人教版七年级数学上册合并同类项与移项同步测试(含答案)
人教版七年级上册数学3.2解一元一次方程(一)——合并同类项与移项同步训练(word版含简单答案)

人教版七年级上册数学3.2 解一元一次方程(一)——合并同类项与移项同步训练一、单选题1.下列变形中,属于移项的是( )A .由32x =-,得23x =-B .由32x =,得6x = C .由570x -=,得57x =D .由520x -+=,得250x -= 2.下列方程变形正确的是( )A .由2378x x +=+,得515x =B .由3543x x -=+,得27x =C .由23x -=-,得32x =-D .由23x -=-,得23x = 3.已知单项式13m a b +与12n b a --可以合并同类项,则m ,n 分别为( ) A .1,2 B .3,2 C .1,0 D .3,0 4.下列通过移项变形错误的是( )A .由227x x +=-,得272x x -=--B .由324y y +=-,得423y y +=-C .由2324t t t -+=-,得2243t t t ++=-+D .由123m -=,得213m =-5.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2 B .12 C .-2 D .1-26.某校在庆祝祖国70周年“我和我的祖国”中学生读书系列活动中,将一些科技类图书分给了七年级一班的学生阅读,如果每人分4本,则剩余20本;如果每人分5本,则还缺30本.若设该校七年级一班有学生x 人,则下列方程正确的是( ) A .4x ﹣20=5x +30B .4x +20=5x ﹣30C .4x ﹣20=5x ﹣30D .4x +20=5x +307.“☆”表示一种运算符号,其定义是a ☆2b a b =-+,例如:3☆7237=-⨯+,如果x ☆(5)3-=,那么x 等于( )A .-4B .7C .-1D .1 8.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A .140元B .150元C .160元D .200元 9.一位同学在解方程51(-=x )3+x 时,把“( )”处的数字看错了,解得43x =-,这位同学把“( )”看成了( ) A .3B .1289-C .-8D .8 二、填空题10.若1111236x x x -+=,则__________116=,依据是___________. 11.将下列方程移项:(1)方程2134x x -=+移项后得_________________;(2)方程311422x x +=-移项后得____________. 12.如果方程3x +2a =12和方程3x -4=2的解相同,那么a =____13.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________. 14.若47a -与3a 互为相反数,则221a a -+的值为____________15.若x 1=3y-2,x 2=2y+4,则当y=____时,x 1=x 2.16.某班举办了一个集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,则这个班学生有____人,一共展出的邮票有____张.三、解答题17.解方程:(1)231x x -=+; (2)6483x x +=+;(3)318312x x --+=; (4)1219.28x x =-.18.关于x 的方程234x m x -=-+与2m x -=的解互为相反数.(1)求m 的值;(2)求这两个方程的解.19.已知当x=-1时,代数式2mx3-3mx+6的值为7,若关于y的方程2my+n=11-ny-m的解为y=2,求n的值.20.某地下停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场的小型汽车数量是中型汽车的3倍,这些车共缴纳停车费270元,则小型汽车有多少辆?答案第1页,共1页 参考答案:1.C2.A3.A4.C5.B6.B7.A8.B9.D10. 56x 合并同类项 11. 2341x x -=+ 314122x x -=-- 12.313.3x =-14.015.616. 50 174 17.(1)4x =;(2)2x =;(3)2x =-;(4)0.96x = 18.(1)6m =;(2)4;4x x ==- 19.n=2.20.小型汽车有45辆。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (80)

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)解方程:453x x -=.【答案】【解析】试题分析:①移项:把未知项移至等号左边,常数项移至等号右边;②合并同类项;③系数化为1:两边同除以未知数的系数.试题解析:解:453x x =-,移项得:-5x -3x =-4,合并同类项得:-8x =-4, 系数化为1得:x =12. 92.学完一元一次方程解法,数学老师出了一道解方程题目:123123x x +--=.李铭同学的解题步骤如下: 解:去分母,得3(x +1)-2(2-3x)=1;……①去括号,得3x +3-4-6x =1; ……②移项,得3x -6x =1-3+4; ……③合并同类项,得-3x =2; ……④系数化为1,得x =-23. ……⑤ (1)聪明的你知道李铭的解答过程在第_________(填序号)出现了错误,出现上面错误的原因是违背了____.(填序号)①去括号法则;②等式的性质1;③等式的性质2;④加法交换律.(2)请你写出正确的解答过程.【答案】解:(1)①②,③①;(2)x=7.9【解析】试题分析:李铭的解法出错在第①、②步,去分母时1没有乘以6,去括号时有一项没变号,方程去分母,去括号,移项合并,把x系数化为1,即可求出解.试题解析:(1)①②,③①(2)解:去分母,得3(x+1)-2(2-3x)=6;……①去括号,得3x+3-4+6x=6;……②移项,得3x+6x=6-3+4;……③合并同类项,得9x=7;……④.系数化为1,得x=7993.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b 满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;x﹣8的解.(2)点C在数轴上对应的数为x,且x是方程2x+1=12①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)点A表示的数是﹣3,点B表示的数是2;(2)①线段BC的长为8;②点P对应的数是3.5或﹣4.5.【解析】试题分析:(1)根据|a+3|+(b-2)2=0,可以求得a、b的值,从而可以求得点A、B表示的数;x-8可以求得x的值,从而可以得到点C表示的数,(2)①根据2x+1=12从而可以得到线段BC的长;解:(1)∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2(2)①2x+1=x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5.94.解方程(组):(1)3516x -=; (2) 2 234x y x y =⎧⎨-=⎩【答案】(1) 7x =;(2) 8 4x y =⎧⎨=⎩. 【解析】试题分析:(1)移项合并同类项,化系数为1,即可得出答案;(2)用代入法解答即可.试题解析:解:(1)移项得:3x =16+5,合并同类项得:3x =21,系数化为1得:x =7;(2)2234x y x y =⎧⎨-=⎩①② ,把①代入②,得:4y -3y =4,解得:y =4,把y =4代入①得:x =8,①84x y =⎧⎨=⎩. 95.解方程(x-3)(x+1)=x(2x+3)-(x 2+1).【答案】x =-25【解析】试题分析:先去括号,再移项,合并同类项,最后化系数为1,从而得到方程的解.试题解析:去括号,得22233231x x x x x x +--=+--,合并,得222331x x x x --=+-,移项,得222313x x x x ---=-+,合并同类项,得−5x =2,系数化为1,得25x =-. 96.解方程:6+1=45x x -.【答案】=3x -【解析】试题分析:本题考察了一元一次方程的解法,本题需移项,合并同类项,系数化为1几个步骤,移项时不要忘记变号.解:64=51x x ---2=6x -=3x - .∴=3x -是原方程的解.97.解方程(组):(1) 3516x -=; (2)2234x y x y =⎧⎨-=⎩【答案】(1)7x =; (2) 84x y =⎧⎨=⎩. 【解析】试题分析:(1)移项合并同类项,化系数为1即可;(2)直接用代入法解答即可.试题解析:解:(1)3x =16+5,3x =21,x =7;(2)2234x y x y =⎧⎨-=⎩①② ,把①代入②,得:4y -3y =4,解得:y =4,把y =4代入①,得:x =8.①84x y =⎧⎨=⎩. 98.阅读下列材料再解方程:23x +=,我们可以将2x +视为整体,由于绝对值为3的数有两个,所以2=3x +或2=-3x +,解得1x =或5x =-.请按照上面的解法解方程2113x +=. 【答案】0x =或3x =-.【解析】试题分析: 参照题目中所举的范例,可把2113x +=转化成2113x +=或2113x +=-两个方程,解这两个方程即可求得x 的值.试题解析: ∵2113x += , ∴2113x +=或2113x +=-, 解得:0x =或3x =-.99.小明设计了一个问题,分两步完成:(1)已知关于x 的一元一次方程(a ﹣2)x |a|﹣1+8=0,请画出数轴,并在数轴上标注a 与x 2对应的点,分别记作A ,B ;(2)在第1问的条件下,在数轴上另有一点C 对应的数为y ,C 与A 的距离是C 与B 的距离的5倍,且C 在表示5的点的左侧,求y 的值.【答案】(1)详见解析;(2)y =3.【解析】试题分析:(1)根据一元一次方程的定义可得|a|-1=1且a-2≠0,由此即可求得a 值,再解方程求得x 的值,即可得2x 的值,在数轴上表示即可;(2)根据等量关系:C 与A 的距离是C 与B 的距离的5倍,且C 在表示5的点的左侧,列出方程求解即可.试题解析:(1) 由一元一次方程的定义得,|a |-1=1.且a -2≠0,解得a =-2,则关于x 的一元一次方程()1280a a x --+=即为-4x +8=0,解得x =2,则24x =,在数轴上表示如图所示:(2) 依题意有[y -(-2)]=5(4-y ),解得y =3.点睛:本题主要考查了一元一次方程的定义、一元一次方程的解法及应用,解题关键是根据题意观察数轴,找出合适的等量关系列出方程,再求解.100.解下列方程: (1)4﹣35m=﹣m ; (2)56﹣8x=11+x ;(3)43x+1=5+13x ; (4)﹣5x+6+7x=1+2x ﹣3+8x .【答案】(1) m =-10;(2)x=5;(3)x=4;(4)x=1.【解析】试题分析:(1)移项、合并同类项后,系数化为1即可得方程的解;(2)移项、合并同类项后,系数化为1即可得方程的解;(3)移项、合并同类后项即可得方程的解;(4)移项、合并同类项后,系数化为1即可得方程的解.试题解析:(1) 移项,得-35m +m =-4. 合并同类项,得25m =-4. 系数化为1,得m =-10.(2) 移项,得-8x-x=11-56. 合并同类项,得-9x=-45. 系数化为1,得x=5.(3) 移项,得43x-13x=5-1.合并同类项,得x=4.(4) 移项,得-5x+7x-2x-8x=1-3-6. 合并同类项,得-8x=-8.系数化为1,得x=1.。
2023-2024学年人教版七年级数学上学期:解一元一次方程(一)合并同类项与移项

一.选择题(共5小题)
1.方程x﹣2=2﹣x的解是( )
A.x=1B.x=﹣1C.x=2D.x=0
2.方程3x+6=2x﹣8移项后,正确的是( )
A.3x+2x=6﹣8B.3x﹣2x=﹣8+6C.3x﹣2x=﹣6﹣8D.3x﹣2x=8﹣6
3.解方程3x+4=4x﹣5时,移项正确的是( )
A.3x﹣4x=﹣5﹣4B.3x+4x=4﹣5C.3x+4x=4+5D.3x﹣4x=﹣5+4
4.下列变形属于移项的是( )
A.由3x+2﹣2x=5,得3x﹣2x+2=5
B.由3x+2x=1,得5x=1
C.由2(x﹣1)=3,得2x﹣2=3
D.由9x+5=﹣3,得9x=﹣3﹣5
(2)当x取何值时,A比B大4?
10. z z .
2023-2024学年人教版七年级数学上学期3.2解一元一次方程(一)合并同类项与移项
参考答案与试题解析
一.选择题(共5小题)
1.方程x﹣2=2﹣x的解是( )
A.x=1B.x=﹣1C.x=2D.x=0
【解答】解:移项得:x+x=2+2
即2x=4
∴x=2.
【解答】解:根据题意得:2x+1+5x﹣8=0,
移项合并得:7x=7,
解得:x=1,
故答案为:1
三.解答题(共2小题)
9.已知A=3x+2,B=4﹣x,解答下列问题:
(1)当x取何值时,A=B?
(2)当x取何值时,A比B大4?
【解答】解:(1)把A=3x+2,B=4﹣x代入A=B得:3x+2=4﹣x,
人教版数学七年级上册 第3章 3.2解一元一次方程合并同类项及移项同步测试题(有答案)

解一元一次方程合并同类项及移项同步测试题(有答案)一.选择题1.一元一次方程2x﹣5=0的解是()A.x=5B.x=﹣C.x=D.x=2.解关于x的方程﹣3x﹣9=x+5时,下面的变形正确的是()A.﹣3x+x=5﹣9B.﹣3x﹣x=(﹣9)+(﹣5)C.x+3x=(﹣9)+(﹣5)D.x+3x=5+93.若代数式4x﹣5与3x﹣2的值互为相反数,则x的值为()A.1B.﹣1C.0D.24.方程|x+3|﹣|1﹣x|=x+1的解是()A.x=3B.x=﹣5C.x=﹣1或3或5D.x=﹣5,或﹣1或35.若代数式3x﹣4与﹣2x+1的值相等,则x的值是()A.1B.2C.3D.56.解方程:2x﹣3=3x﹣2,正确的答案是()A.x=1B.x=﹣1C.x=5D.x=﹣5 7.在解方程﹣1=时,去分母正确的是()A.2(2x﹣1)﹣1=3(x+2)B.2(2x﹣1)﹣6=3(x+2)C.3(2x﹣1)﹣1=2(x+2)D.3(2x﹣1)﹣6=2(x+2)8.一元一次方程+++…+=的解是()A.1B.2C.2014D.2015 9.在解方程﹣=1时,对该方程进行化简正确的是()A.=100B.C.D.010.把方程3x+=3﹣去分母正确的是()A.3x+2(2x﹣1)=3﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.18x+2(2x﹣1)=18﹣3(x+1)二.填空题11.对于有理数a、b,规定一种新运算:a⊕b=ab+b,则方程(x﹣4)⊕3=6的解为.12.当x=时,代数式3x+1的值与代数式2(3﹣x)的值互为相反数.13.设a,b,c,d为实数,现规定一种新的运算=ad﹣bc.则满足等式=1的x的值为.14.当x=时,5(x﹣2)与2[7x﹣(4x﹣3)]的值相等.15.对于有理数a、b,定义运算“★”;a★b=,例如:2★1,因为2>1,所以2★1=22+12=5,若(x+1)★3=﹣12,则x=.三.解答题16.解方程:①2x+5=3(x﹣1);②﹣=1.17.解下列方程:(1)5x+3=2x﹣9(2)18.解下列方程:(1)=(2)=(3)278(x﹣3)﹣463(6﹣2x)﹣888(7x﹣21)=0(4){()﹣3]﹣3}﹣3=019.用“⊗”规定一种新运算:对于任意有理数a和b,规定a⊗b=ab2+2ab+a.如:1⊗3=1×32+2×1×3+1=16(1)求3⊗(﹣1)的值;(2)若(a+1)⊗2=36,求a的值;(3)若m=2⊗x,n=(x)⊗3(其中x为有理数),试比较m、n的大小.20.设a,b,c,d为有理数,现规定一种新的运算:=ad﹣bc,那么当=7时,x的值是多少?参考答案与试题解析一.选择题1.【解答】解:方程2x﹣5=0,解得:x=,故选:C.2.【解答】解:移项可知:﹣3x﹣x=9+5∴3x+x=﹣9﹣5故选:C.3.【解答】解:根据题意得:4x﹣5+3x﹣2=0,移项合并得:7x=7,解得:x=1,故选:A.4.【解答】解:当x<﹣3时,方程整理得:﹣x﹣3﹣1+x=x+1,解得:x=﹣5;当﹣3≤x<1时,方程整理得:x+3﹣1+x=x+1,解得:x=﹣1;当x≥1时,方程整理得:x+3+1﹣x=x+1,解得:x=3,则方程的解为x=﹣5,﹣1,3,故选:D.5.【解答】解:根据题意得:3x﹣4=﹣2x+1,移项合并得:5x=5,解得:x=1,故选:A.6.【解答】解:移项合并得:﹣x=1,解得:x=﹣1,故选:B.。
七年级数学上册《第三章 合并同类项与移项》练习题附带答案-人教版

七年级数学上册《第三章合并同类项与移项》练习题附带答案-人教版一、选择题1.下列移项中,不正确的是( )A.由x+2=5,得x=5-2B.由2y=y-3,得2y-y=-3C.由3m=2m+1,得2m-3m=1D.由-a=3a-1,得-a-3a=-12.解方程-2(x-5)+3(x-1)=0时,去括号正确的是( )A.-2x-10+3x-3=0B.-2x+10+3x-1=0C.-2x+10+3x-3=0D.-2x+5+3x-3=03.下列通过移项变形,错误的是( )A.由x+2=2x-7,得x-2x=-7-2B.由x+3=2-4x,得x+4x=2-3C.由2x-3+x=2x-4,得2x-x-2x=-4+3D.由1-2x=3,得2x=1-34.若x=-3是方程2(x-m)=6的解,则m的值为( )A.6B.-6C.12D.-125.关于x的一元一次方程2x a﹣2+m=4的解为x=1,则a+m的值为( )A.9B.8C.5D.46.当x=4时,式子5(x+m)-10与式子mx+4x的值相等,则m=( )A.-2;B.2;C.4;D.6;7.解方程4(x-1)-x=2x+12的步骤如下:①去括号,得4x-4-x=2x+1;②移项,得4x+x-2x=1+4;③合并,得3x=5;④系数化为1,得x=5 3.经检验可知:x=53不是原方程的解,说明解题的四个步骤中有错,其中做错的一步是( )A.①B.②C.③D.④8.若关于x的方程(m2-1)x2-(m+1)x+8=0是一元一次方程,有四位学生求得m的值分别如下:①m=±1;②m=1;③m=-1;④m=0.其中错误的个数是( ).A.1B.2C.3D.49.若x=1是方程3-m+x=6x的解,则关于y的方程m(y-3)-2=m(2y-5)的解是( )A.y=-10B.y=3C.y=43D.y=410.关于x的方程ax+3=4x+1的解为正整数, 则整数a的值为( )A.2B.3C.1或2D.2或3二、填空题11.若-x n+1与2x2n-1是同类项,则n= .12.如果2x+3的值与1-x的值互为相反数,那么x=________.13.解方程:3x﹣2(x﹣1)=8解:去括号,得:________;移项,得:________;合并同类型,得:________;系数化为1,得:________.14.如果4是关于x的方程3a﹣5x=3(x+a)+2a的解,则a=________.15.如果2(x+3)的值与3(1-x)的值互为相反数,那么x等于________.16.在等式3×(1- )-2×( -1)=15的两个方格中分别填入一个数,使这两个数互为相反数,且等式成立,则第一个方格中的数是。
人教版七年级数学上册3.2 解一元一次方程(一)合并同类项和移项 同步练习(含答案)

3.2 解一元一次方程(一)合并同类项与移项(1)一.选择1.一元一次方程的解是 ( )A.x=1 B .x= -1 C .x=-94 D.x=-49 2.下列方程合并同类项不正确的是 ( )A .由3x -2x=4,合并同类项,得x=4B .由2x -3x=3.合并同类项,得-x=3C .由5x - 2x+3x= 12,合并同类项,得x= -2D .由,合并同类项,得 3.下列方程移项正确的是( )A.4x -2= -5移项,得4x= 5-2B.4x -2= -5移项,得4x= -5-2C.3x+2= 4x 移项,得3x -4x=2D.3x+2= 4x 移项,得4x -3x=24.某工人若每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可以超额完成5个,问:规定时间是多少?设规定时间为x 小时,则可列方程为 ( )A.38x -15= 42x+5B.38x+15= 42x -523x 32=-52x 27=+-x 5x 23=-C.42x+38x= 15+5D.42x -38x= 15-55.某同学在解方程5x -1=■x+3时,把■处的数字看错了,解得34-=x ,则该同学把■看成了 ( )A.8B. 9128- C.-8D.3二.填空1. 现规定一种新运算,则当时,x=___________.2.在数轴上有不同的两点A ,B ,它们所对应的数分别是2x+1和4-x ,且点A ,B 到原点的距离相等,则x 的值是_________.3.当x=________时,式子2x -1的值比式子5x+6的值小1.4.已知x=2是关于x 的方程a (x+1)=21a+x 的解,则a 的值是__________. 三.解答题1.解下列方程.(1) 8y -7y -12y= -5; (2) 2.5z -7.5z+6z= 32;(3)7x -2.5x+3x -1.5x=-15x4-6x3.2.解下列方程:(1)3x+7=32-2x; (2); (3)6a+7=12a -5-3a; (4).3.一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,所得的两位数比原来的两位数大27,求原来的两位数,4.某校七年级(1)班共有学生45人,根据需要分为甲、乙、丙三组去参加劳动,这三组的人数之比为2:3:4.求这三个小组的人数.3.2 解一元一次方程(一)合并同类项与移项(2)一.选择1.关于x 的方程3x+6x= -3与2mx+3m=-1的解相同,则m 的值为 ( )A . B. C. D.2.小李在解方程5a -x= 13(x 为未知数)时,误将-x 看作+x ,得方程的解为x= -2,则原方程的解为 ( )A.x= -3B.x=0C.x=2D.x=13.下列方程移项正确的是 ( )A .由3x -2= 2x -1得3x+2x= 1+2B .由x -1= 2x+2得x -2x= 2-1C .由2x -1- 3x -2得2x -3x= 1-2D .由2x+1= 3-x 得2x+x= 3+17373-3737-4.已知代数式6x - 12与4+2x的值互为相反数,那么x的值等于( ) A.-2 B.-1 C.1 D.25.方程2x+3=7的解是( )A.x=5B.x=4C.x=3.5D.x=26.为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款( )A.140元B.150元C.160元D.200元二.填空1.元旦来临,各大商场都设计了促进消费增加利润的促销措施,“物美”商场把一种双肩背的书包按进价提高50%进行标价,然后再打出8折的优惠价,这样商场每卖出一个书包就可盈利8元.这种书包的进价是________元.2.若代数式x-5与2x-1的值相等,则x的值是_______.3.一组“数值转换机”按如图所示的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是____.4.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是____元.三.解答题1.已知(I a I -1)x ²-(a+1)x+8=0是关于x 的一元二次方程.(1)求a 的值,并解出上述一元一次方程;(2)若上述方程的解比方程5x -2k= 2x 的解大2,求k 的值.2.解方程:(1)3x -6=-15-6x ;(2) +5=x -17.3.《孙子算经》中有这样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?”大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.4.一批商界人士在露天茶座聚会,他们先是两人一桌,服务员给每桌送上一瓶果汁.后来他们又改为三人一桌,服务员又给每桌送上一瓶葡萄酒,不久他们改坐成四人一桌,服务员再给每桌送上一瓶矿泉水,此外他们每人都要了一瓶可口可乐.聚会结束时服务员收拾到了50个空瓶,如果果汁、葡萄酒、矿泉水、可口可乐全部喝完,且没人带走瓶子,那么这次聚会有几人参加?5.有一些分别标有6,12,18,24,…的卡片,从第二张卡片开始,后一张卡片上的数比前一一张卡片上的数大6,小明拿到了相邻的3张卡片,且这些卡片上的数之和为342.(1)小明拿到了哪3张卡片?(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和为86吗?能为120吗?x 34合并同类项与移项(1)答案:一.1.D2.C由5x- 2x+3x= 12,合并同类项,得6x= 12,而不是x=-2.3.D A.4x-2=-5移项,得4x=-5+2,本选项错误:B.4x-2=-5移项,得4x=-5+2,故本选项错误:C.3x+2=4x移项,得3x-4x=-2,故本选项错误:D.3x+2=4x移项,得2=4x-3x,即4x-3x=2.故本选项正确.故选D.4.B因为规定时问为x小时,所以38x+15= 42x-5.故选B5.A6.二.1.答案-62.答案-5解析由题意得2x+1+4-x=0.解得x=-5.3.答案 -2解析 由题意,得2x -1= 5x+6-1,移项.得2x -5x= 6-1+1,合并同类项,得- 3x=6,系数化为1,得x=-2.4.答案解析 把x=2代入方程,得,解得.三. 1.解析(1)合并同类项,得-11y=-5,系数化为1.得. (2)合并同类项,得z=32.(3)合并同类项,得6x=-78.系数化为1.得x=-13.2.解析(1)移项,得3x+2x= 32-7,合并同类项,得5x= 25,系数化为1,得x=5.(2)移项,得.54221a 3+=a 54a =115y =727592z 911--=-z合并同类项,得x= -1.(3)移项,得6a -12a+3a= -5-7,合并同类项,得-3a= -12,系数化为1,得a=4.(4)移项,得2.5x+x=2-.合并同类项,得.系数化为1,得.3.解析设原来两位数十位上的数字为x ,则个位上的数字为2x ,由题意得20x+x -27= 10x+2x ,移项,得20A -+x -10x -2x= 27,合并同类项,得9x= 27,系数化为1,得x=3,所以2x3 =6.答:原来的两位数为36.4.解析由题意设这三个小组的人数分别为2x ,3x ,4x .根据题意,得2x+3x+4x= 45. 解这个方程,得x=5.所以2x= 10. 3x=15.4x= 20.答:甲、乙、丙三组的人数分别为10、15、20.合并同类项与移项(2)313135x 617=1710x =1.B 解方程3x+6x= -3得,所以,解得. 2.C 小李实际上是解方程5a+x= 13而得到解为x=-2,将x=-2代入方程5a+x=13,得5a -2= 13,所以a=3.即原方程为15-x= 13,所以x=2.3.C 由3x.-2= 2x -1得3x -2x=-1+2,故A 错误;由x -1= 2x+2得x -2x= 2+1,故B 错误;由2x -1= 3x -2得2x -3x= 1-2,故C 正确;由2x+1= 3-x 得2x+x= 3-1,故D 错误.故选C .4.C 根据题意,得6x - 12+4+2x=0,移项,得6x+2x= 12-4,合并同类项,得8x=8.系数化为1,得x=1.5.D 移项、合并同类项,得2x=4,解得x=2,故选D .6.B 设小慧同学不买卡直接购书需付x 元,由题意得20+0.8x=x -10,解得x=150,所以需付150元.二.1.答案40解析 设这种书包的进价为x 元,根据题意得(1 +50%)x ×80%-x=8.解得x=40,所以这种书包的进价为40元.2.答案 -4解析 根据题意僻x -5= 2x -1,解得x=-4.3.答案 154.答案5331x -=13m 32-=+-m 73m -=解析 设共有x 个人共同购买该物品,依题意得8x -3= 7x+4.解得x= 7.8x -3= 8x7-3= 53元.故答案为53.三.1.解析(1)因为(lal -l )x'-( a+l) x+8 =0是关于x 的一元一次方程, 所以lal -l=0且-(a+1)≠0.由lal -1=0,得lal =1,所以a=+1.由-( a+1)≠0,得a+1≠0,所以a ≠-1,所以a=1.所以方程可转化为-2x+8=0.移项,得-2x= -8.系数化为1,得x=4.(2)因为方程-2x+8=0的解比力+程5x -2k=2x 的解大2,所以方程5x -2k= 2x 的解为x=2.所以5x2-2k=2x2.移项,得-2k= 4- 10.合并同类项,得-2k= -6.系数化为1,得k=3.2.解析(1)移项,得3x+6x=- 15+6.合并同类项,得9x= -9.系数化为1,得x= -1.(2)移项,得.517x 34--=-x人教版七年级数学上册3.2 解一元一次方程(一)合并同类项和移项 同步练习(含答案) 11 / 11 合并同类项,得.系数化为1,得x=-66.3.解析 设城市有x 户人家,根据题意得10031x =+x ,解得x=75.答:城中有75户人家.4.解析设这次聚会共有x 人参加, 由题意得50432x =+++x x x 50432x =+++x x x ,5.解析(1)设中间一张卡片上的数为x ,则另两张卡片上的数为x -6,x+6,则x -6+x+x+6= 342,解得x=114,所以这3张卡片上的数为108,114,120.(2)不能为86,也不能为120.因为当x -6+x+x+6= 86时,,不是整数;当x -6+x+x+6= 120时,x=40,不是6的整数倍,所以这些卡片上的数之和小能为86.也不能为120.22x 31-=386=x。
【推荐】人教版七年级数学上册课后同步练习3.2 解一元一次方程(一)——合并同类项与移项含答案.doc

课后训练基础巩固1.下列各式的变形正确的是().A.-3x+x=(-3-1)xB.10.110x x-=0C.0.1x-0.9x=-xD.-x-2x-5x=(-2-5)x=-7x2.将方程2x=14的未知数的系数化为1,得().A.x=2 B.x=1 8C.x=12D.x=83.下列解方程的过程中,正确的是().A.13=x+3,得x=3-13B.4y-2y=4,得(4-2)y=4C.11222x x-=-,得x=-2D.2x-3=x+1,得3x=-24.下列方程的解是x=2的是().A.3x-1=2x+1 B.3x+1=2x-1C.3x+2x-2=0 D.3x-2x+2=05.如果3a+2b=1,且3a+2b-c=0,则c的值为().A.-1 B.1 C.0 D.26.翻开数学书,连续看了3页,页码的和为81,则这3页的页码分别是______,______,______. 能力提升7.当x=__________时,-2x+6与3x-1的值互为相反数.8.当x=__________时,743x-与413x-+的值相等.9.若4a-9与-3a+5互为相反数,则2a+1的值为__________.10.若|x-y|+(y+1)2=0,则x2+y2=__________.11.解下列方程:(1)-5x+5=-6x;(2)94x=-6+54x;(3)0.5x+0.7=1.9x;(4)4334x-=x-133.12.一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?13.某工人计划在一定时间内加工一批零件,如果每天加工44个,就比任务量少加工20个,如果每天加工50个,则超额加工10个,求计划加工的天数.14.联华超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.某人两次购物分别付款80元,252元,如果他将这两次所购商品一次性购买,则应付款多少元?15.致富后的阿凡提决定每学期资助“希望工程”的四个孩子,四个孩子每学期共得450元,现在不知道每个孩子各得多少元钱,但阿凡提风趣的说:第一个孩子的钱减少20元,第二个孩子的钱增加20元,第三个孩子的钱增加一倍,第四个孩子的钱减少一半,那么四个孩子的钱就一样多了,聪明的你能知道这四个孩子各得多少资助款吗?参考答案1答案:B点拨:合并同类项:系数相加字母部分不变,只有B正确.2答案:B点拨:方程两边同乘以12比较好理解,也不易错,故选B.3答案:B点拨:A移项错,C移项合并错符号,D移项错,只有B正确,故选B.4答案:A点拨:分别解方程,只有A的解是2,故选A.5答案:B点拨:整体代入求值,得1-c=0,c=1.6答案:262728点拨:实际是三个连续数字之和是81,可设中间的一页为x,那么前一页是x -1,后一页是x+1.所以x-1+x+x+1=81,解方程,得x=27.7答案:-5点拨:它们互为相反数,所以可列方程为-2x+6+3x-1=0,解方程求出x的值.8答案:3点拨:值相等,所以可列方程744133x x-=-+,解方程即可求得x的值.9答案:9点拨:互为相反数,和为0,列方程求出a的值,代入2a+1中求出.10答案:2点拨:|x-y|≥0,(y+1)2≥0,所以x-y=0,y+1=0,从而求出x,y的值,代入x2+y2求出.11解:(1)-5x+5=-6x,移项,得6x-5x=-5.合并同类项,得x=-5.(2)95644x x=-+,移项,得9544x x-=-6.合并同类项,得x=-6.(3)0.5x+0.7=1.9x,移项,得0.5x-1.9x=-0.7. 合并同类项,得-1.4x=-0.7.系数化为1,得x=0.5.(4)4313 343x x-=-,移项,得-x-34x=14333--.合并同类项,得714 43x-=-.系数化为1,得741444737x⎛⎫⎛⎫-⨯-=-⨯-⎪ ⎪⎝⎭⎝⎭,即x=83.点拨:先移项,将未知项移到等号左边,已知项移到等号右边,合并同类项,再系数化为1,求出方程的解.12解:设十位上的数字为x,则百位上的数字为(x+7),个位上的数字为3x,得(x+7)+x+3x=17.解方程,得x=2.所以个位上的数字是6,十位上的数字是2,百位上的数字是9.答:这个三位数是926.点拨:数字问题,设和各个位上的数字都有联系的数位上的数字为x,根据它们的和是17列出方程求解.13解:设计划加工的天数是x,根据题意,得44x+20=50x-10,解方程,得x=5.答:计划加工的天数是5.点拨:根据计划加工的个数和计划加工的天数不变列出方程.14解:(1)若第二次购物超过100元,但不超过300元,设此时所购物品价值为x元,则90%x=252,解得x=280(元).两次所购物品价值为80+280=360>300,所以享受8折优惠,因此应付360×80%=288(元).(2)若第二次购物超过300元,设此时购物价值为y元,则80%y=252,解得y=315(元),两次所购物品价值为80+315=395,因此应付395×80%=316(元).点拨:按照优惠条件第一次付80元时,所购买的物品价值不会超过100元,不享受优惠,因而第一次所购物品的价值就是80元;300元的9折是270元,8折是240元,因而第二次的付款252元所购买的商品价值可能超过300元,也可能超过100元而不超过300元,因而应分两种情况讨论.计算出两次购买物品的价值的和,按优惠条件计算出应付款数.15解:设四个人钱一样多时为x元,那么第一个孩子原有(x+20)元,第二个孩子原有(x-20)元,第三个孩子原有12x元,第四个孩子原有2x元,根据题意,得(x+20)+(x-20)+12x+2x=450.解方程,得x=100.答:第一个孩子原有120元,第二个孩子原有80元,第三个孩子原有50元,第四个孩子原有200元.点拨:设出相等时的钱数,逆向求出实际得到的资助钱数,再根据它们的总和是450元,列出方程求解.。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (146)

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)如果单项式2a mx y 与235a nx y --是关于x ,y 的单项式,且它们是同类项:(1)求()2002722a -的值;(2)若2amx y 235a nxy --=0,且xy ≠0,求200325m n ⎛⎫- ⎪⎝⎭的值.【答案】(1)1;(2)-1 【解析】 【分析】(1)先根据它们是同类项,列式23a a -=,求得a 的值,再代入求值即可; (2)由0xy ≠,得250m n +=,即25m n =-,再代入求值即可.【详解】∵单项式2a mx y 与235a nx y --是关于x ,y 的单项式,且它们是同类项, ∴23a a -=,解得3a =, (1)()2002722a -()20022122=-1=;(2)∵2a mx y 235a nx y --=0,且3a =,∴32mx y 35nx y -=0,即()3250m n x y -=,∵0xy ≠,∴250m n -=,即25m n =,∴200325m n ⎛⎫- ⎪⎝⎭200355n n ⎛⎫=- ⎪⎝⎭1=-.【点睛】本题考查了解一元一次方程以及同类项的概念,解题的关键是掌握解一元一次方程和同类项的概念.52.如图,点A 和点B 在数轴上对应的数分别为a 和b ,且()2680a b ++-=.(1)求线段AB 的长;(2)点C 在数轴上所对应的数为x ,且x 是方程24425x x --=+的解,点D 在线段AB 上,并且BD AD -BC =,请求出点D 在数轴上所对应的数;(3)在(2)的条件下,线段AD 和BC 分别以6个单位长度/秒和5个单位长度/秒的速度同时向右运动,运动时间为t 秒,M 为线段AD 的中点,N 为线段BC 的中点,若12MN =,求t 的值.【答案】(1) =4AB 1;(2)点D 在数轴上所对应的数为2-;(3)当t=3秒或 =27t 秒时线段=12MN . 【解析】 【分析】(1)根据平方的非负性,绝对值的非负性求出a=-6,b=8,得到OA=6,OB=8,即可求出AB ;(2)解方程求出x=14,得到点C 在数轴上所对应的数为14,设点D 在数轴上所对应的数为y ,根据BD AD -BC =,列式求出y ;(3)根据中点得到运动前M N ,两点在数轴上所对应的数分别为-4,11,运动t 秒后M N ,两点在数轴上所对应的数分别为-4+6t,11+5t ,再分M 、N 相遇前,相遇后两种情况分别列方程求出t.【详解】(1)解:∵2(6)0,80a b +≥-≥,且2(6)80a b ++-=, ∴2(6)0,80a b +=-=,∴a+6=0,b-8=0, ∴a=-6,b=8, ∴OA=6,OB=8, ∴AB=OA+OB=6+8=14, (2)解方程24425x x --=+,得 14x =,∴点C 在数轴上所对应的数为14,设点D 在数轴上所对应的数为y 点D 在线段AB 上,且BD AD BC -=,()66,8,1486AD y y BD y BC ∴--=+===-=-, ()866y y ∴--(+)=, 解这个方程,得2y =-,∴点D 在数轴上所对应的数为2-.(3)解:由(2)得A D B C ,,,四点在数轴上所对应的数分别为: 62814--,,,.∴运动前M N ,两点在数轴上所对应的数分别为-4,11,则运动 t 秒后M N ,两点在数轴上所对应的数分别为-4+6t,11+5t ,12MN =∴①线段AD 没有追上线段BC 时有:(11+5t)-(-4+6t)=12解得:3t = ;①线段AD 追上线段BC 后有:(-4+6t)-(11+5t)=12, 解得:27t =,∴综合上述:当t=3秒或27t =秒时线段12MN =.【点睛】此题考查线段的和差计算,平方及绝对值的非负性,数轴上两点之间的距离,数轴上动点问题,利用一元一次方程解决图形问题,注意分类讨论的解题思想.53.已知2|2|(53)0n m ++-=,求关于x 的方程1043mx x n +=+的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册合并同类项与移项同步测试(含答案)一、单选题
1.若x=3是关于x的方程2x+a=4的解,则a的值为()
A.-10B.-2C.−1
2D.1 2
2.下列方程移项、系数化为1正确的是()
A.由3+x=5,得x=5+3B.由2x+3=x+7,得2x+x=7+3
C.由7x=﹣4,得x=﹣74D.由12y=2,得y=4
3.若规定□a□表示小于a的最大整数,例如□5□=4,□(-6.7)□=-7(则方程3□(-π)□-2x=5的解是()
A.7B.-7C.D.
4.如图,数轴的单位长度为1,若点B表示的数是3,则点A表示的数是()
A.7B.-5C.-2D.-1
5.下列方程中,解为x=4的是()
A.3x+2=4x+5B.x+3=2x+9C.3+x=3x+2D.4x-2=3x+2
6.方程2x+1=7与a-x−4
3=0的解相同,则a的值是()
A.1B.13C.-13D.0
7.已知关于x的方程2x+a−9=0的解是x=3,则a的值为()
A.2B.3C.4D.5
8.若关于x的方程x﹣2+3k= x+k
3的解是正数,则
k的取值范围是()
A.k>34B.k≥ 34C.k<34D.k≤ 34
9.若x=2是关于x的一元二次方程ax2−bx−2018=0的一个解,则2035−2a+b的值是()
A.17B.1026C.2018D.4053
10.关于x的方程2(x-1)-a=0的根是3,则a的值是()
A.4B.-4C.5D.-5
二、填空题
11.方程2x+3=7的解是 .
12.若方程 6x +2=0 的解与关于 y 的方程 3y +m =15 的解互为相反数,则 m = . 13.一个正数的两个平方根分别是2a-2和a-7,则这个正数是 。
14.单项式15
a 2x+1
b 3与−8a x+3b y 的差仍是单项式,则x −y = . 15.如果x +1是4的平方根,那么x = .
三、解答题
16.用等式性质解方程 43x −12=12x +12
17.如果a 的相反数是-2,且2x+3a=4.求x 的值.
18.解下列方程:
(1)7x +5=7.5+4.5x
(2)6(12x −4)+2x =7−(13
x −1) 19.如果关于x 的方程 4x −(3a +1)=6x +2a −1 的解与方程 x−43−8=−x+22
的解相同,求字母a 的值。
20.已知关于x 的方程x+2k=5(x+k )+1的解是负数,求k 的取值范围.
21.已知关于x 的方程a ﹣5x =﹣6与方程3x ﹣6=4x ﹣5有相同的解,求a 的值.
22.解方程组 {ax +5y =15①4x −by =−2②
甲由于看错了方程(1)中的 a ,得到方程的解为 {x =−3y =−1 ,乙看错了方程②中的b,得到方程组的解为 {x =5y =4
.求 3a −√6+b 的值. 23.已知m 的平方根是k+1和2k-2,求k 的值.
24.小明在对关于 x 的方程 x+33−mx−16
=−1 去分母时,得到了方程 2(x +3)−(mx −1)=−1 ,因而求得的解是 x =8 ,你认为他的答案正确吗?如果不正确,请求出原方程的正确解.
答 案
1.B 2.D 3.C 4.D 5.D 6.C 7.B 8.C 9.B 10.A 11.x=2 12.14 13.16 14.-1 15.1或−3
16.解:去分母得: 8x −3=3x +3 ,
移项得: 8x −3x =3+3 ,
合并同类项得: 5x =6 ,
解得: x =65
. 17.解:∵a 的相反数是-2
∴a=2,将a=2代入2x+3a=4
得出2x+3×2=4,解得x=-1。
18.(1)7x +5=7.5+4.5x ,
移项合并得: 2.5x =2.5 ,
解得: x =1
(2)6(12x −4)+2x =7−(13
x −1) , 去括号得: 3x −24+2x =7−13
x +1 , 移项合并得: 163
x =32 , 解得: x =6 .
19.解: x−43−8=−x+22
得:x=10, 把x=10代入4x-(3a+1)=6x+2a-1中得:40-(3a+1)=60+2a-1,
去括号得:40-3a-1=60+2a-1,
移项、合并同类项得:5a=-20
系数化1得:a=-4.
20.解:x+2k=5x+5k+1,
x ﹣5x=5k+1﹣2k ,
﹣4x=3k+1,
x=﹣ 3k+14
, ∵方程x+2k=5(x+k )+1的解是负数,
∴﹣ 3k+14
<0.
解得:k>﹣1 3
21.解:解方程.3x﹣6=4x﹣5,移项,得3x﹣4x=﹣5+6,
合并同类项,得﹣x=1,
系数化为1得:x=﹣1,
把x=﹣1代入方程a﹣5x=﹣6,得a﹣5×(﹣1)=﹣6.
解得a=﹣11.
22.解:将{x=−3
y=−1代入方程(2)得:-12+b=-2,即b=10;
将{x=5
y=4代入方程(1)得:5a+20=15,即a=-1,则3a−√6+b=-3-4=-7.
23.解:当m=0时,k+1=2k-2
解之:k=3
∴k+1=3+1=4≠0,
∴不符合题意;
当m为正数时
k+1+2k-2=0,
解之:k=13.
24.解:不正确;
把x=8代入2(x+3)−(mx−1)=−1,
∴2(8+3)−(8m−1)=−1,
解得:m=3,
∴原方程为x+3
3−
3x−1
6=−1,
去分母,得2(x+3)−(3x−1)=−6,解得:x=13;。