 下列变形中,属于移项的是( ).
A.由3225x x +-=得3225x x -+=
B. 由321x x +=得51x =
C.由2(1)3x -=得223x -=
D. 由953x +=-得935x =-- 3.下列方程变形中移项正确的是( ).
A. 由36x +=,得63x =+
B.由21x x =+,得21x x -=
C. 由212y y -=-,得212y y -=
D. 由512x x +=-,得215x x -=+ 4. 甲数的5倍加4是乙数,设甲数为x ,则乙数与甲数的差可以表示为( ) A. 45+x B. 4 C. 44+x D. 44--x
5. 三个连续自然数的和是27,则设其中的一个自然数是x ,下列方程错误的是( ) A. 2721=++++x x x B. 2711=+++-x x x C. 2712=+-+-x x x D. 227-=++x x x
6. 三角形三边长之比为2:2:3,最长边为15,则周长为( ) A. 35 B. 25 C.15 D.10
7. 三个连续奇数的和是15,它们的积是( ) A.15 B. 21 C.105 D.315
8. 若2-=x 是方程m mx +=-156的解,则m 的值为( ) A.3 B. -3 C. 7 D.-7
9. 黄豆发芽后,其自身的重量可以增加7倍,那么要得到黄豆芽240千克,需要黄豆的千克
数是( )
A.30
B. 7
2
34 C. 35 D.40
10. 小宁买了20本练习本,店主给他八折优惠(即以标价的80%出售),结果便宜了1.60
元,则每本练习本的标价是( ).
A.0.20元
B.0.40元
C. 0.60元
D.0.80元 二、 填空题
11. 若3-=b a ,则a b -的值是 .
12. 若m 是3221x x -=+的解,则3010m +的值是 .
13. 对有理数a 、b ,规定运算※的意义是:a ※b =2a b +,则方程3x ※4=2的解是___ . 14. 当=_____时,式子2x-1的值比式子5x+6的值小1.
15. 母亲26岁时生了女儿,若干年后,母亲的年龄是女儿年龄的3倍,此时女儿的年龄是 16.已知一艘船航行于A 、B 两码头之间,去时顺水航行的速度为1v ,返回时逆水航行的速度
为2v ,则水流的时速为
17. 某商店一套夏装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为
元.
18. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文
(解密).已知加密规则为:明文x y z ,,对应密文23343x y x y z ++,,.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为 .
19. 某人有三种邮票共18枚,它们的数量比为1︰2︰3,则这三种邮票数分别为_______. 20. 某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则每件
标价是________元.
三、解答题 21. 解方程:
(1)215x x -+
=; (2)1
4342
x x -=+; (3)23
41255
x x -=+; (4)2 3.5 4.51x x -=-.
22. 用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,
问小拖拉机每小时耕地多少亩?
23某同学在A 、B 两家超市发现他看中的复读机的单价相同,书包单价也相同.复读机
和书包单价之和是452元,且复读机的单价比书包单价的4倍少8元.
(1)求该同学看中的复读机和书包的单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,A 超市所有商品打8折销售,B 超市全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用).但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买省钱?
参考答案
11.3 12. 100 13. 2x =- 14. -2 15. 13岁
16.
2
2
1v v -
17. 340 18.3,2,9
19. 3枚、6枚、9枚;
20. 40;提示:设每件商品x 元,依题意有:0.9x=30×(1+20%),解得x=40. 三、解答题
21. (1)53
x =-;(2)2x =;(3)80x =-;(4)38
x =.
22. 设小拖拉机每小时耕地x 亩,
列方程x+1.5x=30,x=12.
23. (1)设书包的单价是
x 元,则9245284==-+x x x ,则书包92元,随身听
36084=-x 元.
(2)在超市A 购买随身听与书包各一件需花费现金:6.361%80452=⨯元400<元,所以可以在超市A 购买.在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计花费362元<400元,所以可以在超市B 购买,但361.6<362,所以在超市A 购买更省钱.。