北师大版七年级数学下册单元测试题含答案全套
最新北师大版七年级数学下册单元测试全套及答案

A.15xy
B.
15xy
C.
30xy
D.
30xy
、耐心填一填
(第
1~4题每空
1分,第
1.在代数式3xy2,
2
m,6a
5、6题每空2分,共28分)
12,4x2yZ討2,佥中,单项式有
,个,多项式有
个。
2.单项式5x2y4z的系数是
,次数是
项,它们分别是
4.⑴
34
⑵y3
式
是
3、如图1,直线a、b相交,/1=36°,则/2=_
4、如图2,AB// EF, BC// DE则/E+ZB的度数为
5、如图3,如果Z1=40°,Z2=100°,那么Z3的同位角等于
Z3的内错角等于,Z3的同旁内角等于.
&如图ABC平移到△ABC,则图中与线段AA平行的
55
5.⑴2m2n5⑵x225⑶4a24ab b2⑷4x4y
5
6.⑴a2m 2⑵5a+4(3)x42x2y2y4⑷-
3
三、精心做一做(每题5分,共15分)
1.x y xy 8x;2.6a 2a;3.x 3x y 4
四、计算题。(每题6分,共12分)
1. x3;2.4x212xy 9y225
五、-2
六、8
最新北师大版七年级数学下册单元测试全套及答案
北师大版七年级下册第一章整式的运算单元测试题
、精心选一选(每小题3分,共21分)
3. 计算a b a b的结果是
5.下列结果正确的是
A.
-B.
9
500C.
53.70
D.
6.若
ambn2
北师大七年级数学下册单元测试全套及答案

最新北师大版七年级数学下册单元测试全套及答案北师大版七年级下册 第一章 整式的运算单元测试题 一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( )A. 3B. 4C. 5D. 62.下列计算正确的是 ( )A. 8421262x x x =⋅B. ()()m mmy y y =÷34 C. ()222y x y x +=+ D.3422=-a a、3.计算()()b a b a +-+的结果是 ( )A. 22a b -B. 22b a -C. 222b ab a +--D.222b ab a ++-4. 1532+-a a 与4322---a a 的和为 ( )A.3252--a aB. 382--a aC. 532---a aD. 582+-a a5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a n m =,那么n m 22-的值是( )A. 10B. 52C. 20D. 32 ~7.要使式子22259y x +成为一个完全平方式,则需加上 ( )A. xy 15B. xy 15±C. xy 30D.xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分) 1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - , ab32中,单项式有个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵()=43y 。
)⑶ ()=322b a 。
⑷()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
5.⑴=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。
北师大初一数学下册各单元试卷及答案.docx

第一章整式的运算学校:_______________ 年级:___________________ 姓名: __________________ 分数:一、填空题:(每小题2分,计24分)]、单项式(辺厂刃3的系数是 __________ ,次数是___________ o52、多项式—巳兀严一3/—2兀屮,三次项系数是 _____________ ,常数项是__________23、若a m = 2,a" = 3,则严"= ________________ ,a“ = _________________ 。
4、单项式—2*2y,—*厂2,2*2『,_*『2的和是______________________________ 。
5、若2%+3 -3X+3 = 36x_2,则*= ______________________ 。
,1 1 ,W1, 1 、6、(——a——b)(—b——a)=。
2 3 3 27、(% + 4)(%-3) = x2 -mx-n ,贝>J m = _______________ ,n =____________ 。
8、(―6x +18%2— 8%3) -j- (—6x) — ___________________ o9、 (_____________ )5 = -(x - x- x- x-x)x2x4x4o10> ( _____________ ) _ (/ + xy) — _3xy + — y o11、0.1256 X26 X46= ____________________ o12、(a —= (a +Z?)2 + _______________ o二、选择题:(每小题2分,共20分)1、代数式-F+2X + 24是A、多项式B、三次多项式2、— [Q —(方 + c)]去括号后应为A、一a—/? + cB、一a + b — cA 、4n B、x4n+3C、x4n+1D、x4n_1C、三次三项式C、— d — b — cD、四次三项式D、一Q + b + c4、下列式子正确的是A 、a° =1C 、(―Q + 3)(—Q — 3) = a? — 96、a +b = 2,ab = —2,则 a~ + b~二、计算:(每小题4分,共计24分) 1、(一/)3 ・@3)2 .(肪)"5xy 2 -<2x 2y-[3xy 2 - (xy 2 - 2x 2y)]-^-(-^xy)四、先化简,再求值(每小题7分,共计14分)5、下列式子错误的是 A 、(―2=)2=丄16C 、(-2^)3 =-— 64B、 D 、(2=)2 =_丄16d 丄647、8、A 、2B 、-2A 、p-qC、 B 、- p _q 已知 3" =5,9" =10,则 3"+" A 、-50 B 、50D 、C 、C 、500 q_pD 、不知道4、5B 、(―a 5)4 = (―a 4)5 D 、(a-b)' =a--b-9、 B 、8C 、0D 、 A 、-810、一个正方形的边长若增加3cm,它的面积就增加39cm,这个正方形的边长原来是±8A 、8cmB 、6cmC 、5 cmD 、10cm 3、 2、(一£/刃3 十(2^)2 十 42100x 991、(2a + 3b)(2a —3b) + (a —3b)2,其屮a = —5,b = *。
新北师大版七年级数学下册单元测试题及答案

七年级数学下 第1章 整式的乘除--单元测试卷(一)一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是()A4 5A. a a9 i3 3 3 ^3aB. a a a 3aC.2a 4 3a 5 6a 9D3a 47a5 2012320122523( ) A.1 B. 1C. 0D. 19971353. 设 5a 3b 225a 3b A ,则 A=()A. 30 ab B .60 ab C. 15 ab D. 12 ab4. 已知x y 5, xy 3,则 x 2 y 2 ( )A. 25. B25 C 19 D、 195. 已知x a3,x b5,则 x3a 2b()A 、27B 9、 C 、 3D 、 52251056.. 如图,甲、乙、丙、丁四位同学给出了四aba种表示该长方形面积的多项式:m①(2 a+b)( m+n);②2a( m+n)+ b( n+n);n③ m(2 a+b)+ n(2 a+b); ④ 2an+2an+bm+bn ,你认为其中正确的有()A 、①② B 、③④C 、①②③ D 、①②③④7 .如(x+m )与(x+3)的乘积中不含x 的一次项,贝U m 的值为( )A 、 - 3B 、3C 、0D 118 .已知.(a+b ) =9, ab=—石,贝U a2+b 的值等于()A 、84B 、78C 、12D 、69. 计算(a — b ) (a+b ) (a 2+b 2) (a 4— b 4)的结果是( )A. a 8+2a 4b 4+b 8 B . a 8 — 2a 4b 4+b 8 C . a 8+b 8 D . a 8— b 810. 已知P —m 1,Q m 2 —m (m 为任意实数),则P 、Q 的大小关系为()1515A 、P QB 、P QC 、P QD 、不能确定 二、填空题(共6小题,每小题4分,共24分)11. 设4x 2 mx 121是一个完全平方式,则 m = _________ 。
北师大版七年级下册数学知识点归纳附全册单元测试卷及参考答案

北师大版七年级下册数学知识点归纳附全册单元测试卷及参考答案@考点归纳1. 单项式一、整式2. 多项式1. 同底数幂的乘法2. 幂的乘方3. 积的乘方二、幂运算 4. 同底数幂的除法5. 零指数幂6. 负指数幂1. 整式的加减(1).单项式与单项式相乘(2).单项式与多项式相乘2. 整式的乘法(3).多项式与多项式相乘三、整式运算(4).平方差公式(5).完全平方公式(1).单项式除以单项式3.整式的除法(2).多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或-1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
北师大版数学七年级下册全部单元测试题_含答案(共10套)

北师大版七年级下册第一章整式的运算单元测试题:一、精心选一选(每小题3分,共21分) 1.多项式892334+-+xy y x xy 的次数是的次数是 ( ) A. 3 B. 4 C. 5 D. 6 2.下列计算正确的是下列计算正确的是 ( ) A. 8421262x x x =× B. ()()m mmy y y =¸34C. ()222y x y x +=+D. 3422=-a a3.计算()()b a b a +-+的结果是的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是下列结果正确的是 ( ) A. 91312-=÷øöçèæ- B. 0590=´ C. ()17530=-. D. 8123-=-6. 若()682b a ba nm =,那么n m 22-的值是的值是( ) A. 10 B. 52 C. 20 D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30± 二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有中,单项式有 个,多项式有个,多项式有 个。
个。
2.单项式z y x 425-的系数是的系数是 ,次数是,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是项,它们分别是 。
新北师大版七年级数学[下册]单元测试题和答案解析
![新北师大版七年级数学[下册]单元测试题和答案解析](https://img.taocdn.com/s3/m/33fdfac8aef8941ea66e0529.png)
七年级数学下 第1章 整式的乘除--单元测试卷(一)一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =- =⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( ) A. 1- B. 1 C. 0 D. 19973.设()()A b a b a +-=+223535,则A=( )A. 30ab B. 60ab C. 15ab D. 12ab4.已知,3,5=-=+xy y x 则=+22y x ( ) A. 25. B 25- C 19 D 、19-5.已知,5,3==b a x x 则=-b a x 23( ) A 、2527 B 、109 C 、53 D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有( )A 、①② B 、③④ C 、①②③ D 、①②③④7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112,则a ²+b 2的值等于( ) A 、84 B 、78 C 、12 D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
北师大版七年级数学下册单元测试题及答案全套

解: (1)AC ∥BE . 理由如下: 因为 AB ∥ CD ,所以∠ ABC =∠ DCF. 因为 BA 平分∠ EBC, CD 平分∠ ACF ,所以∠ EBC= 2∠ ABC ,∠ ACF = 2∠ DCF. 所以∠ EBC =∠ ACF. 所以 AC ∥ BE. (2)∠ E 与∠ FCD 互余 .理由如下: 因为 AC ∥ BE ,所以∠ E=∠ ACE. 因为 CD 平分∠ ACF ,所以∠ ACD =∠ FCD.
7.如果 (x + 3)2= x2+ ax+ 9,那么 a 的值为 ( C )
A.3
B.± 3
C.6
D.± 6
8.如果 (2x +m)(x - 5)展开后的结果中不含 x 的一次项,那么 m 等于 ( D )
A.5
B.- 10
C.- 5
D.10
9.如图,将完全相同的四个长方形纸片拼成一个正方形,则可得出一个等式为
解: (1)(60 - 2x)(40 - 2x)= 4x2- 200x+2 400. 答:阴影部分的面积为 (4x 2- 200x+ 2 400)cm 2. (2)当 x= 5 时, 4x2- 200x + 2 400= 1 500(cm 2). 这个盒子的体积为 1 500× 5= 7 500(cm 3). 答:这个盒子的体积为 7 500 cm3.
A. ①②③
B. ①②③④
C.①②③④⑤
D.①②④⑤
7.下列说法不正确的是 ( D )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级数学下册单元测试题含答案全套(含期末试题,共7套)第一章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.计算(-x 2y)3的结果是( )A .x 6y 3B .x 5y 3C .-x 6y 3D .-x 2y 3 2.下列运算正确的是( )A .x 2+x 2=x 4B .(a -b)2=a 2-b 2C .(-a 2)3=-a 6D .3a 2·2a 3=6a 6 3.花粉的质量很小,一粒某种植物花粉的质量约为0.000 037 mg ,已知1 g =1 000 mg ,那么0.000 037 mg 用科学记数法表示为( )A .3.7×10-5 gB .3.7×10-6 gC .3.7×10-7 gD .3.7×10-8 g 4.在下列计算中,不能用平方差公式计算的是( ) A .(m -n)(-m +n) B .()x 3-y 3()x 3+y 3 C .(-a -b)(a -b) D .()c 2-d 2()d 2+c 25.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( ) A .6 B .2m -8 C .2m D .-2m6.若3x =4,9y =7,则3x -2y 的值为( )A .47B .74C .-3D .277.如果x +m 与x +3的乘积中不含x 的一次项,则m 的值为( ) A .-3 B .3 C .0 D .1 8.若a =-0.32,b =(-3)-2,c =⎝⎛⎭⎫-13-2,d =⎝⎛⎭⎫-130,则( ) A .a <b <c <d B .a <b <d <c C .a <d <c <b D .c <a <d <b9.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )(第9题)A .(2a 2+5a)cm 2B .(6a +15)cm 2C .(6a +9)cm 2D .(3a +15)cm 2 10.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( ) A .2 B .4 C .6 D .8二、填空题(每题3分,共24分) 11.计算:(2a)3·(-3a 2)=________.12.若x +y =5,x -y =1,则式子x 2-y 2的值是________.14.若(a 2-1)0=1,则a 的取值范围是________.15.已知(x +y)2=1,(x -y)2=49,则x 2+y 2的值为________.16.已知x 2-x -1=0,则代数式-x 3+2x 2+2 018的值为__________. 17.如果()2a +2b +1()2a +2b -1=63,那么a +b 的值为________. 18.已知a +1a =5,则a 2+1a2的结果是________.三、解答题(第19题12分,第20题4分,第26题10分,其余每题8分,共66分)19.计算: (1)-23+13(2 018+3)0-⎝⎛⎭⎫-13-2; (2)992-69×71;(3)⎝⎛⎭⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy); (4)(-2+x)(-2-x);(5)(a +b -c)(a -b +c); (6)(3x -2y +1)2.20.先化简,再求值:[(x 2+y 2)-(x +y)2+2x(x -y)]÷4x ,其中x -2y =2.21.(1) 已知a +b =7,ab =12.求下列各式的值: ①a 2-ab +b 2;②(a -b)2.(2)已知a =275,b =450,c =826,d =1615,比较a ,b ,c ,d 的大小.22.先阅读再解答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:________________;(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.(第22题)23.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.24.王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第24题)25.利用我们学过的知识,可以导出下面这个形式优美的等式: a 2+b 2+c 2-ab -bc -ac =12[(a -b)2+(b -c)2+(c -a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你检验这个等式的正确性;(2)若a =2 016,b =2 017,c =2 018,你能很快求出a 2+b 2+c 2-ab -bc -ac 的值吗?26.探索:(x -1)(x +1)=x 2-1; (x -1)(x 2+x +1)=x 3-1; (x -1)(x 3+x 2+x +1)=x 4-1; (x -1)(x 4+x 3+x 2+x +1)=x 5-1; …(1)试写出第五个等式;(2)试求26+25+24+23+22+2+1的值;(3)判断22 017+22 016+22 015+…+22+2+1的值的个位数字是几.答案一、1.C2.C 点拨:A .x 2+x 2=2x 2,错误;B .(a -b)2=a 2-2ab +b 2,错误;C .(-a 2)3=-a 6,正确;D .3a 2·2a 33.D 点拨:1 mg =10-3 g ,将0.000 037 mg 用科学记数法表示为3.7×10-5×10-3=3.7×10-8 g .故选D .4.A 点拨:A 中m 和-m 符号相反,-n 和n 符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.5.D 点拨:因为a +b =m ,ab =-4,所以(a -2)(b -2)=ab +4-2(a +b)=-4+4-2m =-2m.故选D .6.A 点拨:3x-2y=3x ÷32y =3x ÷9 y =47.故选A .7.A 点拨:(x +m)(x +3)=x 2 +(3+m)x +3m ,因为乘积中不含x 的一次项.所以m +3=0.所以m =-3.故选A .8.B9.B 点拨:(a +4)2-(a +1)2=a 2+8a +16-(a 2+2a +1)=a 2+8a +16-a 2-2a -1=6a +15(cm 2),故选B .10.C 点拨:(2+1)(22+1)(24+1)(28+1)+1 =(2-1)(2+1)(22+1)(24+1)(28+1)+1 =(22-1)(22+1)(24+1)(28+1)+1 =(24-1)(24+1)(28+1)+1 =(28-1)(28+1)+1 =216-1+1 =216.因为216的末位数字是6,所以原式末位数字是6. 二、11.-24a 5 12.5 13.-22 016 14.a ≠±1 15.25 16. 2 019 点拨:由已知得x 2-x =1,所以-x 3+2x 2+2 018=-x(x 2-x)+x 2+2 018=-x +x 2+2 018=2 019.17.±4 点拨:因为()2a +2b +1()2a +2b -1=()2a +2b 2-1=63,所以2a +2b =±8.所以a +b =±4. 18.23 点拨:由题意知⎝⎛⎭⎫a +1a 2=25,即a 2+1a 2+2=25,所以 a 2+1a2=23.三、19.解 :(1)原式=-8+13-9=-17+13=-1623.(2)原式=(100-1)2-(70-1)×(70+1)=10 000-200+1-4 900+1=4 902. (3)原式=-56x 2y 2-43xy +1.(4)原式=(-2)2-x 2=4-x 2.(5)原式=a 2-()b -c 2=a 2-b 2-c 2+2bc. (6)原式=[(3x -2y)+1]2=(3x -2y)2+2(3x -2y)+1 =9x 2+4y 2-12xy +6x -4y +1.20.解:原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy)÷4x =(2x 2-4xy)÷4x =12x -y.因为x -2y =2,所以12x -y =1.21.解:(1) ①a 2-ab +b 2=a 2+b 2-ab =(a +b)2-3ab =72-3×12=13. ②(a -b)2=(a +b)2-4ab =72-4×12=1.点拨:完全平方公式常见的变形:①(a +b)2-(a -b)2=4ab ;②a 2+b 2=(a +b)2-2ab =(a -b)2+2ab.解答本题关键是不求出a ,b 的值,主要利用完全平方公式的整体变换求式子的值.(2)因为a =275,b =450=(22)50=2100,c =826=(23)26=278,d =1615=(24)15=260,100>78>75>60,所以2100>278>275>260. 所以b >c >a >d.(第22题)22.解:(1)(2a +b)(a +2b)=2a 2+5ab +2b 2 (2)如图.(所画图形不唯一)23.解:(x 2+px +8)(x 2-3x +q)=x 4-3x 3+qx 2+px 3-3px 2+pqx +8x 2-24x +8q =x 4+(p -3)x 3+(q -3p +8)x 2+(pq -24)x +8q. 因为展开式中不含x 2和x 3项, 所以p -3=0,q -3p +8=0. 解得p =3,q =1.24.解:(1)卧室的面积是2b(4a -2a)=4ab(m 2). 厨房、卫生间、客厅的面积和是b·(4a -2a -a)+a·(4b -2b)+2a·4b =ab +2ab +8ab =11ab(m 2),即木地板需要4ab m 2,地砖需要11ab m 2.(2)11ab·x +4ab·3x =11abx +12abx =23abx(元). 即王老师需要花23abx 元.25.解:(1)等式右边=12(a 2-2ab +b 2+b 2-2bc +c 2+a 2-2ac +c 2)=12(2a 2+2b 2+2c 2-2ab -2bc -2ac)=a 2+b 2+c 2-ab -bc -ac =等式左边,所以等式是成立的.(2)原式=12[(2 016-2 017)2+(2 017-2 018)2+(2 018-2 016)2]=3.26.解:(1)(x -1)(x 5+x 4+x 3+x 2+x +1)=x 6-1.(2)26+25+24+23+22+2+1=(2-1)×(26+25+24+23+22+2+1)=27-1=127. (3)22 017+22 016+22 015+…+22+2+1=(2-1)(22 017+22 016+22 015+…+22+2+1) =22 018-1. 2 018÷4=504……2,所以22 018的个位数字是4.所以22 018-1的个位数字是3,即22 017+22 016+22 015+…+22+2+1的值的个位数字是3.第二章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是()2.下列作图能表示点A到BC的距离的是()3.a,b,c是同一平面内任意三条直线,交点可能有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对4.下列语句叙述正确的有()①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个B.1个C.2个D.3个5.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判断直线l1∥l2的有()A.1个B.2个C.3个D.4个(第5题)(第6题)(第7题)6.如图,AB∥CD,EF⊥CD,FG平分∠EFC,则()A.∠1<∠2 B.∠1>∠2 C.∠1=∠2 D.不能确定7.如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()8.如图,将一副三角尺叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°(第8题)(第9题)(第10题)9.如图,AB∥CD,CD∥EF,则∠BCE等于()A. ∠2-∠1B. ∠1+∠2 C.180°+∠1-∠2 D.180°-∠1+∠210.如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n等于()A.180°n B.(n+1)·180°C.(n-1)·180°D.(n-2)·180°二、填空题(每题3分,共24分)11.尺规作图是指用____________________________画图.12.如图,∠1=15°,∠AOC=90°.若点B,O,D在同一条直线上,则∠2=________.(第12题)(第13题)(第14题)13.如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:______________________________.14.如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=________.15.同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a________c.若a∥b,b∥c,则a________c.若a∥b,b⊥c,则a________c.16.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.(第16题)(第17题)(第18题)17.如图,某煤气公司安装煤气管道,他们从点A 处铺设到点B 处时,由于有一个人工湖挡住了去路,需要改变方向经过点C ,再拐到点D ,然后沿与AB 平行的DE 方向继续铺设.已知∠ABC =135°,∠BCD =65°,则∠CDE =________.18.如图,沿虚线剪去长方形纸片相邻的两个角,使∠1=115°,则∠2=________. 三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分)19.已知一个角的余角比它的补角的23还小55°,求这个角的度数.20.如图,已知AD ∥BC ,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:(第20题)解:因为AD ∥BC(已知),所以∠1=∠3( ). 因为∠1=∠2(已知), 所以∠2=∠3.所以BE ∥________( ). 所以∠3+∠4=180°( ).21.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,∠AOD ∠DOE =4 1.求∠AOF 的度数.(第21题)22.将一副三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)试说明:CF∥AB;(2)求∠DFC的度数.(第22题)23.如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP=∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.(第23题)24.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.(第24题)25.如图,已知BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.(1)试说明:AB∥CD;(2)H是BE的延长线与直线CD的交点,BI平分∠HBD,写出∠EBI与∠BHD的数量关系,并说明理由.(第25题)答案一、1.C 2.B 3.B 4.B 5.C 6.C7.D8.C9.C(第10题)10.C 点拨:如图,过点A 2向右作A 2D ∥A 1B ,过点A 3向右作A 3E ∥A 1B ,…… 因为A 1B ∥A n C ,所以A 3E ∥A 2D ∥…∥A 1B ∥A n C. 所以∠A 1+∠A 1A 2D =180°,∠DA 2A 3+∠A 2A 3E =180°,….所以∠A 1+∠A 1A 2A 3+…+∠A n -1A n C =(n -1)·180°.二、11.圆规和没有刻度的直尺 12. 105°13.垂线段最短 14.50° 点拨:因为AB ∥CD ,所以∠1=∠AGF.因为∠AGF 与∠EGB 是对顶角,所以∠EGB =∠AGF.故∠EGB =50°.15.∥;∥;⊥ 16.90° 点拨:因为AB ∥CD ,所以∠BAC +∠ACD =180°.因为CE ,AE 分别平分∠ACD ,∠CAB ,所以∠1+∠2=90°.(第17题)17.110° 点拨:如图,过点C 作CF ∥AB ,因为AB ∥DE ,所以DE ∥CF.所以∠CDE =∠FCD.因为AB ∥CF ,∠ABC =135°,所以∠BCF =180°-∠ABC =45°.又因为∠FCD =∠BCD +∠BCF ,∠BCD =65°,所以∠FCD =110°.所以∠CDE =110°.故填110°.(第18题)18.155° 点拨:过E 作EF ∥AB ,如图所示.因为AB ∥CD , 所以EF ∥CD.所以∠1+∠3=∠2+∠4=180°. 所以∠3=180°-115°=65°. 所以∠4=90°-∠3=90°-65°=25°. 所以∠2=180°-∠4=180°-25°=155°.三、19.解:设这个角的度数为x ,依题意有23(180°-x)-55°=90°-x ,解得x =75°.故这个角的度数为75°.20.两直线平行,内错角相等;DF ;同位角相等,两直线平行;两直线平行,同旁内角互补21.解:因为OE 平分∠BOD , 所以∠DOE =∠EOB.又因为∠AOD ∠DOE =41,∠AOD +∠DOE +∠EOB =180°, 所以∠DOE =∠EOB =180°×16=30°,∠AOD =120°.所以∠COB =∠AOD =120°. 因为OF 平分∠COB , 所以∠BOF =60°. 所以∠AOF =180°-60°=120°. 22.解:(1)因为CF 平分∠DCE ,所以∠1=∠2=12∠DCE.因为∠DCE =90°, 所以∠1=45°. 因为∠3=45°, 所以∠1=∠3.所以CF ∥AB(内错角相等,两直线平行). (2)因为∠D =30°,∠1=45°, 所以∠DFC =180°-30°-45°=105°.23.解:过点P 作PE ∥CD 交AD 于E ,则∠DPE =∠α. 因为AB ∥CD ,所以PE ∥AB.所以∠CPE =∠B ,即∠DPE +∠β=∠α+∠β=∠B.故不论点P 在BC 上怎样运动,总有∠α+∠β=∠B.24.解:因为AE 平分∠BAD , 所以∠1=∠2.因为AB ∥CD ,∠CFE =∠E , 所以∠1=∠CFE =∠E. 所以∠2=∠E. 所以AD ∥BC.25.解:(1)因为BE 平分∠ABD ,DE 平分∠BDC , 所以∠ABD =2∠EBD ,∠BDC =2∠EDB. 因为∠EBD +∠EDB =90°,所以∠ABD +∠BDC =2(∠EBD +∠EDB)=180°. 所以AB ∥CD.(2)∠EBI =12∠BHD.理由如下:因为AB ∥CD , 所以∠ABH =∠BHD.因为BI 平分∠EBD ,BH 平分∠ABD , 所以∠EBI =12∠EBD =12∠ABH =12∠BHD.第三章达标检测卷(120分,90分钟)一、选择题(每题3分,共24分)1.在利用太阳能热水器加热水的过程中,热水器的水温随所晒时间的长短而变化,这个问题中因变量是( )A .太阳光强弱B .水的温度C .所晒时间D .热水器2.气温y(℃)随高度x(km )的变化而变化的情况如下表,由表可知,气温y 随着高度x 的增大而( )气温y/℃28 22 16 10 4 -2 -8 -14 -20A.升高B.降低C.不变D.以上都不对3.长方形的周长为24 cm,其中一边长为x cm(其中0<x<12),面积为y cm2,则该长方形中y与x 的关系式可以写为()A.y=x2B.y=(12-x)2C.y=(12-x)·x D.y=2(12-x)4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是()(第5题)5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是24 ℃B.这一天中最高气温与最低气温的差为16 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3 km以下(含3 km) 8.003 km以上每增加1 km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x7.均匀地向如图所示的容器中注满水,能反映在注水过程中水面高度h随时间t变化的图象的是()(第7题)8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是()A.1 B.2 C.3 D.4(第8题)(第11题)(第12题)(第13题)二、填空题(每题5分,共30分)9.同一温度的华氏度数y()与摄氏度数x(℃)之间的关系是y=95x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是________.10.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为______________.11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费________.14.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同).一个进水管和一个出水管的进出水速度如图①所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图②所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水,则一定正确的论断是________.(第14题)三、解答题(15~17题每题10分,其余每题12分,共66分)15.下表是佳佳往表妹家打长途电话的收费记录:时间/min 1 2 3 4 5 6 7电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)若佳佳的通话时间是10 min,则需要付多少电话费?16.如图表示某市2017年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(第16题)(1)这天的最高气温是多少摄氏度?(2)这天共有多少个小时的气温在31 ℃以上?(3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?17.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?(第17题)18.如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?(2)当挖去的正方形的边长由1 cm变化到9 cm时,剩下部分的面积由________变化到________.(第18题)19.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg0 1 2 3 4 5 6 7弹簧的长度/cm12 12.5 13 13.5 14 14.5 15 15.5(1)当所挂物体的质量为3 kg时,弹簧的长度是________;(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?20.小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本以上,从第11本开始按标价的70%卖.乙超市的优惠条件是从第1本开始就按标价的85%卖.(1)当小明要买20本时,到哪家超市购买较省钱?(2)写出甲超市中,收款y 甲(元)与购买本数x (本)(x >10)的关系式. (3)小明现有24元钱,最多可买多少本练习本?答案一、1.B 2.B 3.C 4.D5.D 点拨:由题图可知,这一天中气温在逐渐降低的时段有0时至2时和14时至24时,故选D . 6.D 点拨:由题意知,当出租车行驶里程数x ≥3时,y =8+1.8(x -3)=1.8x +2.6,故选D . 7.A8.C 点拨:①③④正确,②应为乙出发2 h 后追上甲.二、9.77 点拨:将x =25代入关系式可得y =95×25+32=45+32=77,故它的华氏度数是77 .10.y =x 2+6x 点拨:边长为3 cm 的正方形的面积是9 cm 2,边长为(x +3)cm 的正方形的面积为(3+x)2 cm 2,所以面积的增加值y =(3+x)2-9=x 2+6x.11.>12.37.2 min 点拨:由题图可知,上坡速度为3 600÷18=200(m /min ),下坡速度为(9 600-3 600)÷(30-18)=500(m /min ),返回途中,上、下坡的路程刚好相反,所用时间为3 600÷500+(9 600-3 600)÷200=37.2(min ).13.340元14.③ 点拨:①0时至1时开了一个进水管,一个出水管,②1时至4时三管齐开.三、15.解:(1)反映了电话费与通话时间之间的关系;其中通话时间是自变量,电话费是因变量. (2)设电话费为y 元,通话时间为t min .则由题意可知,y 与t 之间的关系式为y =0.6t ,故当t =10时,y =6.所以需付6元电话费.16.解:(1)37 ℃. (2)9 h . (3)3时至15时. (4)25 ℃.(答案不唯一,合理即可) 17.解:(1)体育场离张阳家2.5 km .(2)因为2.5-1.5=1(km ),所以体育场离文具店1 km .因为65-45=20(min ),所以张阳在文具店逗留了20 min .(3)文具店到张阳家的距离为1.5 km ,张阳从文具店到家用的时间为100-65=35(min ),所以张阳从文具店到家的速度为1.5÷3560=187(km /h ).18.解:(1)剩下部分的面积=圆的面积-正方形的面积,所以y 与x 之间的关系式为y =πr 2-x 2=324π-x 2.(2)(324π-1)cm 2 (324π-81)cm 2 19.解:(1)13.5 cm(2)由表格可知,y 与x 之间的关系式为y =12+0.5x.(3)当x =5.5时,y =12+0.5×5.5=14.75,即弹簧的长度为14.75 cm .(4)当y =20时,20=12+0.5x ,解得x =16,故该弹簧最多能挂16 kg 重的物体. 20.解:(1)买20本时,在甲超市购买需用10×1+10×1×70%=17(元),在乙超市购买需用20×1×85%=17(元), 所以买20本到两家超市买收费一样.(2)y 甲=10×1+(x -10)×1×70%=0.7x +3(x >10).(3)由题知乙超市收款y 乙(元)与购买本数x (本)间的关系式为y 乙=x ×1×85%=1720x .所以当y 甲=24时,24=0.7x 甲+3,x 甲=30; 当y 乙=24时,24=1720x 乙,x 乙≈28.所以拿24元钱最多可以买30本练习本(在甲超市购买).第四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.若三角形的两个内角的和是85°,那么这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定 2.下列各图中,作出△ABC 的AC 边上的高,正确的是( )3.如图,△ABC ≌△EDF ,AF =20,EC =8,则AE 等于( ) A .6 B .8 C .10 D .124.下列各条件中,能作出唯一的△ABC 的是( )A .AB =4,BC =5,AC =10 B .AB =5,BC =4,∠A =40° C .∠A =90°,AB =10D .∠A =60°,∠B =50°,AB =55.如图,AB ∥ED ,CD =BF ,若要说明△ABC ≌△EDF ,则还需要补充的条件可以是( ) A .AC =EF B .AB =ED C .∠B =∠E D .不用补充(第3题)(第5题)(第6题)(第8题)6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是() A.14 B.17 C.22 D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF 的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1 B.2 C.3 D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1 C.2n-1 D.2(n+1)(第9题)(第10题)二、填空题(每题3分,共24分)11.桥梁上的拉杆,电视塔的底座,都是三角形结构,而活动挂架是四边形结构,这是分别利用三角形和四边形的________________________________.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD =CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.(第12题)(第13题)(第14题)13.如图,E 点为△ABC 的边AC 的中点,CN ∥AB ,若MB =6 cm ,CN =4 cm ,则AB =________. 14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB ,需要说明△C′O′D′≌△COD ,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC 的三边长分别为a ,b ,c ,若a =3,b =4,则c 的取值范围是____________;已知四边形ABCD 的四边长分别为a ,b ,c ,d ,若a =3,b =4,d =10,则c 的取值范围是____________.16.如图,在△ABC 中,AD 是BC 边上的高,BE 是AC 边上的高,且AD ,BE 交于点F ,若BF =AC ,CD =3,BD =8,则线段AF 的长度为________.(第16题)(第17题)(第18题)17.如图是由相同的小正方形组成的网格,点A ,B ,C 均在格点上,连接AB ,AC ,则∠1+∠2=________.18.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD),若∠D =115°,则∠B =________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.(第19题)20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.(第20题)21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD-AB.(第21题)22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.(第22题)23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.(第23题)24.如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.(第24题)25.已知点P是Rt△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)(第25题)答案一、1.A2.C点拨:过顶点B向AC边所在的直线作垂线,顶点和垂足之间的线段就是高,只有选项C正确,故选C.3.A点拨:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF =6.故选A.4.D5.B点拨:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.C点拨:因为∠A=60°,所以∠ABC+∠ACB=120°.因为BE,CD分别是∠ABC,∠ACB的平分线,所以∠CBE =12∠ABC ,∠BCD =12∠BCA.所以∠CBE +∠BCD =12(∠ABC +∠BCA)=60°.所以∠BFC =180°-60°=120°.故选C .7.C 8.B9.B 点拨:易得S △ABE =13×12=4,S △ABD =12×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B 点拨:△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0,△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1, △ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2, 所以△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.稳定性和不稳定性12.ASA 点拨:由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两三角形全等.13.10 cm 点拨:由CN ∥AB ,点E 为AC 的中点,可得∠EAM =∠ECN ,AE =CE.又因为∠AEM =∠CEN ,所以△AEM ≌△CEN.所以AM =CN =4 cm .所以AB =AM +MB =4+6=10(cm ).14.SSS15.1<c<7;3<c<1716.5 点拨:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF.又因为AC =BF ,所以△ADC ≌△BDF.所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.(第17题)17.90° 点拨:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE , 所以△ADC ≌△BEA. 所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°. 18.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F. 因为AC 平分∠BAD , 所以∠CAF =∠CAE.又因为CF ⊥AF ,CE ⊥AB , 所以∠AFC =∠AEC =90°. 在△CAF 和△CAE 中, ⎩⎪⎨⎪⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE(AAS ). 所以FC =EC ,AF =AE. 又因为AE =12(AB +AD),所以AF =12(AE +EB +AD),即AF =BE +AD.又因为AF =AD +DF ,所以DF =BE. 在△FDC 和△EBC 中,⎩⎪⎨⎪⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC(SAS ).所以∠FDC =∠EBC. 又因为∠ADC =115°, 所以∠FDC =180°-115°=65°.所以∠B =65°. 三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°. 因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°. 20.解:能作出两个等腰三角形,如图所示.(第20题)21.解:因为AB =AC ,所以AD -AB =AD -AC =CD. 因为BD -BC<CD ,所以BD -BC<AD -AB.(第22题)22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离. (3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO , 所以△AOB ≌△AOD. 所以AD =AB.23.解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM.(任写其中两对即可) 选择△AEM ≌△ACN , 因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD. 所以∠EAM =∠CAN.在△AEM 和△ACN 中,⎩⎪⎨⎪⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△ACN(ASA ).选择△ABN ≌△ADM ,因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D.又因为∠BAN =∠DAM ,所以△ABN ≌△ADM(ASA ).选择△BMF≌△DNF,因为△ABC≌△ADE,所以AB=AD,∠B=∠D.又因为∠BAN=∠DAM,所以△ABN≌△ADM(ASA).所以AN=AM.所以BM=DN.又因为∠B=∠D,∠BFM=∠DFN,所以△BMF≌△DNF(AAS).(任选一对进行说明即可)24.解:因为∠ACB=90°,所以∠ECF+∠BCD=90°.因为CD⊥AB,所以∠BCD+∠B=90°.所以∠ECF=∠B.在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).(第25题)25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第五章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C =∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个(第2题)(第4题)(第5题)(第6题)3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处5.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A =60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是()A.12:01 B.10:51 C.10:21 D.15:107.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()(第7题)8.如图,等腰三角形ABC的周长为21,底边BC的长为5,腰AB的垂直平分线交AB于点D,交AC于点E,连接BE,则△BEC的周长为()A.11 B.12 C.13 D.14(第8题)(第9题)(第10题)9.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()个.A.4 B.3 C.2 D.1二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第12题)(第13题)(第15题)(第16题)(第17题)13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC =6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.(第19题)20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求作、作法,只保留作图痕迹).(第20题)。