苏州大学电子信息学院图像处理实验报告
图像处理实验报告

图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。
本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。
二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。
三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。
该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。
我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。
2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。
预处理的目的是去除图像中的噪声、平滑图像的边缘等。
我们使用了均值滤波和中值滤波两种常用的图像平滑方法。
通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。
3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。
在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。
直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。
灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。
4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。
在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。
阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。
边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。
5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。
在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。
纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。
图片处理实训报告总结

图片处理实训报告总结
本次图片处理实训主要围绕图像采集、预处理、特征提取和图像分割等方面展开。
通过本次实训,我对图像处理的基本原理和常用技术有了更深入的了解,并且掌握了相关的工具和方法。
在图像采集方面,我们学习了如何使用相机或者手机进行图像的拍摄,以及如何处理不同光照和角度下的图像。
我们使用了不同的拍摄方式和参数设置,以获得更好的图像质量。
同时,我们还学习了如何使用图像处理软件对已有的图像进行采集和处理,包括调整亮度、对比度和色彩平衡等。
在图像预处理方面,我们学习了如何去除噪声和不必要的细节,以提高图像的质量。
我们使用了滤波器对图像进行平滑和锐化处理,同时还学习了如何使用图像算法对图像进行增强处理。
通过预处理,我们能够更好地凸显出图像的目标信息和特征。
在特征提取方面,我们学习了常用的特征提取方法,包括边缘检测、角点检测和纹理特征提取等。
我们使用了不同的算法和工具对图像进行特征提取,并利用提取到的特征进行目标检测和识别。
通过特征提取,我们能够更好地分析和理解图像中的信息内容。
最后,在图像分割方面,我们学习了如何将图像分割成不同的区域或者对象。
我们使用了不同的图像分割算法,包括阈值分割、边缘检测和聚类等方法。
通过图像分割,我们能够更好地提取出图像中的目标区域,为后续的图像处理和分析提供基础。
综上所述,本次图片处理实训使我对图像处理的原理和技术有了更深入的了解,并且通过实际操作和实验,掌握了相关的工具和方法。
这对我的专业发展和实际工作都具有重要的意义,我将更加努力地学习和实践,不断提升自己在图像处理领域的能力。
图像处理与分析实验报告格式

《数字图像处理与分析》实验报告专业年级姓名学号任课老师龚声蓉指导老师蒋德茂实验室理工楼243机房学期2014(春)苏州大学计算机科学与技术学院统一印制二零一四年六月实验报告注意事项:(上交时本页请删除)(1)实验报告请上交到ftp://192.168.131.164的“实验报告”文件夹中,用户名tx。
(2)实验报告文件的命名格式为:学号-姓名.doc(3)由于用户名tx的权限不足,所以文件上传后不能读取打开是正常现象。
(4)若实验报告做了修改想重新上交。
由于原文件不能覆盖,所以请重新命名,如:学号-姓名(1).doc (5)此ftp对中文支持有时有问题,所以若上传不成功,请重新命名:学号-姓名拼音.doc(6)若上传后看不见上传的内容,请刷新一下。
(7)实验报告的完成质量(包括排版)决定最终的实验分数。
新增注意事项!(8)本次上交的是学期最终的实验报告,总共包含下面4个实验。
(9)纸质版实验报告要求除封面外,其余部分双面打印(有加分)。
(10)实验报告(电子稿)上交的截止时间为2014年6月20日(周五)。
(11)实验报告(纸质版)上交的截止时间为2014年6月20日(周五实验室上交),最晚周一上午交到理工楼111室。
实验一:空域及频域增强一.实验目的(1)叉叉叉叉(2)叉叉叉叉(3)二.实验内容Matlab编程:实现Butterworth低通滤波和Butterworth高通滤波。
提示:预设Butterworth的阶等于2,d0=10。
使用cameraman.tif作为原图像。
要求:使用subplot函数按3行2列分别显示(1)原始图(2)傅里叶频谱(3)Butterworth低通滤波(4)低通滤波图(5)Butterworth高通滤波(6)高通滤波图三.实验分析(1)叉叉叉(2)叉叉叉(3)四.程序及实验结果实验二:图像编码与压缩一.实验目的(1)叉叉叉叉(2)叉叉叉叉(3)二.实验内容Matlab编程:算术编码及解码。
图像处理实验报告模板

Ai实验报告
实验一:机器猫
1、实验目的、要求:
2、
掌握Ai的基本操做作,学会利用Ai处理各种图形.
3、实验原理:
工具:Ai软件中的选择工具、直接选择工具、钢笔工具、直线工具、椭圆工具、矩形工具、剪刀工具、比例缩放工具、镜像工具等命令:画椭圆、用钢笔工具画轮廓、用路径查找器实现图像的交集、减集和联集
4、实验环境要求:
电脑硬件 Ai 软件图片素材
4、实验内容:
A、创作计划、相关过程以及资料:
从网上下载机器猫图片
5、制作步骤
头:用椭圆工具绘制机器猫的头、眼睛、鼻子
用镜像工具进行复制,然后等比例缩放复制出机器猫的脸
同样方法绘制出机器猫的眼睛
用椭圆工具绘制出一个椭圆,然后用剪刀工具剪出机器猫的嘴
用直线段工具绘制机器猫的胡须
身体:用钢笔工具勾画出机器猫的身体
肚皮:画圆--->修改锚点,把圆调整到适合
口袋:两椭圆进行处理,减去顶层,取消编组
项圈:两椭圆进行处理,减去顶层,取消编组
铃铛:画圆--->左右各添加锚点、按住shift对锚点进行操作--->重复上一步
对机器猫的各部分进行相应的颜色填充
完成图片编组、保存、导出
6、在实验中遇到的问题及解决方法
用钢笔工具画出身体后不好调整形状
--解决方法:先画出比较相似的身体形状,然后再进行调整
下面为图片介绍:
第一张为网上搜到的图片
第二张为模仿完成的图片。
图像处理3个实验内容

图像处理实验报告格式一、封皮的填写:(1)实验课程名称:图像处理(2)实验名称:按顺序填写图像的二维离散傅立叶变换、图象的增强、图像二值化(3)年月:二、纸张要求:统一采用A4大小纸张,左侧装订,装订顺序与实验顺序一致。
三、书写要求:(1)报告除实验图像可以打印外,其余均须手写。
(2)实验图像及结果图像可以打印,图像均位于实验结果与分析部分,图像打印于纸张上部,下部空白处手写实验分析。
(3)报告中图要有图序及名称,表要有表序及名称,每个实验的图序和表序单独标号,具体格式参照毕业设计手册。
不合格者扣除相应分数。
(4)每个实验均需另起一页书写。
四、关于雷同报告:报告上交后,如有雷同,则课程考核以不及格处理。
五、报告撰写格式及实验内容如下:实验一图像的二维离散傅立叶变换一、实验目的掌握图像的二维离散傅立叶变换以及性质二、实验要求1)建立输入图像,在64⨯64的黑色图像矩阵的中心建立16⨯16的白色矩形图像点阵,形成图像文件。
对输入图像进行二维傅立叶变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上。
2)调整输入图像中白色矩形的位置,再进行变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上,比较变换结果。
3)调整输入图像中白色矩形的尺寸(40⨯40,4⨯4),再进行变换,将原始图像及变换图像(三维、中心化)都显示于屏幕上,比较变换结果。
三、实验仪器设备及软件HP D538、MATLAB四、实验原理以自己的语言结合课堂笔记进行总结,要求过程推导清晰明了。
五、实验步骤及程序实验步骤、程序流程、实验源程序齐全(全部手写)六、实验结果与分析实验二图像的增强一、实验目的1)掌握在计算机上进行直方图统计,以及直方图均衡化、线性变换的图像增强的方法2)掌握在计算机上进行图象平滑、图象锐化特别是中值滤波平滑及拉普拉斯算子锐化的方法二、实验要求1)显示图像(cameraman.tif)及灰度直方图。
2)对指定图像(cameraman.tif)进行直方图均衡化和线性变换,将原始图像及增强后的图像都显示于屏幕上,比较增强的效果。
图像处理与分析实验报告

hghu学院实验预习报告
Huh 学院实验报告
四、实验数据
1. 灰度变换增强
A) 线段上像素灰度分布
读入灰度图像‘debye1.tif’,采用交互式操作,用improfile绘制一条线段的灰度值。
读入RGB图像‘flowers.tif’,显示所选线段上红、绿、蓝颜色分量的分布
B)直方图变换
<i>直方图显示
<ii>直方图灰度调节
<iii>直方图均衡化
2. 空域滤波增强
A) 噪声模拟
B) 空域滤波
<i> 对上述噪声图像进行均值滤波和中值滤波,比较滤波效果。
<ii> 总结均值滤波和中值滤波的特点及使用场合。
<iii> *对图像'saturn.tif'采用'laplacian'高通滤波器进行锐化滤波。
3. 图像复原
A) 模糊与噪声
<i> 运动PSF
均值滤波PSF
<ii> 在上述模糊图像上再添加噪声
B) 维纳滤波复原
<i> 使用维纳滤波复原函数deconvwnr复原无噪声模糊图像。
%非真实PSF
%非真实PSF
<ii> *使用维纳滤波复原函数deconvwnr复原模糊噪声图像。
<iii> *设置信噪比和相关函数的维纳滤波复原。
五、思考题。
《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。
在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。
首先,我们进行了图像的读取和显示实验。
通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。
这为我们后续的实验奠定了基础。
同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。
这使我们能够更好地理解后续实验中的算法和操作。
接下来,我们进行了图像的灰度化实验。
灰度化是将彩色图像转换为灰度图像的过程。
在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。
通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。
随后,我们进行了图像的直方图均衡化实验。
直方图均衡化是一种用于增强图像对比度的方法。
在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。
通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。
在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。
滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。
在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。
通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。
此外,我们还进行了图像的边缘检测实验。
边缘检测是一种用于提取图像边缘信息的方法。
在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。
通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。
最后,我们进行了图像的压缩实验。
图像压缩是一种将图像数据进行压缩以减小文件大小的方法。
图像处理实验报告实验报告

一、实验目的1、熟悉位图文件的文件格式,掌握位图数据读取并在屏幕上显示的方法。
2、掌握在计算机上进行直方图均衡化以及线性增强的方法。
3、通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响。
4、熟练掌握应用MATLAB软件编程进行图像处理。
二、实验环境一台pc机,MATLAB软件编程环境。
三、实验内容1、图像的现实和读取:运用MATLAB软件编程,读取指定的256色灰度图像的数据,显示该文件的文件头和信息头数据的值,并在屏幕上显示该图象。
2、直方图的显示和均衡化:运用MATLAB软件编程,实现内容1中图像直方图的显示和均衡化。
3、图像分割:使用Prewitt 算子、Sobel 算子对图像进行边缘检测处理,完成图像分割实验。
4、图像增强:编写线性增强的程序及相应的显示程序,对指定图象进行线性增强,将原始图象及增强后的图象都显示于屏幕上,比较增强的效果。
四、实验步骤1、打开计算机,启动MATLAB程序。
2、图像读取与显示。
MATLAB中从图像文件中读取数据用函数imread(),这个函数的作用就是将图像文件的数据读入矩阵中,用imshow()函数显示出来。
imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');imshow('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg');title('原图像')3、直方图的显示A=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); figure;imhist(A),title('对应直方图')4、直方图均衡化MATLAB提供了histeq函数(自动直方图均衡化)I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); K=histeq(I);figure;imshow(K),title('经直方图均衡化后的图')figure;imhist(K),title('直方图均衡化后的直方图')5、图像的边缘检测用Sobel算子做边缘检测[A,map]=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); image=double(A);u=zeros(1,9);k=zeros(1,9);for i=2:255,for j=2:255,u(1)=0*image(i,j);u(2)=2*image(i,j+1);u(3)=1*image(i-1,j+1);u(4)=0*image(i-1,j);u(5)=-1*image(i-1,j-1);u(6)=-2*image(i,j-1);u(7)=-1*image(i+1,j-1);u(8)=0*image(i+1,j);u(9)=1*image(i+1,j+1);rimage1(i,j)=abs(sum(u));k(1)=0*image(i,j);k(2)=0*image(i,j+1);k(3)=1*image(i-1,j+1);k(4)=2*image(i-1,j);k(5)=1*image(i-1,j-1);k(6)=0*image(i,j-1);k(7)=-1*image(i+1,j-1);k(8)=-2*image(i+1,j);k(9)=-1*image(i+1,j+1);rimage2(i,j)=abs(sum(k));xiaoqiu(i,j)=rimage1(i,j)+rimage2(i,j);end,end,figure,imshow(xiaoqiu,map),title('Sobel锐化');用prewitt算子做边缘检测[A,map]=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); image=double(A);u=zeros(1,9);k=zeros(1,9);for i=2:255,for j=2:255,u(1)=0*image(i,j);u(2)=1*image(i,j+1);u(3)=1*image(i-1,j+1);u(4)=0*image(i-1,j);u(5)=-1*image(i-1,j-1);u(6)=-1*image(i,j-1);u(7)=-1*image(i+1,j-1);u(8)=0*image(i+1,j);u(9)=1*image(i+1,j+1);rimage1(i,j)=abs(sum(u));k(1)=0*image(i,j);k(2)=0*image(i,j+1);k(3)=-1*image(i-1,j+1);k(4)=1*image(i-1,j);k(5)=1*image(i-1,j-1);k(6)=0*image(i,j-1);k(7)=-1*image(i+1,j-1);k(8)=-1*image(i+1,j);k(9)=-1*image(i+1,j+1); rimage2(i,j)=abs(sum(k));xiaoqiu(i,j)=rimage1(i,j)+rimage2(i,j);end,end,figure,imshow(xiaoqiu,map),title('prewitt边缘检测');7、图像的处理均值滤波I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');h=fspecial('average',3);I2=uint8(round(filter2(h,I)));imshow(I2),title('均值滤波')中值滤波I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');I3=medfilt2(I,[3,3]);imshow(I3),title('中值滤波')五、实验总结通过本次试验基本掌握了应用MATLAB软件编程进行图像处理的方法,熟悉了位图文件的文件格式,掌握了位图数据读取显示,直方图均衡化以及线性增强的方法,并学会了运用分割算子对图像进行边缘检测和图像分割处理的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像处理实验报告
实验一:图像增强
实验目的:掌握用空间滤波进行图像增强的基本方法,掌握图像分割的基本方法。
实验要求:测试图像1中同时含有均值为零的均匀分布噪声和椒盐噪声。
用大小为5×5的算术均值滤波器和中值滤波器对图像进行处理,在不同窗口中显示原图像及各处理结果图像,并分析哪一种滤波器去噪效果好?
算法流程:
程序代码:
clear all;clc;
%读入图像
I1=imread('Fig5.12(b).jpg');
%均值滤波模板
h1=ones(5,'uint8');
%获取分辨率
[a,b]=size(I1);
%创建变量
I2=zeros(a+4,b+4,'uint8');
I3=zeros(a+4,b+4,'uint8');
%复制原始图像
for n=3:a+2
for m=3:b+2
I2(n,m)=I1(n-2,m-2);
I3(n,m)=I1(n-2,m-2);
end
end
%边界值设定
for n=1:a+4
for m=1:b+4
%左上角设定
if n<3&&m<3
I2(n,m)=I2(6-n,6-m);
I3(n,m)=I3(6-n,6-m);
%右下角设定
else if n>a+2&&m>b+2
I2(n,m)=I2(2*a+4-n,2*b+4-m);
I3(n,m)=I3(2*a+4-n,2*b+4-m);
%右上角设定
else if n<3&&m>b+2
I2(n,m)=I2(6-n,2*b+4-m);
I3(n,m)=I3(6-n,2*b+4-m);
%左下角设定
else if m<3&&n>a+2
I2(n,m)=I2(2*a+4-n,6-m);
I3(n,m)=I3(2*a+4-n,6-m);
%上两行设定
else if n<3
I2(n,m)=I2(6-n,m);
I3(n,m)=I3(6-n,m);
%下两行设定
else if n>a+2
I2(n,m)=I2(2*a+4-n,m);
I3(n,m)=I3(2*a+4-n,m);
%左两列设定
else if m<3
I2(n,m)=I2(n,6-m);
I3(n,m)=I3(n,6-m);
%右两列设定
else if m>b+2
I2(n,m)=I2(n,2*b+4-m);
I3(n,m)=I3(n,2*b+4-m);
end
end
end
end
end
end
end
end
end
end
%图像处理
for n=3:a+2
for m=3:b+2
%均值滤波
temp0=I2(n-2:n+2,m-2:m+2);
temp0=temp0.*h1;
temp1=mean(temp0(:));
temp1=uint8(floor(temp1));
I2(n,m)=temp1;
%中值滤波
temp2=I3(n-2:n+2,m-2:m+2);
temp3=median(double(temp2(:)));
temp3=uint8(floor(temp3));
I3(n,m)=temp3;
end
end
%保持分辨率
I4=I2(3:a+2,3:b+2);
I5=I3(3:a+2,3:b+2);
%显示图像
figure(1);imshow(I1);
title('原始图像');
figure(2);imshow(I4);
title('算数均值滤波输出');
figure(3);imshow(I5);
title('中值滤波输出');
输出图像:
见附录图1,2,3
结果分析:
由于测试图像1中同时含有均值为零的均匀分布噪声和椒盐噪声。
鉴于邻域平均法有以下特点:
优点:算法简单,计算速度快。
缺点:在降低噪声的同时容易模糊图像边沿和细节处。
中值滤波有以下特点:
去除图像中的椒盐噪声,平滑效果优于均值滤波,在抑制噪声同时还能保持图像边缘清晰。
单独采用算数均值滤波不能很好地消除椒盐噪声,而中值滤波输出又可以明显的看出有拖影现象而且部分细节丢失。
而采用领域平均可以很好地消除均匀分布噪声,中值滤波法又能很好地消除椒盐噪声,故考虑采用先消除均匀分布噪声,后采用中值滤波消除椒盐噪声。
对于均值滤波采取改进措施:设定阈值,大于该阈值时平滑,小于阈值时保留原值
后续试验尝试了几种不同的阈值,最后选择阈值80,该阈值下图像的均匀分布噪声得以抑制而又不会模糊图像本身,细节也能得以保留。
见附录图4,5,6,7
然后对阈值80的算数均值滤波输出进行中值滤波,得到输出:
见附录图8
可以看到此时绝大部分的噪声都被去除而且图像的细节也得以保留。
图像增强效果优于单独进行均值滤波与中值滤波。
附录:
实验二:图像分割
实验目的:掌握用空间滤波进行图像增强的基本方法,掌握图像分割的基本方法。
实验要求:对测试图像2进行图像分割,求出分割测试图像2的最佳阈值。
分别显示原图、原图的直方图(标出阈值)、和分割后的二值图。
算法流程:
程序代码:
clear all;clc;
%读取图像
I=imread('Fig10.29(a).jpg');
%创建变量
[a,b]=size(I);
J=zeros(a,b);
%设定迭代阈值
T0=1;
%初始化
T1=mean(I(:));
r1=find(I>T1);
r2=find(I<=T1);
T2=(mean(I(r1))+mean(I(r2)))/2;
%迭代求解图像分割阈值
while abs(T2-T1)>=T0
T1=T2;
r1=find(I>T1);
r2=find(I<=T1);
T2=(mean(I(r1))+mean(I(r2)))/2;
end
T2=ceil(T2);
%输出二值图像
for i=1:a*b
J(i)=255*(I(i)>T2)+ 0*(I(i)<=T2);
end
%显示图像
figure(1);imshow(I);
title('原始图像');
figure(2);imhist(I);
title('灰度直方图');
hold on;
plot([T2,T2],[0,6000],'r');%画分割线
str1=num2str(T2);
text(T2+5,2000,'分割阈值');%标注分割阈值
text(T2+5,1800,str1);
hold off;
figure(3);imshow(J);
title('迭代法分割输出');
输出图像:
见附录图1,2,3
结果分析:
迭代法适用于图像灰度直方图中双峰明显的图像,从灰度直方图中我们可以看到该图像满足这一要求。
对比Otsu阈值分割求得阈值125,迭代法求得阈值126,输出图像差别不大,见附录图3,4 考虑到输出图像中部分指纹内部有细小空洞,鉴于闭运算有如下特点:
填充对象内细小空洞
连接邻近对象
在不明显改变面积的前提下,平滑对象边缘
故在迭代法输出的基础上采取闭运算填补内部空洞,对于模板的选取也有一定的要求。
实验中尝试了多种不同形状及大小的模板,发现只能采用结构元素大小为1的模板,否则会导致指纹下部的部分粘连。
处理图像见附录图5
可以看到处理后的图像一部分较小的空洞得以填补,较大的空洞也得以缩小。
附录:
Otsu阈值分割程序代码:clear all;clc;close all;
I=imread('Fig10.29(a).jpg'); I=im2double(I);
T=graythresh(I);
J=im2bw(I,T);
figure(1);
imshow(J);
title('Otsu阈值分割');
增加闭运算处理代码:se=strel('square',2);
K=imopen(J,se);
figure(4);imshow(K);
title('闭运算处理输出');。