数学七下试卷及答案

合集下载

2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷及答案解析

2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷及答案解析

2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列四个实数中,是无理数的为()A.0B.C.﹣D.﹣22.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.3.(3分)一粒米的质量约0.000022千克,数据0.000022用科学记数法表示为()A.0.22×10﹣4B.2.2×10﹣5C.22×10﹣4D.2.2×10﹣44.(3分)下列说法正确的是()A.的平方根是B.﹣25的算术平方根是5C.(﹣5)2的平方根是﹣5D.0的平方根和算术平方根都是05.(3分)△ABC中,∠A、∠B、∠C的对边分别记为a、b、c,由下列条件不能判定△ABC为直角三角形的是()A.∠A﹣∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a2:b2:c2=3:4:56.(3分)如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD7.(3分)已知长方形的周长为16cm,其中一边长为x cm,面积为y cm2,则这个长方形的面积y与边长x之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)8.(3分)如图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为()A.20°B.25°C.22.5°D.30°9.(3分)某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h和注水时间t之间关系的是()A.B.C.D.10.(3分)如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°二、填空题(本题共5小题,每小题3分,共15分)11.(3分).(填“>”、“<”或“=”)12.(3分)若a+b=3,ab=1,则a2+b2=.13.(3分)一个等腰三角形的两边长分别是3cm和7cm,则它的周长是cm.14.(3分)如图,∠ABC=∠CAD=90°,AC=AD,若AB=2,则△BAD的面积为.15.(3分)如图,一个三棱柱盒子底面三边长分别为3cm,4cm,5cm,盒子高为9cm,一只蚂蚁想从盒底的点A沿盒子的表面爬行一周到盒顶的点B,蚂蚁要爬行的最短路程是cm.三、解答题(本大题共7小题,共55分)16.(8分)计算:(1)x3•x5﹣(2x4)2+x10÷x2;(2).17.(6分)先化简,再求值:(a﹣b)(a+b)﹣b(2a﹣b),其中a=2,b=3.18.(6分)如图,在方格纸中,△PQR的三个顶点及A、B、C、D、E五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等19.(7分)如图,现有一个可以自由转动的转盘(转盘被等分成8个扇形),每个扇形区域内分别标有1,2,3,4,5,6,7,8这八个数字,转动转盘,停止转动后,指针指向的数字即为转出的数字,请回答下列问题:(1)转出的数字是1是,转出的数字是9是;(从“随机事件”,“必然事件”,“不可能事件”中选一个填空)(2)转动转盘,转出的数字是奇数的概率是.(3)现有两张分别写有2和5的卡片,随机转动转盘,转盘停止转动后,记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.这三条线段能构成三角形的概率是.20.(8分)图中所示的是空军某部一架空中加油机给另一架正在飞行的战斗机进行空中加油的场景(加油机飞行不会消耗自身加油箱内的油),在加油过程中,设战斗机的油箱中的油量为Q1吨,加油机的加油箱中的油量为Q2吨,加油时间为t(分),Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油之前,加油机的加油油箱中装载了吨油;这些油全部加给战斗机需分钟;(2)战斗机每分钟的飞行油耗是多少?(3)战斗机加完油后,加速飞行,加速后每分钟油耗为加油时的三倍,请问战斗机最多还能飞行多少分钟?21.(10分)如图,在△ABC中,点D是边AB上一点,点E是边AC的中点,作CF∥AB交DE延长线于点F.(1)证明:△ADE≌△CFE;(2)若∠ABC=∠ACB,CE=3,CF=4,求DB的长.22.(10分)在四边形ABDE中,点C是BD边的中点,AB=2,ED=5,BD=6,AC平分∠BAE,EC平分∠AED.(1)如图1,若∠ACE=90°,则线段AE的长度为;(2)如图2,若∠ACE=120°,则线段AE的长度是多少?写出结论并证明;(3)若∠ACE=135°,其他条件不变,则线段AE的长度为.2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A.0是整数,属于有理数,故本选项不符合题意;B.是分数,属于有理数,故本选项不符合题意;C.﹣是分数,属于有理数,故本选项不合题意;D.﹣2是无理数,故本选项符合题意.故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项A、B、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.选项C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据科学记数法的方法进行解题即可.【解答】解:0.000022=2.2×10﹣5.故选:B.【点评】本题主要考查了科学记数法,科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数.4.【分析】根据平方根的定义对A选项和C选项进行判断;根据算术平方根的定义对B选项进行判断;根据0的平方根为0和算术平方根为0对D选项进行判断.【解答】解:A.的平方根为±,所以A选项不符合题意;B.﹣25没有算术平方根,所以B选项不符合题意;C.(﹣5)2=25,25的平方根为±5,所以C选项不符合题意;D.0的平方根为0,0的算术平方根为0,所以D选项符合题意.故选:D.【点评】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 叫做a的算术平方根.也考查了平方根.5.【分析】根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.【解答】解:A、∠A﹣∠B=∠C,∠A=90°,是直角三角形,不符合题意;B、∵∠A:∠B:∠C=1:2:3,∴∠C=90°,是直角三角形,不符合题意;C、a2=c2﹣b2,a2+b2=c2,是直角三角形,不符合题意;D、∵设a2=3x,b2=4x,c2=5x,3x+4x≠5x,∴a2+b2≠c2,不是直角三角形,符合题意;故选:D.【点评】本题考查了勾股定理的逆定理和三角形的内角和定理,注意:①如果一个三角形的两边a、b 的平方和等于第三边c的平方,那么这个三角形是直角三角形,②三角形的内角和等于180°.6.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选:D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.【分析】直接利用长方形面积求法得出答案.【解答】解:∵长方形的周长为16cm,其中一边长为x cm,∴另一边长为:(8﹣x)cm,故y=(8﹣x)x.故选:C.【点评】此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.8.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=DB,再根据等边对等角可得∠A=∠DBA,然后在Rt△ABC中,根据三角形的内角和列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故选:C.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,以及直角三角形两锐角互余的性质,熟记性质并列出方程是解题的关键.9.【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系为先快后慢.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,每一段h随t的增大而增大,增大的速度是先快后慢.故选:C.【点评】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.【分析】作点D关于BC的对称点D',作点E关于AC的对称点E',连接D'E'分别交AC,BC于点M',N',连接ME',ND',EM',DN',推出四边形DEMN的周长最小时,点M与M'重合,点N与点N'重合,再求出∠DN'M+∠EM'N即可解决问题.【解答】解:作点D关于BC的对称点D',作点E关于AC的对称点E',连接D'E'分别交AC,BC于点M',N',连接ME',ND',EM',DN',则ME=ME',ND=ND',∴四边形DEMN的周长=DE+ME+MN+ND=DE+ME'+MN+ND'≥DE+D'E',∵DE长固定,∴点M与M'重合,点N与点N'重合时,四边形DEMN的周长最小,此时∠DNM+∠EMN=∠DN'M+∠EM'N,由对称性和三角形外角性质可知:∠DN'M=∠N'DD'+∠N'D'D=2∠N'D'D,∠EM'N=∠M'EE'+∠M'E'E =2∠M'E'E,∴∠DN'M+∠EM'N=2∠N'D'D+2∠M'E'E=2(180°﹣∠D'DE'),设DD'与BC交于点H,∵AB=AC,∠A=90°,∴∠BDH=45°,∴∠D'DE'=180°﹣45°=135°,∴∠DN'M+∠EM'N=2(180°﹣135°)=90°,即当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是90°,故选:B.【点评】本题考查轴对称﹣最短路线问题,解答中涉及两点之间线段最短,三角形内角和定理,三角形外角性质,等腰三角形的性质,能用一条线段表示出三条线段的和的最小值,并确定最小时M,N的位置是解题的关键.二、填空题(本题共5小题,每小题3分,共15分)11.【分析】求出>2,不等式的两边都减1得出﹣1>1,不等式的两边都除以2即可得出答案.【解答】解:∵>2,∴﹣1>2﹣1,∴﹣1>1∴>.故答案为:>.【点评】本题考查了不等式的性质和实数的大小比较的应用,解此题的关键是求出的范围,题目比较好,难度不大.12.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=9﹣2=7.故答案为:7.【点评】本题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.13.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【分析】过点D作DE⊥BA交BA的延长线于E,证△ABC和△DEA全等得AB=DE=2,再根据三角形的面积公式即可求出△BAD的面积.【解答】解:过点D作DE⊥BA交BA的延长线于E,如图所示:∵∠ABC=∠CAD=90°,∴∠ABC=∠DEA=90°,∠1+∠2=90°,∠C+∠2=90°,∴∠C=∠1,在△ABC和△DEA中,,∴△ABC≌△DEA(AAS),∴AB=DE=2,=AB•DE=×2×2=2.∴S△BAD故答案为:2.【点评】此题主要考查了全等三角形的判定和性质,三角形的面积,熟练掌握全等三角形的判定和性质是解决问题的关键,正确地作出辅助线构造全等三角形是解决问题的难点.15.【分析】将三棱柱侧面展开得出矩形,求出矩形对角线的长度即可.【解答】解:如图,右侧为三棱柱的侧面展开图,AA′=3+4+5=12cm,A′B=9cm,∠AA′B=90°,∴AB===15cm,故答案为:15.【点评】本题考查了三棱柱的侧面展开图,两点之间线段最短,勾股定理,画出三棱柱的侧面展开图,运用勾股定理是解题关键.三、解答题(本大题共7小题,共55分)16.【分析】(1)利用同底数幂乘法及除法法则,幂的乘方与积的乘方法则计算即可;(2)利用零指数幂及二次根式的运算法则计算即可.【解答】解:(1)原式=x8﹣4x8+x8=﹣2x8;(2)原式=2﹣+1=+1.【点评】本题考查实数的运算及整式的混合运算,熟练掌握相关运算法则是解题的关键.17.【分析】利用整式的相应的法则对式子进行化简,再代入相应的值运算即可.【解答】解:(a+b)(a﹣b)﹣b(2a﹣b)=a2﹣b2﹣2ab+b2=a2﹣2ab,当a=2,b=3时,原式=22﹣2×2×3=4﹣12=﹣8.【点评】本题主要考查整式的混合运算—化简求值,解答的关键是对相应的运算法则的掌握.18.【分析】(1)过A作AE∥PQ,过E作EB∥PR,再顺次连接A、E、B,此题答案不唯一,符合要求即可;(2)△PQR面积是:×QR×PQ=6,连接BA,BA长为3,再连接AD、BD,三角形的面积也是6,但是两个三角形不全等.【解答】解:(1)如图所示:;(2)如图所示:【点评】此题主要考查了作图,关键是掌握全等三角形的定义:能够完全重合的两个三角形叫做全等三角形;三角形面积的计算公式:S=×底×高.19.【分析】(1)根据确定性事件和不确定性事件的概念判断可得;(2)转盘共有8种可能结果,奇数的结果有4种,由概率公式解答即可;(3)先求出第三条线段取值范围,再判断即可.【解答】解:(1)转出的数字是1是随机事件,转出的数字是9是不可能事件;故答案为:随机事件;不可能事件;(2)∵转盘转到每个数字的可能性相等,共有8种可能结果,奇数的结果有4种,∴转出的数字是奇数的概率是=,故答案为:;(3)①5﹣2=3,5+2=7,∴第三条线段可以是4,5,6,转动转盘停止后,指针指向的数字有8种情况,其中能构成三角形的有3种,所以这三条线段能构成三角形的概率是,故答案为:.【点评】本题主要考查了概率公式,随机事件,解题的关键是熟练掌握概率公式,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A 发生的概率为P(A)=且0≤P(A)≤1.20.【分析】(1)根据自变量的值求函数值,根据函数值求自变量值;(2)根据“耗油量÷时间=单位时间耗油量”计算;(3)根据“时间=油量÷单位时间耗油量”求解.【解答】解:(1)当t=0时,Q2=50,Q2=0时,t=20,故答案为:50,20;(2)∵战斗机在20分钟时间内,加油69﹣20=49吨,但加油飞机消耗了50吨,所以说20分钟内战斗机耗油量为1吨,∴战斗机每分钟耗油量为1÷20=0.05吨;(3)由(2)知战斗机每小时耗油量为0.05×3=0.15吨,∴69÷0.15=460(分钟),答:战斗机最多还能飞行460分钟.【点评】本题考查了一次函数的应用,理解数形结合思想是解题的关键.21.【分析】(1)根据AAS或ASA证明△ADE≌△CFE即可;(2)利用全等三角形的性质求出AD,AB即可解决问题;【解答】(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,,∴△ADE≌△CFE(AAS);(2)解:∵△ADE≌△CFE,CF=4,∴CF=AD=4,又∵∠B=∠ACB,∴AB=AC,∵E是边AC的中点,CE=3,∴AC=2CE=6.∴AB=6,∴DB=AB﹣AD=6﹣4=2.【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)在AE上取一点F,使AF=AB,连接CF,即可以得出△ACB≌△ACF,就可以得出BC =FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF =CG,△CFG是等边三角形,就有FG=CF=3,进而得出结论;(3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF =CG,△CFG是等腰直角三角形,就有FG=CG=,进而得出结论.【解答】解:(1)如图1,在AE上取一点F,使AF=AB=2,连接CF,∵AC平分∠BAE,∴∠BAC=∠FAC,在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF,∵C是BD边的中点,∴BC=CD,∴CF=CD,∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°,∴∠ECF=∠ECD,在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED=5,∵AE=AF+EF,∴AE=2+5=7,故答案为:7;(2)AE=11,理由如下:如图2,在AE上取点F,点G,使AF=AB=2,EG=DE=5,连接CF,CG,同理得:△ACB≌△ACF(SAS),△DCE≌△GCE(SAS),∴BC=FC=3=DC=CG,∠ACB=∠ACF,∠DCE=∠GCE,∵∠ACE=120°,∴∠ACB+∠DCE=180°﹣120°=60°,∴∠ACF+∠ECG=60°,∴∠FCG=60°,∴△CFG是等边三角形,∴FG=CF=3,∴AE=2+3+5=10;(3)如图3,在AE上取点F,点G,使AF=AB=2,EG=DE=5,连接CF,CG,同理得:△ACB≌△ACF(SAS),△DCE≌△GCE(SAS),∴BC=FC=3=DC=CG,∠ACB=∠ACF,∠DCE=∠GCE,∵∠ACE=135°,∴∠ACB+∠DCE=180°﹣135°=45°,∴∠ACF+∠ECG=45°,∴∠FCG=90°,∴△CFG是等腰直角三角形,∴FG=CG=,∴AE=2++5=7+3.故答案为:7+3.【点评】本题考查了角平分线的定义的运用,全等三角形的判定及性质的运用,等边三角形的判定与性质的运用和等腰直角三角形的判定与性质的运用,解答时证明三角形全等是关键。

(完整版)七年级数学下册期末测试题及答案(共五套)

(完整版)七年级数学下册期末测试题及答案(共五套)

李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。

16=±4B 。

±16=4 C.327-=-3 D 。

2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。

135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。

331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。

七年级下学期期末考试数学试卷(附有答案)

七年级下学期期末考试数学试卷(附有答案)

a b七年级下学期期末考试数学试卷(附有答案)一 、选择题(每小题4分,共40分)1、点P (-2021,12+a )所在象限为( )A 第一象限B 第二象限C 第三象限D 第四象限2、一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人,准备同时租用这三种客房共7间,如果每个房间都住满租房方案有 ( ) A 4种 B 3种 C 2种 D 1种3、点A (-3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为 ( ) A.(1,-8) B. (1, -2) C. (-6,-1 ) D. ( 0,-1)4、如右图,下列能判定AB ∥CD 的条件的个数为( ) (1)∠B+∠BCD=0180 (2)∠1=∠2;(3)∠3=∠4 ;(4)∠B=∠5 . A.1 B.2 C.3 D.45、如图和,生活中,将一个宽度相等的纸条按右图所示折叠一下; 如果∠1=140°,那么∠2的度数为( ) A 140° B 120° C 110° D 100°6、如果表示a ,b 两个实数的点在数轴上的位置如图测所示,那么化简│a-b │+2()a b +的结果等于( )A -2bB 2bC -2aD 2a7、已知五个命题,正确的有 ( )(1)有理数与无理数之和是无理数; ⑵有理数与无理数之积是无理数; (3)无理数与无理数之积是无理数; ⑷无理数与无理数之积是有理数;(5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

A. 1个 B. 2个 C. 3个 D.4个8、为了了解参加某运动会的2000名运动员的年龄情况,从中抽取了100名运动员的年龄,就这个问题来说,下面说法正确的是 ( )A .2000名运动员是总体B .100名运动员是所抽取的一个样本C .样本容量为100名D .抽取的100名运动员的年龄是样本第4第5题9、若x 是49的算术平方根,则x 等于 ( )A. 7B. -7C. 49D.-4910、已知点A (-1,0),点B (2,0),在y 轴上存在一点C ,使得△ABC 的面积为6,则点C 的坐标为 ( )A (0,4)B (0,2)C (0,2)或(0,-2)D (0,4)或(0,-4) 二 、填空题(每小题4分,共40分)11、点P在第二象限,P到x 轴的距离为4,P到y 轴距离为3,则点P的坐标为 12 、4的平方根是 .13、若不等式组⎩⎨⎧>>2x mx 解集为2>,则m 取值范围是 .14 、在自然数范围内,方程的解是 .15 、把“同角的余角相等,改写成如果……那么……的形式为 。

山东7年级数学下册试卷【含答案】

山东7年级数学下册试卷【含答案】

山东7年级数学下册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 在直角三角形中,若一直角边长为3,斜边长为5,另一直角边长为?A. 4B. 5C. 6D. 73. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 325. 下列哪个图形是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。

()2. 在等边三角形中,每个角都是60度。

()3. 1是既不是质数也不是合数。

()4. 两个负数相乘的结果是正数。

()5. 圆的周长和直径的比值是一个常数,这个常数叫做圆周率π。

()三、填空题(每题1分,共5分)1. 一个数如果只有1和它本身两个因数,这样的数叫做______。

2. 在直角三角形中,若一直角边长为3,斜边长为5,另一直角边长为______。

3. 一个等差数列的前三项分别是2,5,8,那么公差为______。

4. 两个负数相乘的结果是______。

5. 圆的周长公式是______。

四、简答题(每题2分,共10分)1. 请简述等差数列的定义。

2. 请简述勾股定理的内容。

3. 请简述质数的定义。

4. 请简述偶数的定义。

5. 请简述平行四边形的性质。

五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2,5,8,请写出这个数列的前10项。

2. 一个直角三角形的两个直角边长分别是4和6,请计算这个三角形的面积。

3. 请找出50以内的所有质数。

4. 请找出100以内的所有偶数。

5. 请画出一个边长为5的正方形,并标出它的周长和面积。

六、分析题(每题5分,共10分)1. 请分析等差数列的通项公式,并举例说明。

2. 请分析勾股定理的应用,并举例说明。

2023-2024学年江苏省南京市秦淮区七年级(下)期末数学试卷及答案解析

2023-2024学年江苏省南京市秦淮区七年级(下)期末数学试卷及答案解析

2023-2024学年江苏省南京市秦淮区七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)化简(a2)3的结果为()A.a5B.a6C.a8D.a92.(2分)若m>n,则下列不等式不成立的是()A.m+2>n+2B.m﹣2>n﹣2C.2m>﹣2n D.3.(2分)三角形的两边长分别为4cm和8cm,则该三角形的第三条边的长度可能是()A.4cm B.8cm C.12cm D.14cm4.(2分)关于x,y的二元一次方程x﹣my=5的一个解是,则m的值为()A.2B.﹣2C.3D.﹣35.(2分)下列命题中,是真命题的是()A.相等的两个角是对顶角B.同位角相等C.若|a|=|b|,则a=b D.平行于同一条直线的两条直线平行6.(2分)下列各式中,计算正确的是()A.(﹣x+y)2=x2﹣2xy+y2B.(﹣3x+2)(3x﹣2)=9x2﹣4C.(x﹣1)(y﹣1)=xy﹣x﹣y﹣1D.(﹣2x+y)(2x+y)=4x2﹣y27.(2分)如图,在△ABC中,点D,E,F分别在AC,AB,BC上,以下条件能判断DE∥BC的是()A.∠1=∠2B.∠4=∠CC.∠1+∠3=180°D.∠3+∠C=180°8.(2分)如图,△ABC的三条中线AF,BE,CD相交于点P.以下结论:①S△APB=S△APC;②AP=BP;③AP=2PF;④∠BPC=2∠BAC.其中,正确的结论为()A.①③B.②③C.③④D.①②④二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卷相应位置上)9.(2分)纳秒(ns)是非常小的时间单位,1ns=10﹣9s,北斗全球导航系统亚太地区的授时精度优于10ns.用科学记数法表示10ns是s.10.(2分)写出命题“两直线平行,内错角相等”的逆命题:.11.(2分)一个多边形的每个内角都是150°,这个多边形是边形.12.(2分)如果x+y=﹣1,x2﹣y2=3,那么x﹣y=.13.(2分)若a m=6,a n=3,则a m﹣n=.14.(2分)如图,已知直线a∥b,∠1=70°,∠2=36°,则∠3=°.15.(2分)如图,△ABC中,CE,BD分别是AB,AC边上的高线.若∠ABC=62°,∠ACB=72°,则∠BOC的度数是°.16.(2分)如图,小明用直角三角尺和刻度尺画平行线时,将△ABC沿刻度尺推到△DEF的位置.若AB =BC=a,CF=b,则四边形ACED的面积是(用含a,b的代数式表示).17.(2分)若关于x的一元一次不等式ax<b的解集是,bx<a的解集是,则a和b的取值范围分别是.18.(2分)若m2+m﹣1=0,则代数式m2(m+2)的值是.三、解答题(本大题共8小题,共64分)19.(8分)(1)计算:(a﹣2b)(a+b)+2b(a﹣b);(2)因式分解:m3+2m2n+mn2.20.(7分)解方程组:.21.(8分)解不等式组:,并把解集在数轴上表示出来.22.(10分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证:BE ∥DF.23.(6分)超市开展“端午佳节至,浓浓粽香情”促销活动,蛋黄肉粽打八折,红豆粽打七折.已知购买一盒蛋黄肉粽和一盒红豆粽打折前需120元,打折后需92元.求打折前蛋黄肉粽和红豆粽每盒的价格.(用二元一次方程组解决问题)24.(6分)与几何证明一样,代数推理也需要有理有据.请完成下题中依据的填写.已知有理数x,y满足x>y>0,求证:x2>y2.证明:∵x>y>0,∴x+y>0(有理数的加法法则),x﹣y>0(不等式的基本性质1),∴(x+y)(x﹣y)>0().∵(x+y)(x﹣y)=x2﹣y2(),∴x2﹣y2>0(等量代换).∴x2>y2().25.(10分)(1)如图(1),△ABC中,∠A=80°,O是△ABC内一点,OD∥AC,OE∥AB,求∠EOD 的度数.(2)如图(2),O,P分别是△ABC内的两个点,OD∥AC,PE∥AB,连接PO.求证∠A=∠OPE﹣∠POD.26.(9分)如图,是某牛奶的“营养成分表”及相关说明.(注:NRV%表示100ml牛奶中相关营养的含量占一个人每日所需该种营养总量的百分比的参考值)假设一个同学每日所需相关营养的含量恰好符合根据该牛奶“营养成分表”中的信息计算出的结果,请解决下列问题:(1)该同学每日所需碳水化合物是g;(2)该同学的钙的吸收率为80%,求他每天喝多少毫升的该牛奶,才能恰好满足一天的钙的摄入?(不计其他渠道摄入的钙)(3)该同学某天早餐喝了200ml该牛奶,吃了一个鸡蛋和一块牛排(每100g牛排中蛋白质含量为20g).如果他在早餐中摄入的蛋白质全部吸收,且已经超过当日他所需蛋白质总量,那么这块牛排的质量至少是多少克?(用一元一次不等式解决问题,结果保留整数.)2023-2024学年江苏省南京市秦淮区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.【分析】利用幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),求出即可.【解答】解:(a2)3=a6.故选:B.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.2.【分析】根据不等式的基本性质(1)对A、C进行判断;根据不等式的基本性质(3)对A进行判断;根据不等式的基本性质(2)对D进行判断.【解答】解:A.m>n,则m+2>n+2,所以A选项不符合题意;B.m>n,则m﹣2>n﹣2,所以B选项不符合题意C.m>n,则2m与﹣2n的大小无法判定,所以C选项符合题意D.m>n,则m>,所以D选项不符合题意.故选:C.【点评】本题考查了不等式的性质:灵活运用不等式的性质是解决问题的关键.3.【分析】根据三角形的三边关系可得第三边的范围,再根据第三边的范围确定答案.【解答】解:设第三边长为x cm,有三角形的三边关系可得:8﹣4<x<8+4,即4<x<12,观察选项,只有选项B符合题意.故选:B.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.4.【分析】根据方程的解的定义把把代入方程x﹣my=5中即可求出m的值.【解答】解:把代入方程x﹣my=5中,得1﹣2m=5,解得m=﹣2,故选:B.【点评】本题考查了二元一次方程的解,熟知方程的解的定义是解题的关键.5.【分析】根据平行线,相交线,绝对值等知识逐项判断即可.【解答】解:等的两个角不一定是对顶角,故A是假命题,不符合题意;同位角不一定相等,故B是假命题,不符合题意;若|a|=|b|,则a=b或a=﹣b,故C是假命题,不符合题意;平行于同一条直线的两条直线平行,故D是真命题,符合题意;故选:D.【点评】本题考查命题与定理,解题的关键是掌握平行线与相交线相关的知识.6.【分析】根据多项式乘多项式的方法,以及完全平方公式和平方差公式,逐项判断即可.【解答】解:∵(﹣x+y)2=x2﹣2xy+y2,∴选项A符合题意;∵(﹣3x+2)(3x﹣2)=﹣9x2+12x﹣4,∴选项B不符合题意;∵(x﹣1)(y﹣1)=xy﹣x﹣y+1,∴选项C不符合题意;∵(﹣2x+y)(2x+y)=﹣4x2+y2,∴选项D不符合题意.故选:A.【点评】此题主要考查了整式的混合运算,解答此题的关键是注意完全平方公式和平方差公式的应用.7.【分析】由平行线的判定,即可判断.【解答】解:A、由内错角相等,两直线平行判定EF∥AC,不能判定DE∥BC,故A不符合题意;B、由同位角相等,两直线平行判定EF∥AC,不能判定DE∥BC,故B不符合题意;C、由同旁内角互补,两直线平行判定DE∥BC,故C符合题意;D、由同旁内角互补,两直线平行判定EF∥AC,不能判定DE∥BC,故D不符合题意.故选:C.【点评】本题考查平行线的判定,关键是掌握平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.【分析】由三角形面积公式推出△ABP的面积=△ACP的面积;AP不一定等于BP,由三角形重心的性质得到AP=2PF,P不一定是△ABC的外心,∠BPC不一定等于2∠BAC.【解答】解:∵AF是△ABC的中线,∴BF=CF,∴△ABF的面积=△ACF度数面积,△PBF的面积=△PCF的面积,∴△ABF的面积﹣△PBF的面积=△ACF的面积﹣△PCF的面积,∴△ABP的面积=△ACP的面积,故①符合题意;如果AP=BP,∵CD是△ABC的中线,∴PD⊥AB,但PD不一定垂直AB,故②不符合题意;∵△ABC的三条中线AF,BE,CD相交于点P,∴P是△ABC的重心,∴AP=2PF,故③符合题意;当P是△ABC的外心时,∠BPC=2∠BAC,P是△ABC的重心,不一定是△ABC的外心,∴∠BPC不一定等于2∠BAC,故④不符合题意.∴其中,正确的结论为①③.故选:A.【点评】本题考查三角形的重心,三角形的面积,关键是掌握三角形重心的性质.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卷相应位置上)9.【分析】科学记数法的表现形式为a×10n,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n是负整数,表示时关键是要正确确定a及n的值.【解答】解:10ns=10×10﹣9s=1×10﹣8s,故答案为:1×10﹣8.【点评】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.10.【分析】将原命题的条件与结论互换即得到其逆命题.【解答】解:∵原命题的条件为:两直线平行,结论为:内错角相等∴其逆命题为:内错角相等,两直线平行.【点评】考查学生对逆命题的定义的理解及运用.11.【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.所以多边形是十二边形,故答案为:十二.【点评】本题主要考查了多边形的内角和定理.n边形的内角和为:180°•(n﹣2).此类题型直接根据内角和公式计算可得.12.【分析】根据平方差公式进行因式分解即可得出答案.【解答】解:∵x2﹣y2=3,∴(x+y)(x﹣y)=3,∵x+y=﹣1,∴x﹣y=﹣3.故答案为:﹣3.【点评】本题主要考查平方差公式,熟练运用平方差公式是解题的关键.13.【分析】根据同底数幂的除法法则求解.【解答】解:a m﹣n==2.故答案为:2.【点评】本题考查了同底数幂的除法,解答本题的关键是掌握同底数幂的除法法则:底数不变,指数相减.14.【分析】根据对顶角相等求出∠4=∠2=36°,根据平行线的性质求出∠5=∠4=36°,再根据平角定义求解即可.【解答】解:如图,∵∠2=36°,∠2=∠4,∴∠4=36°,∵a∥b,∴∠5=∠4=36°,∵∠3+∠1+∠5=180°,∠1=70°,∴∠3=74°,故答案为:74.【点评】此题考查了平行线的性质,熟记平行线的性质定理是解题的关键.15.【分析】在△BEC中根据三角形内角和定理求出∠BCE的度数,在△BCD中根据三角形内角和定理求出∠CBD的度数,在△BOC中根据三角形内角和定理求出∠BOC的度数即可.【解答】解:∵CE,BD分别是AB,AC边上的高线,∴∠BEC=90°,∠BDC=90°,在△BEC中,∠EBC+∠BEC+∠BCE=180°,∵∠ABC=62°,∠BEC=90°,∴∠BCE=180°﹣90°﹣62°=28°,在△BCD中,∠DCB+∠BDC+∠CBD=180°,∵∠ACB=72°,∠BDC=90°,∴∠CBD=180°﹣90°﹣72°=18°,在△BOC中,∠CBO+∠BOC+∠BCO=180°,∴∠BOC=180°﹣28°﹣18°=134°,故答案为:134.【点评】本题考查了三角形内角和定理,熟知三角形三个内角的和是180°是解题的关键.16.【分析】由平移得,AB=DE=BC=EF=a,AD=BE,AD∥BE,∠ABC=∠DEF=90°,可得∠ADE =∠CED=90°,CE+BC=BE=AD=b,CE=CF﹣EF=b﹣a,利用梯形的面积公式计算即可.【解答】解:由平移得,AB=DE=BC=EF=a,AD=BE,AD∥BE,∠ABC=∠DEF=90°,∴∠ADE=∠CED=90°.∵CF=CE+EF=b,∴CE+BC=BE=AD=b,CE=CF﹣EF=b﹣a,∴四边形ACED的面积是==ab﹣.故答案为:ab﹣.【点评】本题考查作图—复杂作图、平移的性质、列代数式,解题的关键是理解题意,灵活运用所学知识解决问题.17.【分析】根据不等式的性质2,不等式的性质3,可得答案.【解答】解:∵关于x的一元一次不等式ax<b的解集是,∴a<0,∵关于x的一元一次不等式bx<a的解集是,∴b>0,故答案为:a<0,b>0.【点评】本题考查解一元一次不等式,掌握不等式的性质是解题的关键.18.【分析】由题意可得m2=﹣m+1,m2+m=1,再代入所求代数式运用整式的运算方法和数学整体思想进行求解.【解答】解:∵m2+m﹣1=0,∴m2=﹣m+1,m2+m=1,∴m2(m+2)=(﹣m+1)(m+2)=﹣m2﹣m+2=﹣(m2+m)+2=﹣1+2=1,故答案为:1.【点评】此题考查了运用整体思想求代数式值的能力,关键是能准确变式、计算.三、解答题(本大题共8小题,共64分)19.【分析】(1)根据多项式乘多项式、单项式乘多项式的计算法则即可得出答案;(2)先提取公因式再利用完全平方公式进行因式分解即可得出答案.【解答】解:(1)原式=a2+ab﹣2ab﹣2b2+2ab﹣2b2=a2+ab﹣4b2;(2)原式=m(m2+2mn+n2)=m(m+n)2.【点评】本题主要考查多项式乘多项式、单项式乘多项式、提取公因式与公式法的综合运用,熟练掌握以上知识点是解题的关键.20.【分析】可以注意到①式可变形为y=3x+4,代入②式即可对y进行消元.再解一元一次方程即可【解答】解:由①式得y=3x+4,代入②式得x﹣2(3x+4)=﹣3解得x=﹣1将x=﹣1代入②式得﹣1﹣2y=﹣3,得y=1∴方程组解为【点评】此题主要考查二元一次方程组的解法,熟练运用代入消元法是解题的关键.21.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:,解不等式①得:x>2,解不等式②得:x≤4,∴不等式组的解集是2<x≤4,在数轴上表示不等式组的解集为:【点评】本题考查了解一元一次不等式,在数轴上表示不等式组的解集,解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.22.【分析】根据角平分线的定义和四边形的内角和进行解答即可.【解答】证明:∵在四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠EBF+∠FDC=90°,∵∠C=90°,∴∠DFC+∠FDC=90°,∴∠EBF=∠DFC,∴BE∥DF.【点评】此题考查平行线的判定,关键是根据角平分线的定义和四边形的内角和进行解答.23.【分析】设打折前蛋黄肉粽的价格为x元,红豆粽每盒的价格为y元,根据购买一盒蛋黄肉粽和一盒红豆粽打折前需120元,打折后需92元.列出二元一次方程组,解方程组即可.【解答】解:设打折前蛋黄肉粽的价格为x元,红豆粽每盒的价格为y元,由题意得:,解得:,答:打折前蛋黄肉粽的价格为80元,红豆粽每盒的价格为40元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.【分析】先利用有理数的加法法则,不等式的基本性质可得x+y>0,x﹣y>0,然后利用有理数的乘法法则可得(x+y)(x﹣y)>0,再利用平方差公式可得x2﹣y2>0,从而利用不等式的基本性质1,即可解答.【解答】解:∵x>y>0,∴x+y>0(有理数的加法法则),x﹣y>0(不等式的基本性质1),∴(x+y)(x﹣y)>0(有理数的乘法法则).∵(x+y)(x﹣y)=x2﹣y2(平方差公式),∴x2﹣y2>0(等量代换).∴x2>y2(不等式的基本性质1),故答案为:有理数的乘法法则;平方差公式;不等式的基本性质1.【点评】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.25.【分析】(1)由平行线的性质推出∠EOD+∠A=180°,即可求出∠EOD的度数;(2)延长OP交AB于M,由平行线的性质推出∠ODM=∠A,∠BMO=∠OPE,由三角形外角的性质即可证明∠A=∠OPE﹣∠POD.【解答】(1)解:如图(1),∵OD∥AC,∴∠ODB=∠A,∵OE∥AB,∴∠EOD+∠ODB=180°,∴∠EOD+∠A=180°,∵∠A=80°,∴∠EOD=100°;(2)证明:如图(2),延长OP交AB于M,∵OD∥AC,∴∠ODM=∠A,∵PE∥AB,∴∠BMO=∠OPE,∵∠ODM=∠BMO﹣∠POD,∴∠A=∠OPE﹣∠POD.【点评】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.26.【分析】(1)根据表格中给出数据直接计算即可;(2)设该同学每天喝x毫升的该牛奶,根据该同学喝的牛奶的含钙量×钙的吸收率=营养表中的含钙量列方程即可;(3)这块牛排的质量是y克,根据他摄入蛋白质的总量之和>营养表中的蛋白质量,列出不等式即可.【解答】解:(1)该同学每日所需碳水化合物为:5.5÷2%=275(g),故答案为:275;(2)设该同学每天喝x毫升的该牛奶,根据题意得:×125×80%=,解得x=781.25,答:该同学每天喝781.25毫升的该牛奶,才能恰好满足一天的钙的摄入;(3)这块牛排的质量是y克,根据题意得:×3.8+3.8×2+×20>,解不等式得:y>240,∵y取整数,∴y的最小值为241,答:这块牛排的质量至少是241g.【点评】本题考查一元一次不等式和一元一次方程的应用,关键是找到等量关系和不等关系列出方程和不等式。

七年级数学下学期期末测试卷(含答案)

七年级数学下学期期末测试卷(含答案)

七年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. √ 2的相反数是( )A. 2B. 0C. √ 2D. −√ 22. 下列说法中,错误的是( )A. 4的算术平方根是2B. √ 81的平方根是±3C. 121的平方根是±11D. −1的平方根是±13. 估计√ 10的值( )A. 在3到4之间B. 在4到5之间C. 在5到6之间D. 在6到7之间4. 下列图形中,∠1和∠2是内错角的是( )A. B.C. D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( )A. 45° B. 55°C. 65°D. 75°6. 在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是( )A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)7. 用加减法解方程组{2a+2b=3,①3a+b=4,②最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×28. 不等式组{x−4≤2(x−1),12(x+3)>x+1中两个不等式的解集在数轴上表示正确的是( )A. B. C. D.9. 如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于( )A. 70°B. 65°C. 50°D. 25°10. 小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )A. 31元B. 30元C. 25元D. 19元二、填空题(本大题共6小题,共18.0分)11. 如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为_________.12. 若√ x−1+(y+2)2=0,则(x+y)2021等于.13. 若m<n,则3m−23n−2.14. 如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_____________.15. 3−√ 11的相反数是,绝对值是.16. 在平面直角坐标系中,某机器人从原点O出发,按向右,向上,向右,向下的方向每次移动1个单位长度,行走路线如图所示,第1次移动到A1(1,0)第2次移动到A2(1,1),第3次移动到A3(2,1),第4次移动到A4(2,0)…则第2022次移动至点A2022的坐标是.三、解答题(本大题共7小题,共52.0分。

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)一、选择题(本大题10小题,每小题3分共30分)1.数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.下列图形中,∠1与∠2互为邻补角的是()A.B.C.D.3.下列各数中是无理数的是()A.B.C.D.3.144.在下列调查中,适宜采用全面调查的是()A.了解某省中学生的视力情况B.了解某班学生的身高情况C.检测一批电灯泡的使用寿命D.调查一批汽车的抗撞击能力5.在乡村振兴活动中,某村通过铺设水管将河水引到村庄C处,为节省材料,他们过点C向河岸l作垂线,垂足为点D,于是确定沿CD铺设水管,这样做的数学道理是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两条直线相交有且只有一个交点6.第三象限内的点P到x轴的距离是5,到y轴的距离是6,那么点P的坐标是()A.(5,6)B.(﹣5,﹣6)C.(6,5)D.(﹣6,﹣5)7.李老师设计了一个关于实数运算的程序:输入一个数,乘以后再减去,输出结果.若小刚按程序输入2,则输出的结果应为()A.2 B.C.﹣D.38.下列语句中,是真命题的是()A.如果|a|=|b|,那么a=bB.一个正数的平方大于这个正数C.内错角相等,两直线平行D.如果a>b,那么ac>bc9.若a﹣b<0,则下列不等式正确的是()A.3a>3b B.﹣2a>﹣2b C.a﹣1>b﹣1 D.3﹣a<3﹣b10.已知关于x,y的二元一次方程组,下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣1;②当x为正数,y为非负数时,﹣<a≤;③无论a取何值,x+2y的值始终不变.A.①②B.②③C.①③D.①②③二、填空题(本大题7小题,每小题4分,共28分)11.(4分)计算:|﹣|=.12.(4分)在平面直角坐标系中,将点A(3,m﹣2)在x轴上,则m=.13.(4分)根据如表数据回答259.21的平方根是.x16 16.1 16.2 16.3x2256 259.21 262.44 265.6914.(4分)已知二元一次方程2x﹣3y﹣5=0的一组解为,则2a﹣3b+3=.15.(4分)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明想得分不少于90分,他至少要答对题.16.(4分)如图,将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F.若∠EFC=70°,则∠ACF=°.17.(4分)为组织研学活动,王老师把班级里50名学生计划分成若干小组,若每组只能是4人或5人,则有种分组方案.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)在等式y=kx+b中,当x=3时,y=3;当x=﹣1时,y=1.求k,b的值.19.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.20.(6分)在平面直角坐标系中,点P(﹣5,2)和点Q(m+1,3m﹣1),当线段PQ与x轴平行时,求线段PQ的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为了解学生的体育锻炼情况,围绕“你最喜欢的一项体育活动”进行随机抽样调查,从而得到一组数据,如图是根据这组数据绘制的两个统计图.请结合统计图,解答下列问题:(1)该校对名学生进行了抽样调查:在扇形统计图中,“羽毛球”所对应的圆心角的度数为度;(2)补全条形统计图;(3)若该校共有2400名学生,请你估计全校学生中最喜欢跳绳活动的人数约为多少人.22.(8分)如图,DE⊥AC,FG⊥AC,∠1=∠2,∠B=∠3+50°,∠CAB=60°.(1)求证:BC∥AG;(2)求∠C的度数.23.(8分)为鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分技第二阶梯电价收费,如图是涛涛家2021年4月和5月所交电费的收据(度数均取整数).(1)该市规定的第一阶梯电费和第二阶梯电费单价分别为多少?(2)涛涛家6月份家庭支出计划中电费不超过120元,她家最大用电量为多少度?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)小明同学在数学活动中,将一副三角板按如图1所示的方式放置,其中点B在线段EC上,点D在线段AC上,AB与DE相交于点F,∠C=90°,∠A=30°,∠E=45°.(1)求∠BFD的度数;(2)如图2,当小明将三角板DCE绕点C转动到ED⊥AB时,求∠BCE的度数;(3)小明思考:在转动三角板DCE的过程中,当0°<∠BCE<180°,且点E在直线BC的上方时,是否存在DE与三角板ABC的一条边互相平行?若存在,请你帮小明直接写出∠BCE 所有可能的值;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系中,正方形ABCO的边长为1,边AO,CO分别在坐标轴的正半轴上,连接OB,以点O为圆心,对角线OB为半径画弧交x轴的正半轴于点D.(1)填空:线段OB的长为,点D的坐标为;(2)将线段AD向左平移到A′D′位置,当OA'=AD′时,求点D′的坐标;(3)在(2)的条件下,求点D′到直线OB的距离.参考答案与解析一、选择题1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.【解答】解:A.两个角不存在公共边,故不是邻补角,故A不符合题意;B、两个角不存在公共边,故不是邻补角,故B不符合题意;C、两个角不存在公共边,故不是邻补角,故C不符合题意;D、两个角是邻补角,故D符合题意.故选:D.3.【解答】解:A.是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.3.14是有限小数,属于有理数,故本选项不合题意;故选:B.4.【解答】解:A.了解某省中学生的视力情况,适合抽样调查,不符合题意;B.了解某班学生的身高情况,适合采用全面调查,符合题意;C.检测一批节能灯的使用寿命,具有破坏性,适合抽样调查,不符合题意;D.调查一批汽车的抗撞击能力,具有破坏性,适合抽样调查,不符合题意;故选:B.5.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:C.6.【解答】解:∵第三象限的点P到x轴的距离是5,到y轴的距离是6,∴点P的横坐标是﹣6,纵坐标是﹣5,∴点P的坐标为(﹣6,﹣5).故选:D.7.【解答】解:2﹣=.故选:B.8.【解答】解:A、如果|a|=|b|,那么a=b或a=﹣b,原命题是假命题;B、一个正数的平方不一定大于这个正数,如0.1,原命题是假命题;C、内错角相等,两直线平行,是真命题;D、如果a>b,c<0时那么ac<bc,原命题是假命题;故选:C.9.【解答】解:由a﹣b<0可得a<b,A.∵a<b,∴3a<3b,故本选项不合题意;B.∵a<b,∴﹣2a>﹣2b,故本选项符合题意;C.∵a<b,∴a﹣1<b﹣1,故本选项不合题意;D.∵a<b,∴﹣a>﹣b,∴3﹣a>3﹣b,故本选项不合题意;故选:B.10.【解答】解:解方程组得:,①∵x、y互为相反数,∴x+y=0,∴+=0,解得:a=﹣1,故①正确;②∵x为正数,y为非负数,∴,解得:﹣<a≤,故②正确;③∵x=,y=,∴x+2y=+2×==,即x+2y的值始终不变,故③正确;故选:D.二、填空题11.【解答】解:|﹣|=.故答案为:.12.【解答】解:∵点A(3,m﹣2)在x轴上,∴m﹣2=0,解得:m=2.故答案为:2.13.【解答】解:由表中数据可得:259.21的平方根是:±16.1.故答案为:±16.1.14.【解答】解:∵二元一次方程2x﹣3y﹣5=0的一组解为,∴2a﹣3b﹣5=0,∴2a﹣3b=5,∴2a﹣3b+3=5+3=8,故答案为:815.【解答】解:设应答对x道,则:10x﹣5(20﹣x)>90,解得:x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.故答案为:13.16.【解答】解:∵将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,∴∠E=∠B=90°,∠CAB=∠CAE,∵AB∥CD,∠EFC=70°,∴∠BAE=∠EFC=70°,∠CAB=∠ACF,∴∠CAB=∠BAE=35°,∴∠ACF=∠CAB=35°.故答案为:35.17.【解答】解:设4人小组有x组,5人小组有y组,由题意可得:4x+5y=50,∵x,y为自然数,∴,,,∴有3种分组方案,故答案为:3.三、解答题(一)18.【解答】解:根据题意,得,①﹣②,得4k=2,解得:k=,把k=代入②,得﹣+b=1,解得:b=.19.【解答】解:由2x≥x﹣1,得:x≥﹣1,由x+2>4x﹣1,得:x<1,则不等式组的解集为﹣1≤x<1,将不等式组的解集表示在数轴上如下:20.【解答】解:当线段PQ与x轴平行时,3m﹣1=2,解得:m=1,∴Q点坐标为(2,2),∴PQ=2﹣(﹣5)=2+5=7,即线段PQ的长为7.四、解答题(二)21.【解答】解:(1)因为抽样中喜欢足球的学生有12名,占30%,所以共抽样调查的学生数为:12÷30%=40(名).喜欢羽毛球的2名,占抽样的:2÷40=5%.其对应的圆心角为:360°×5%=18°.故答案为:40,18.(2)∵喜欢篮球的占40%,所以喜欢篮球的学生共有:40×40%=16(名).补全的条形图:(3)∵样本中有5名喜欢跳绳,占抽样的5÷40=12.5%,所以该校喜欢跳绳的学生有2400×12.5%=300(名).答:全校学生中最喜欢跳绳活动的人数约为300名.22.【解答】(1)证明:∵DE⊥AC,FG⊥AC,∴DE∥FG,∴∠2=∠AGF,∵∠1=∠2,∴∠1=∠AGF,∴BC∥AG;(2)解:由(1)得,BC∥AG,∴∠B+∠BAC=180°,即∠B+∠3+∠CAB=180°,∵∠B=∠3+50°,∠CAB=60°,∴∠B+(∠B﹣50°)+60°=180°,∴∠B=85°,∴∠C=180°﹣∠B﹣∠CAB=180°﹣85°﹣60°=35°.23.【解答】解:(1)设该市规定的第一阶梯电费单价为x元,第二阶梯电费单价为y元,依题意,得:,解得:.答:该市规定的第一阶梯电费单价为0.5元,第二阶梯电费单价为0.6元.(2)设涛涛家6月份的用电量为m度,依题意,得:200×0.5+0.6(m﹣200)≤120,解得:m≤233,∵m为正整数,∴m的最大值为233.答:涛涛家6月份最大用电量为233度.五、解答题(三)24.【解答】解:(1)如图1中,∵∠A=30°,∠CDE=45°,∴∠ADF=180°﹣45°=135°,∴∠AFD=180°﹣∠A﹣∠ADF=180°﹣30°﹣135°=15°,∴∠BFD=180°﹣∠AFD=180°﹣15°=165°.(2)如图2中,设AB交CE于J.∵DE⊥AB,∴∠EFJ=90°,∵∠E=45°,∴∠EJF=90°﹣45°=45°,∴∠BJC=∠EJF=45°,∵∠B=60°,∴∠ECB=180°﹣∠B﹣∠BJC=180°﹣60°﹣45°=75°.(3)如图3﹣1中,当DE∥BC时,∠BCE=∠E=45°.如图3﹣2中,当DE∥AC时,∠ACE=∠E=45°,∴∠BCE=∠ACB+∠ACE=90°+45°=135°.如图3﹣3中,当DE∥AB时,延长BC交DE于J.∴∠CJD=∠ABC=60°,∵∠CJD=∠E+∠ECJ,∠E=45°,∴∠ECJ=15°,∴∠BCE=180°﹣∠ECJ=180°﹣15°=165°,综上所述,满足条件的∠BCE的值为45°或135°或165°.25.【解答】解:(1)∵四边形OABC是正方形,且边长为1,∴OA=AB=1,根据勾股定理得,OB=,∴OD=,∴D(,0),故答案为:,(,0);(2)∵线段AD向左平移到A′D′,∴AD=A′D′,∵OA'=AD′,∴OD′=OA'+A′D′=(OA'+A′D′+AD′+AD)=OD=,∴D(,0),(3)设点D′到直线OB的距离为h,则S△OBD′=OB•h=OD′•BA,即h=×1,∴点D′到直线OB的距离为h=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
2017——2018学年度第一学期
七年级期中数学测试
(全卷五个大题,共34个小题;考试时间:120分钟;满分:120分)题号一二三四总分
得分
一、选择题(共10小题,每小题3分,满分30分)
1.将图中所示的美丽图案,平移后得到的图案是( )
A. B. C. D.
2.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()
2题4题6题
A.45°B.55°C.115°D.135°
3.的立方根是()
A.﹣1 B.0 C.1 D.±1
4.如图,已知AB,CD相交于点O,OE⊥CD于O,∠AOC=35°,则∠BOE的度数是()
A.35°B.55°C.125°D.145°5.的平方根是()
A.2 B.±2 C. D.±
6.如图,AB∥CD,CB平分∠ABD,若∠C=35°,则∠D的度数为()A.100°B.110°C.120°D.130°
7..过点C(-1,-1)和点D(-1,5)作直线,则直线CD ()
A.平行于y轴
B.平行于x轴
C.与y轴相交
D.无法确定
8.估算﹣2的值()
A.在1到2之间B.在2到3之间
C.在3到4之间D.在4到5之间
9.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()
A.第一象限 B.第二象限C.第三象限 D.第四象限
10.如图,在平面直角坐标系中,直径为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2016秒时,点P的坐标是()
美丽图案
A.(1008,1) B.(1008,0) C.(1008,-1)D.(1008π,0)
二、填空题(共10小题,每小题3分,满分30分)
11.的相反数是.
12.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=142°,则∠AOC的度数是
13.若实数m,n满足(m﹣1)2+=0,则(m+n)5=
14. 若有理数a和b在数轴上表示的点分别在原点右边和左边,则
2
b-︱a-b︱等于
15.若点P(2x-1,x+3)在第二、四象限的角平分线上,P点到x轴的距离16.若△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0-3)那么将△ABC作同榉的平移得到△A1B1C1,则点A(-1,4)的对应点A1的坐标是.
17.已知AB∥x轴,A点的坐标为(3,2),且AB=4,则B点的坐标为18.如图,A、B两点的坐标分别为(2,4),B(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为
19.建筑A在建筑B的北偏东40°方向上,则B在A的
20.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b⊥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是
(填写所有真命题的序号)
三.化简:(每小题3分满分18分)
1. 3
27
10
2-
-
- 2. 3
81125
3. 3
227
6
9-
-
-
-)
( 4.122323
-++-四.解方程:
1、 3125
2(1)4
x -=- 2. 081)12(2=-+x
五、解答题(共8小题,满分42分)
1.已知某正数的两个平方根分别是m+4和2m ﹣16,n 的立方根是﹣2,求﹣n ﹣m 的算术平方根.(5分)
2、已知2a -1的平方根是±3,3a +b -1的算术平方根是4,求a +2b 的值。

(5分)
3.如图,AD ∥BE ,AE 平分∠BAD ,CD 与AE 相交于F , ∠CFE=∠E .求证:AB ∥CD .(5分)
4.如图,△ABC 是△DEF 向右平移4个单位长度后得到的,且三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出△DEF ,并写出点D ,E ,F 的坐标;(3分) (2)求出△DEF 的面积.(3分)
5.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠AOC=72°,OF ⊥CD ,垂足为O ,求∠EOF 的度数.(5分)
6.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(4分)(1)点P在x轴上;(2)点P在y轴上;
(3)点Q的坐标为(1,5),直线PQ∥y轴;
(4)点P到x轴、y轴的距离相等.7、这是一个动物园游览示意图,请以南门为坐标原点建立平面直角坐标系,并分别写出这个动物园图中每个景点的坐标.(5分)
8.(1)如图1,CM平分∠ACD,AM平分∠BAC,∠MAC+∠ACM=90°,请判断AB与CD的位置关系并说明理由;(5分)
(2)如图2,当∠M=90°且AB与CD的位置关系保持(1)中的不变,当直角顶点M移动时,问∠BAM与∠MCD存在怎样的数量关系并写出关系式?(1分)
(3)如图3,G为线段AC上一定点,点H为直线CD上一动点且AB与CD的位置关系保持(1)中的不变,当点H在射线CD上运动时(点C 除外)∠CGH+∠CHG与∠BAC有何数量关系并写出关系式?(1分)
.
答案
一1CDCCD6BACBB
二11 3-根号5 12 76度13 -1 14 -a
15 7/3 16 (4,1)17 (7,2)或(-1,2)18 (3,0)或(9,0)
19 南偏西40度,20 1、4
三、1、4/3 2、 4 3、0 4、1
四、1、x=-3/2 2、x=4 x=5
五、1. 解:∵某正数的两个平方根分别是m+4和2m﹣16,可得:m+4+2m﹣16=0,
解得:m=4,
∵n的立方根是﹣2,
∴n=﹣8,
把m=4,n=﹣8代入﹣n﹣m=8﹣4=4,
所以﹣n﹣m的算术平方根是2.
2. 9
3.证明:∵AE平分∠BAD,
∴∠1=∠2,
∵AD∥BE,
∴∠2=∠E,
∴∠1=∠E,
∵∠CFE=∠E,
∴∠1=∠CFE,
∴AB∥CD.
4. 解:(1)如图所示,
D(﹣3,1),E(0,2),F(﹣1,4);
(2)S△DEF=3×3﹣×2×3﹣×1×2﹣×1×3=9﹣3﹣1﹣1.5=3.5.
5.
解:∵直线AB和CD相交于点O,
∴∠BOD=∠AOC=72°,
.
∵OF⊥CD,
∴∠BOF=90°﹣72°=18°,
∵OE平分∠BOD,
∴∠BOE=∠BOD=36°,
∴∠EOF=36°+18°=54°.
6. 解:(1)∵点P(a﹣2,2a+8),在x轴上,
∴2a+8=0,
解得:a=﹣4,
故a﹣2=﹣4﹣2=﹣6,
则P(﹣6,0);
(2))∵点P(a﹣2,2a+8),在y轴上,
∴a﹣2=0,
解得:a=2,
故2a+8=2×2+8=12,
则P(0,12);
(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,
解得:a=3,故2a+8=14,
则P(1,14);
(4)∵点P到x轴、y轴的距离相等,
∴a﹣2=2a+8或a﹣2+2a+8=0,
解得:a1=﹣10,a2=﹣2,
故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,
则P(﹣12,﹣12);
故当a=﹣2则:a﹣2=﹣4,2a+8=4,
则P(﹣4,4).
综上所述:P(﹣12,﹣12),(﹣4,4).
7.南门(0,0)狮子(-4,5)飞禽(3,4)两栖(4,1)
马(-3,-3)
8.(1)位置关系:平行。

理由∵CM平分∠ACD,AM平分∠BAC,∴∠BAC=2∠MAC,∠ACD=2∠ACM,
∵∠MAC+∠ACM=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
. (2)∠BAM+∠MCD=90°
(3)∠BAC=∠CGH+∠CHG
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档