人教备战中考数学提高题专题复习旋转练习题及详细答案

人教备战中考数学提高题专题复习旋转练习题及详细答案
人教备战中考数学提高题专题复习旋转练习题及详细答案

一、旋转真题与模拟题分类汇编(难题易错题)

1.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为

(4,m)(5≤m≤7),反比例函数y=16

x

(x>0)的图象交边AB于点D.

(1)用m的代数式表示BD的长;

(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD

①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;

②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.

【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5

【解析】

【分析】

(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;

(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣1

2

(m﹣8)2+24,即可

得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】

解:(1)∵四边形OABC是矩形,

∴AB⊥x轴上,

∵点B(4,m),

∴点D的横坐标为4,

∵点D在反比例函数y=16

x

上,

∴D(4,4),

∴BD=m﹣4;

(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),

∴S矩形OABC=4m,

由(1)知,D(4,4),

∴S△PBD=1

2(m﹣4)(m﹣4)=

1

2

(m﹣4)2,

∴S =S 矩形OABC ﹣S △PBD =4m ﹣

12(m ﹣4)2=﹣1

2

(m ﹣8)2+24, ∴抛物线的对称轴为m =8, ∵a <0,5≤m≤7,

∴m =7时,S 取到最大值;

②如图2,过点P 作PF ⊥x 轴于F ,过点D 作DG ⊥FP 交FP 的延长线于G , ∴∠DGP =∠PFE =90°, ∴∠DPG+∠PDG =90°,

由旋转知,PD =PE ,∠DPE =90°, ∴∠DPG+∠EPF =90°, ∴∠PDG =∠EPF , ∴△PDG ≌△EPF (AAS ), ∴DG =PF , ∵DG =AF =m ﹣4, ∴P (m ,m ﹣4), ∵点P 在反比例函数y =16x

, ∴m (m ﹣4)=16,

∴m =2+25或m =2﹣25(舍).

【点睛】

此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.

2.(探索发现)

如图,ABC ?是等边三角形,点D 为BC 边上一个动点,将ACD ?绕点A 逆时针旋转

60?得到AEF ?,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形.

小明是这样想的:

(1)请参考小明的思路写出证明过程;

(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________; (理解运用)

如图,在ABC ?中,AD BC ⊥于点D .将ABD ?绕点A 逆时针旋转90?得到AEF ?,延长FE 与BC ,交于点G .

(3)判断四边形ADGF 的形状,并说明理由; (拓展迁移)

(4)在(3)的前提下,如图,将AFE ?沿AE 折叠得到AME ?,连接MB ,若

6AD =,2BD =,求MB 的长.

【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)

13【解析】 【分析】

(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;

(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;

(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论. 【详解】

(1)证明:∵ABC ?是等边三角形,

∴AB BC AC ==.

∵ACD ?绕点A 逆时针旋转60?得到AEF ?, ∴60CAE =?,AC AE =. ∴ACE ?是等边三角形. ∴AC AE CE ==. ∴AB BC CE AE ===. ∴四边形ABCE 是菱形.

(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=. (3)四边形ADGF 是正方形.理由如下: ∵Rt ABD ?绕点A 逆时针旋转90?得到AEF ?, ∴AF AD =,90DAF ∠=?. ∵AD BC ⊥,

∴90ADC DAF F ∠=∠=∠=?. ∴四边形ADGF 是矩形. ∵AF AD =,

∴四边形ADGF 是正方形. (4)如图,连接DE .

∵四边形ADGF 是正方形, ∴6DG FG AD AF ====.

∵ABD ?绕点A 逆时针旋转90?得到AEF ?,

∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=. ∵将AFE ?沿AE 折叠得到AME ?, ∴MAE FAE ∠=∠,AF AM =. ∴BAD EAM ∠=∠.

∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠. ∵AF AD =, ∴AM AD =.

在BAM ?和EAD ?中,AM AD BAM DAE AB AE =??

∠=∠??=?

∴()BAM EAD SAS ???.

∴2222

BM DE EG DG

==+=+=.

46213

【点睛】

本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.

3.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).

(1)求证:图1中的PBC是正三角形:

(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,

且HM=JN.

①求证:IH=IJ

②请求出NJ的长;

(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.

【答案】(1)证明见解析;(2)①证明见解析;②1233)3<a<3,a>3

【解析】

分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;

(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由

Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、3,根据IJ=IQ+QJ求出x即可得;

(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF

∴PB=PC

∵沿折痕BG折叠纸片,使点C落在EF上的点P处

∴PB=BC

∴PB=PC=BC

∴△PBC是正三角形:

(2)证明:①如图

∵矩形AHIJ ∴∠H=∠J=90° ∵△MNJ 是等边三角形 ∴MI=NI

在Rt △MHI 和Rt △JNI 中

MI NI

MH NJ

=??

=? ∴Rt △MHI ≌Rt △JNI (HL ) ∴HI=IJ

②在线段IJ 上取点Q ,使IQ=NQ

∵Rt △IHM ≌Rt △IJN , ∴∠HIM=∠JIN , ∵∠HIJ=90°、∠MIN=60°, ∴∠HIM=∠JIN=15°, 由QI=QN 知∠JIN=∠QNI=15°, ∴∠NQJ=30°,

设NJ=x ,则IQ=QN=2x ,QJ=22=3QN NJ -x , ∵IJ=6cm , ∴2x+3x=6,

∴x=12-63,即NJ=12-63(cm ). (3)分三种情况: ①如图:

设等边三角形的边长为b,则0<b≤6,

tan60°=

3=

2

a

b,

∴a=3

2

b

∴0<b≤63

2

=33;

②如图

当DF与DC重合时,DF=DE=6,

∴a=sin60°×DE=63=33,

当DE与DA重合时,a=

6

43

sin603

==

?,

∴33<a<43;

③如图

∵△DEF是等边三角形

∴∠FDC=30°

∴DF=

6

43

cos303

==

?

∴a>3

点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性

强,难度较大.

4.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.

(1)如图1,若α=90°,则AB=,并求AA′的长;

(2)如图2,若α=120°,求点O′的坐标;

(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.

【答案】(1)10,102;(2)(33,9);(3)12354

5

(,)

【解析】

试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则

∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则

O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求

出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作

P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.

试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,

∴AB==5,

∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,

∴△ABA′为等腰直角三角形,∴AA′=BA=5;

(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,

∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣

∠HBO′=30°,

∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为

();

(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,

∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,

则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),

设直线O′C的解析式为y=kx+b,

把O′(),C(0,﹣3)代入得,解得,

∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P

(,0),

∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,

∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,

∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,

∴P′点的坐标为(,).

考点:几何变换综合题

5.在平面直角坐标系中,O为原点,点A(0,4),点B(﹣2,0),把△ABO绕点A逆时针旋转,得△AB′O′,点B、O旋转后的对应点为B′、O′.

(1)如图①,若旋转角为60°时,求BB′的长;

(2)如图②,若AB′∥x 轴,求点O′的坐标;

(3)如图③,若旋转角为240°时,边OB 上的一点P 旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)

【答案】(1)252)点O′8545

);(3)点P′的坐标为(﹣83,36

5. 【解析】

分析:(1)由点A 、B 的坐标可得出AB 的长度,连接BB ′,由旋转可知:AB =AB ′,∠BAB ′=60°,进而可得出△ABB ′为等边三角形,根据等边三角形的性质可求出BB ′的长; (2)过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E ,则△AO ′E ∽△ABO ,根据旋转的性质结合相似三角形的性质可求出AE 、O ′E 的长,进而可得出点O ′的坐标;

(3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,根据旋转的性质结合解直角三角形可求出点O ′的坐标,由A 、A ′关于x 轴对称可得出点A ′的坐标,利用待定系数法即可求出直线A ′O ′的解析式,由一次函数图象上点的坐标特征可得出点P 的坐标,进而可得出OP 的长度,再在Rt △O ′P ′M 中,通过解直角三角形可求出O ′M 、P ′M 的长,进而可得出此时点P ′的坐标.

详解:(1)∵点A (0,4),点B (﹣2,0),∴OA =4,OB =2,∴AB 22OA OB 5. 在图①中,连接BB ′.

由旋转可知:AB =AB ′,∠BAB ′=60°,∴△ABB ′为等边三角形,∴BB ′=AB 5 (2)在图②中,过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E . ∵AB ′∥x 轴,O ′E ⊥x 轴,∴∠O ′EA =90°=∠AOB .

由旋转可知:∠B ′AO ′=∠BAO ,AO ′=AO =4,∴△AO ′E ∽△ABO ,

AE AO ='O E BO ='

AO AB

,即4AE ='2O E 25∴AE =855,O ′E =55,∴O ′D =5

5

+4,∴点O ′的坐标为(

855

55

+4).

(3)作点A关于x轴对称的点A′,连接A′O′交x轴于点P,此时O′P+AP′取最小值,过点O′作O′F⊥y轴,垂足为点F,过点P′作PM⊥O′F,垂足为点M,如图3所示.

由旋转可知:AO′=AO=4,∠O′AF=240°﹣180°=60°,∴AF=1

2

AO′=2,O′F=

3

2

AO′=2

3,∴点O′(﹣23,6).

∵点A(0,4),∴点A′(0,﹣4).

设直线A′O′的解析式为y=kx+b,将A′(0,﹣4)、O′(﹣23,6)代入y=kx+b,得:4

236

b

k b

=-

??

?

-+=

??

,解得:

53

4

k

b

?

=-

?

?

?=-

?

,∴直线A′O′的解析式为y=﹣

53

x﹣4.

当y=0时,有﹣

53

x﹣4=0,解得:x=﹣

43

,∴点P(﹣

43

,0),

∴OP=O′P′=43.

在Rt△O′P′M中,∠MO′P′=60°,∠O′MP′=90°,∴O′M=

1

2

O′P′=

23

P′M=

3

2

O′P′=

6

5

,∴点P′的坐标为(﹣23+

23

5

,6+

6

5

),即(﹣

8336

55

,).

点睛:本题考查了函数图象及旋转变换、待定系数法求一次函数解析式、等边三角形的判定与性质、一次函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)利用等边三角形的性质找出BB′的长;(2)通过解直角三角形求出AE、O′E的长;(3)利用两点之间线段最短找出当O′P+AP′取得最小值时点P的位置.

6.把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);

(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.

【答案】(1) BH=CK;(2) 存在,使△GKH的面积恰好等于△ABC面积的的位置,此时BH 的长度为.

【解析】

(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;

(2)根据面积公式得出S△GHK=S四边形CKGH-S△CKH=1

2

x2-3x+9,根据△GKH的面积恰好等于

△ABC面积的

5

12

,代入得出方程

1

2

x2-3x+9=

5

12

×

1

2

×6×6,求出即可.

解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,

由直角三角形斜边上中线性质得出OC=BG,

∵AC=BC,O为AB中点,∠ACB=90°,

∴∠B=∠ACG=45°,CO⊥AB,

∴∠CGB=90°=∠KGH,

∴都减去∠CGH得:∠BGH=∠CGK,

在△CGK和△BGH中

∵,

∴△CGK ≌△BGH (ASA ), ∴CK=BH ,即BH=CK ;

四边形CHGK 的面积的变化情况:四边形CHGK 的面积不变,始终等于四边形CQGZ 的面积,即等于△ACB 面积的一半,等于9;

(2)假设存在使△GKH 的面积恰好等于△ABC 面积的

5

12

的位置. 设BH=x ,由题意及(1)中结论可得,CK=BH=x ,CH=CB ﹣BH=6﹣x , ∴S △CHK =

12CH×CK=3x ﹣1

2

x 2, ∴S △GHK =S 四边形CKGH ﹣S △CKH =9﹣(3x ﹣

12x 2)=1

2x 2﹣3x+9, ∵△GKH 的面积恰好等于△ABC 面积的5

12

∴12

x 2﹣3x+9=512×1

2×6×6,

解得13x =23x =(经检验,均符合题意). ∴

存在使△GKH 的面积恰好等于△ABC 面积的

5

12

的位置,此时x 的值为3±. “点睛”本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.

7.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。 (1)概念理解:

如图1,在ABC ?中,6AC = ,3BC =.30ACB ∠=?,试判断ABC ?是否是“等高底”三角形,请说明理由. (2)问题探究:

如图2, ABC ?是“等高底”三角形,BC 是“等底”,作ABC ?关于BC 所在直线的对称图形得到A BC '?,连结AA '交直线BC 于点D .若点B 是123,12z ai z i =-=+的重心,求AC

BC

的值. (3)应用拓展:

如图3,已知12l l //,1l 与2l 之间的距离为2.“等高底”ABC ?的“等底” BC 在直线1l 上,点A 在

直线2l 上,有一边的长是BC 倍.将ABC ?绕点C 按顺时针方向旋转45?得到

A B C ?'',A C '所在直线交2l 于点D .求CD 的值.

【答案】(1)证明见解析;(2)13

2

AC BC =

(3)CD 的值为2103,22,2 【解析】

分析:(1)过点A 作AD ⊥直线CB 于点D ,可以得到AD =BC =3,即可得到结论; (2)根据 ΔABC 是“等高底”三角形,BC 是“等底”,得到AD =BC , 再由 ΔA ′BC 与ΔABC 关于直线BC 对称, 得到 ∠ADC =90°,由重心的性质,得到BC =2BD .设BD =x ,则AD =BC =2x , CD =3x ,由勾股定理得AC =13x ,即可得到结论;

(3)分两种情况讨论即可:①当AB =2BC 时,再分两种情况讨论; ②当AC =2BC 时,再分两种情况讨论即可. 详解:(1)是.理由如下:

如图1,过点A 作AD ⊥直线CB 于点D , ∴ΔADC 为直角三角形,∠ADC =90°. ∵ ∠ACB =30°,AC =6,∴ AD =1

2

AC =3, ∴ AD =BC =3,

即ΔABC 是“等高底”三角形.

(2)如图2, ∵ ΔABC 是“等高底”三角形,BC 是“等底”,∴AD =BC , ∵ ΔA ′BC 与ΔABC 关于直线BC 对称, ∴ ∠ADC =90°. ∵点B 是ΔAA ′C 的重心, ∴ BC =2BD . 设BD =x ,则AD =BC =2x ,∴CD =3x , ∴由勾股定理得AC =13x , ∴

1313

22

AC x BC x ==

(3)①当AB =2BC 时,

Ⅰ.如图3,作AE ⊥l 1于点E , DF ⊥AC 于点F . ∵“等高底” ΔABC 的“等底”为BC ,l 1//l 2, l 1与l 2之间的距离为2, AB =2BC , ∴BC =AE =2,AB =22, ∴BE =2,即EC =4,∴AC = 25.

∵ ΔABC 绕点C 按顺时针方向旋转45°得到ΔA ' B ' C ,∴∠CDF =45°. 设DF =CF =x .

∵l 1//l 2,∴∠ACE =∠DAF ,∴1

2

DF AE AF CE ==,即AF =2x . ∴AC =3x =25,可得x =

2

53,∴CD =2x =2103

Ⅱ.如图4,此时ΔABC 是等腰直角三角形, ∵ ΔABC 绕点C 按顺时针方向旋转45°得到ΔA ' B ' C , ∴ ΔACD 是等腰直角三角形, ∴ CD =2AC =22.

②当AC =2BC 时,

Ⅰ.如图5,此时△ABC 是等腰直角三角形. ∵ ΔABC 绕点C 按顺时针方向旋转45°得到ΔA ′ B ′C , ∴A ′C ⊥l 1,∴CD =AB =BC =2.

Ⅱ.如图6,作AE ⊥l 1于点E ,则AE =BC , ∴AC 2BC 2AE ,∴∠ACE =45°,

∴ΔABC 绕点C 按顺时针方向旋转45°得到ΔA ′ B ′C 时, 点A ′在直线l 1上,

∴A ′C ∥l 2,即直线A ′ C 与l 2无交点.

综上所述:CD的值为2

10 3

,22,2.

点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读理解能力.解题的关键是对新概念“等高底”三角形的理解.

8.小明合作学习小组在探究旋转、平移变换.如图△ABC,△DEF均为等腰直角三角形,各顶点坐标分别为A(1,1),B(2,2),C(2,1),D(2,0),E(22, 0),

F(

32

2

2

2

-).

(1)他们将△ABC绕C点按顺时针方向旋转450得到△A1B1C.请你写出点A1,B1的坐标,并判断A1C和DF的位置关系;

(2)他们将△ABC绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线2

y22x bx c

=++上.请你求出符合条件的抛物线解析式;

(3)他们继续探究,发现将△ABC绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线2

y x

=上,则可求出旋转后三角形的直角顶点P的坐标.请你直接写出点P的所有坐标.

【答案】解:(1)

2

2

2222b c0

{

32322

22b c

222

+=

?

++=

??

A1C和DF的位置关系是平行.

(2)∵△ABC绕原点按顺时针方向旋转45°后的三角形即为△DEF,

∴①当抛物线经过点D、E时,根据题意可得:

(

2

2

2222b c0

{

2222b c0

++=

++=

,解得

b12

{

c82

=-

=

∴2y 12x =-+

②当抛物线经过点D 、F

时,根据题意可得:

2

2c 0

{

b c 222

++=?++= ??

,解得b 11

{c =-=

∴2y 11x =-+

③当抛物线经过点E 、F

时,根据题意可得:(

2

2c 0

{

b c 222

++=?++= ??

,解得b 13

{c =-=

∴2y 13x =-+ (3)在旋转过程中,可能有以下情形:

①顺时针旋转45°,点A 、B 落在抛物线上,如答图1所示, 易求得点P 坐标为(0

12

). ②顺时针旋转45°,点B 、C 落在抛物线上,如答图2所示, 设点B′,C′的横坐标分别为x 1,x 2,

易知此时B′C′与一、三象限角平分线平行,∴设直线B′C′的解析式为y=x+b . 联立y=x 2与y=x+b 得:x 2=x+b ,即2x x b 0--=,∴1212x x 1x x b +==-,. ∵B′C′=1,∴

根据题意易得:12x x 2

-=

,∴()2121x x 2-=,即

()2

12121

x x 4x x 2

+-=

. ∴1

14b 2+=

,解得1b 8

=-. ∴2

1x x 08-+

=

,解得2x 4+=x

或2x 4

-=. ∵点C′的横坐标较小,

∴2x 4

=.

当x =

时,2y x ==

∴P (

2438

-). ③顺时针旋转45°,点C 、A 落在抛物线上,如答图3所示, 设点C′,A′的横坐标分别为x 1,x 2.

易知此时C′A′与二、四象限角平分线平行,∴设直线C′A′的解析式为y x b =-+. 联立y=x 2与y x b =-+得:2x x b =-+,即2x x b 0+-=,∴1212x x 1x x b +=-=-,.

∵C′A′=1,∴根据题意易得:12x x 2

-=

,∴()2121x x 2-=,即

()

2

12121

x x 4x x 2

+-=

. ∴1

14b 2+=,解得1b 8

=-.

∴21x x 08++

=,解得x =x 或x =.

∵点C′的横坐标较大,∴2x 4

-=.

当2x 4-+=时,23y x 8-==.

∴P (

24-+,38

-). ④逆时针旋转45°,点A 、B 落在抛物线上.

因为逆时针旋转45°后,直线A′B′与y 轴平行,因为与抛物线最多只能有一个交点,故此种情形不存在.

⑤逆时针旋转45°,点B 、C 落在抛物线上,如答图4所示,

与③同理,可求得:P (

24-+,38

-). ⑥逆时针旋转45°,点C 、A 落在抛物线上,如答图5所示,

与②同理,可求得:P ).

综上所述,点P 的坐标为:(0,

12),(24-,38

-),P (24-+,

38

-,(24+,38+).

【解析】

(1)由旋转性质及等腰直角三角形边角关系求解.

(2)首先明确△ABC绕原点按顺时针方向旋转45°后的三角形即为△DEF,然后分三种情况进行讨论,分别计算求解.

(3)旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A和点B、点B和点C、点C和点D三种可能,因此共有六种可能的情形,需要分类讨论,避免漏解.

考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.

9.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.

(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;

(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.

【答案】(1)BE=DF;(2)四边形BC1DA是菱形.

【解析】

【分析】

(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,

∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF

(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,

∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.

【详解】

(1)解:BE=DF.理由如下:

∵AB=BC,

∴∠A=∠C,

∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,

∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,

在△ABE和△C1BF中

∴△ABE≌△C1BF,

∴BE=BF

(2)解:四边形BC1DA是菱形.理由如下:

∵AB=BC=2,∠ABC=120°,

∴∠A=∠C=30°,

∴∠A1=∠C1=30°,

∵∠ABA1=∠CBC1=30°,

∴∠ABA1=∠A1,∠CBC1=∠C,

∴A1C1∥AB,AC∥BC1,

∴四边形BC1DA是平行四边形.

又∵AB=BC1,

∴四边形BC1DA是菱形

【点睛】

本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.

10.如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,22,10.△ADP沿点A旋转至△ABP′,连接PP′,并延长AP与BC相交于点Q.

(1)求证:△APP′是等腰直角三角形;

(2)求∠BPQ的大小.

【答案】(1)证明见解析;(2)∠BPQ=45°.

【解析】

【分析】

(1)根据旋转的性质可知,△APD≌△AP′B,所以AP=AP′,∠PAD=∠P′AB,因为

∠PAD+∠PAB=90°,所以∠P′AB+∠PAB=90°,即∠PAP′=90°,故△APP′是等腰直角三角

形;

(2)根据勾股定理逆定理可判断△PP′B是直角三角形,再根据平角定义求出结果.

【详解】

(1)证明:∵四边形ABCD为正方形,

相关主题
相关文档
最新文档