高考三角函数分类练习题
高中三角函数专题练习题及答案

高中三角函数专题练习题及答案一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.平面向量i a 满足:1(0,1,2,3)i a i ==,且310i i a ==∑.则012013023a a a a a a a a a ++++++++的取值范围为________.3.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________4.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,AB =60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.5.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论: ①203f π⎛⎫=⎪⎝⎭; ②若5()6f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π; ③关于x 的方程()1f x =在区间[)0,2π上最多有4个不相等的实数解; ④若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦. 其中所有正确结论的编号为________. 6.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.7.已知函数()2sin cos f x x x x =+①函数()f x 的最小正周期为π;②函数12y f x π⎛⎫=+ ⎪⎝⎭是偶函数;③函数()f x 关于点()026k k Z ππ⎛⎫-∈⎪⎝⎭,成中心对称;④函数()f x 在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数.其中正确的结论是_______.(写出所有正确结论的序号)8.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .9.已知向量a 与b 的夹角为θ,27sin 7θ=,||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.10.已知||||||1,0,||1OA OB OC OA OB OP ===⋅=≤,则AP BP BP CP CP AP ⋅+⋅+⋅的最大值为__________.二、单选题11.设150a =,112ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,651ln 550c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b c a <<D .b a c <<12.把函数()sin y x x =∈R 的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭,x ∈RB .sin 26x y π⎛⎫=+ ⎪⎝⎭,x ∈RC .2sin 23x y π⎛⎫=+ ⎪⎝⎭,x ∈RD .sin 23y x π⎛⎫=+ ⎪⎝⎭,x ∈R13.已知向量a 与b 的夹角为120︒,且2a b ⋅=-,向量c 满足()()101c a b λλλ=+-<<,且a c b c ⋅=⋅,记向量c 在向量a 与b 方向上的投影分别为x 、y .现有两个结论:①若13λ=,则2a b =;②22x y xy ++的最大值为34.则正确的判断是( ) A .①成立,②成立 B .①成立,②不成立 C .①不成立,②成立D .①不成立,②不成立14.《九章算术》卷五“商功”:今有刍甍,下广3丈,袤4丈;上袤2丈,无广;高1丈.其描述的是下图的一个五面体,底面ABCD 是矩形,4AB =,3BC =,2EF =,//EF 底面ABCD 且EF 到底面ABCD 的距离为1.若DE AE BF CF ===,则该刍甍中点F 到平面EBC 的距离为( )A .15B .35C 10D 2515.已知(){}|sin ,A y y n n Z ωϕ==+∈,若存在ϕ使得集合A 中恰有3个元素,则ω的取值不可能是( ) A .27π B .25π C .2π D .23π16.已知函数()sin 22cos f x x x =-,下列说法错误的是( ) A .函数()f x 是周期函数 B .6x π=是函数()f x 图象的一条对称轴C .函数()f x 的增区间为()72,266k k k ππππ⎡⎤-+∈⎢⎥⎣⎦ZD .函数()f x 17.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( )A B .2 C 1 D .18.已知函数()()sin 302f x x πϕϕ⎛⎫=-<≤ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π上单调递增,现有如下三个结论:①ϕ的最小值为3π; ②当ϕ取得最大值时,将函数()f x 的图像向左平移18π个单位后,再把曲线上各点的横坐标伸长到原来的2倍,得到函数()g x 的图像,则132g π⎛⎫= ⎪⎝⎭;③函数()f x 在[]0,2π上有6个零点. 则上述结论正确的个数为( ) A .0B .1C .2D .319.设锐角ABC ∆的三个内角,,A B C 的对边分别为,,a b c 且1c =,2A C =,则ABC ∆周长的取值范围为( )A .(0,2+B .(0,3C .(2+D .(220.设函数()xf x mπ,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞三、解答题21.如图,一幅壁画的最高点A 处离地面4米,最低点B 处离地面2米.正对壁画的是一条坡度为1:2的甬道(坡度指斜坡与水平面所成角α的正切值),若从离斜坡地面1.5米的C 处观赏它.(1)若C对墙的投影(即过C作AB的垂线垂足为投影)恰在线段AB(包括端点)上,求点C离墙的水平距离的范围;(2)在(1)的条件下,当点C离墙的水平距离为多少时,视角θ(ACB∠)最大?22.如图,湖中有一个半径为1千米的圆形小岛,岸边点A与小岛圆心C相距3千米,为方便游人到小岛观光,从点A向小岛建三段栈道AB,BD,BE,湖面上的点B在线段AC 上,且BD,BE均与圆C相切,切点分别为D,E,其中栈道AB,BD,BE和小岛在同∠为θ.一个平面上.沿圆C的优弧(圆C上实线部分)上再修建栈道DE.记CBD()1用θ表示栈道的总长度()fθ,并确定sinθ的取值范围;()2求当θ为何值时,栈道总长度最短.23.如图,在ABC ∆中,90,3,1ABC AB BC ︒∠===,P 为ABC ∆内一点,90BPC ︒∠=.(1)若32PC =,求PA ; (2)若120APB ︒∠=,求ABP ∆的面积S .24.某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角ΔABC 和以BC 为直径的半圆拼接而成,点P 为半圈上一点(异于B ,C ),点H 在线段BC 上,且满足CH AB ⊥.已知90ACB ∠=︒,1dm AB =,设ABC θ∠=.(1)为了使工艺礼品达到最佳观赏效果,需满足ABC PCB ∠=∠,且CA CP +达到最大.当θ为何值时,工艺礼品达到最佳观赏效果;(2)为了工艺礼品达到最佳稳定性便于收藏,需满足60PBA ∠=︒,且CH CP +达到最大.当θ为何值时,CH CP +取得最大值,并求该最大值.25.已知向量9(sin ,1),(sin ,cos )8a x b x x ==-, 设函数(),0,2f x a b x π⎡⎤=⋅∈⎢⎥⎣⎦.(Ⅰ)求()f x 的值域(Ⅱ)设函数()f x 的图像向左平移2π个单位长度后得到函数()h x 的图像,若不等式()()sin 20f x h x x m ++-<有解,求实数m 的取值范围.26.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ; (2)若()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,求ϕ的取值范围. 27.已知函数22()sin 22sin 26144f x x t x t t ππ⎛⎫⎛⎫=---+-+ ⎪ ⎪⎝⎭⎝⎭,,242x ππ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,最小值为()g t .(1)求当1t =时,求8f π⎛⎫⎪⎝⎭的值;(2)求()g t 的表达式; (3)当112t -≤≤时,要使关于t 的方程2()9g t k t =-有一个实数根,求实数k 的取值范围. 28.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.29.已知在ABC ∆中,,,a b c 分别为角A,B,C 的对应边,点D 为BC 边的中点,ABC ∆的面积为23sin AD B. (1)求sin sin BAD BDA ∠⋅∠的值;(2)若6,BC AB AD ==b .30.设向量a =(2sin 2x cos 2xx ),b =(cos x ,sin x ),x ∈[-6π,3π],函数f (x )=2a •b .(1)若|a b |,求x 的值;(2)若f (x )-m m 的取值范围.【参考答案】一、填空题1.3π2.4⎡⎤⎣⎦3.12(,)369-4.20π5.①②④.6.⎝⎭7.①②③89.2510.二、单选题11.D 12.D 13.C 14.C 15.A 16.B 17.C 18.C 19.C 20.C三、解答题21.(1)点C 离墙的水平距离的范围为:1~5m m ;(2)当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【解析】 【分析】(1)如图所示:设(02),BF x x CF y =≤≤=,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;(2)利用两角和的正切公式、结合正切的定义,求出tan θ的表达式,利用换元法、基本不等式进行求解即可. 【详解】(1)如图所示:设(02),BF x x CF y =≤≤=,显然有1tan tan 2FGD α∠==,因此有 2(2)tan DFFG x FGD==+∠,由//GE DF ,可得: 1.52(2)22(2)CE CG x y DF GF x x +-=⇒=++,化简得:21y x =+,因为02x ≤≤,所以15y ≤≤,即点C 离墙的水平距离的范围为:1~5m m ;(2)222tan tan 2tan tan()21tan tan 21x x BCF ACF y y yBCF ACF x x BCF ACF y x x y yθ-+∠+∠=∠+∠===--∠⋅∠-+-⋅,因为21y x =+,所以有12y x -=,代入上式化简得: 2222228tan 11522()5622y y y y y x x y y yθ===---+-⋅++-, 因为15y ≤≤,所以有55562564y y y y+-≥⋅=(当且仅当55y y =时取等号,即1y =时,取等号),因此有0tan 2θ<≤,因此当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【点睛】本题考查两角和的正切公式的应用,考查了基本不等式的应用,考查了平行线成比例定理,考查了数学建模能力,考查了数学运算能力. 22.()1()1232sin tan f θπθθθ=-+++,1sin ,13θ⎡⎫∈⎪⎢⎣⎭;()2当3πθ=时,栈道总长度最短.【解析】()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==,130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 则()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,进而确定sin θ的取值范围; ()2根据()12cos 23sin f θθθπθ-=-++求导得()()2cos 2cos 1sin f θθθθ--'=,利用增减性算出()min 533f πθ=+,进而求θ得取值. 【详解】解:()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==, CBE CBD θ∠=∠=,又CD BD ⊥,CE BE ⊥,故2DCE πθ∠=-,则劣弧DE 的长为2πθ-,因此,优弧DE 的长为2πθ+, 又3AC =,故130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 所以,()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,则1sin ,13θ⎡⎫∈⎪⎢⎣⎭; ()2()12cos 23sin f θθθπθ-=-++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,其中01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭,()()2cos 2cos 1sin f θθθθ--'=故3θ=时,()min 33f θ=+ 所以当3πθ=时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题.23.(12 【解析】 【分析】(1)求出12BP ==,,36CBP ABP ππ∠=∠=,ABP ∆中由余弦定理即可求得PA ;(2)设PBA α∠=,利用正弦定理表示出()sin120sin 60AB PB =︒︒-α,求得tan α=,利用面积公式即可得解. 【详解】(1)在ABC ∆中,90,1ABC AB BC ︒∠===,2AC =P 为ABC ∆内一点,90BPC ︒∠=,PC =,所以12BP =,CBP ∆中,由余弦定理得:2221cos 22BP BC PC CBP BP BC +-∠==⋅所以,36CBP ABP ππ∠=∠=ABP ∆中,由余弦定理得:AP==; (2)120APB ︒∠=,设0,,90,602PBA PBC PAB π⎛⎫∠=α∈∠=︒-α∠=︒-α ⎪⎝⎭,在Rt PBC ∆中,sin sin PB BC =⋅α=α, 在PBA ∆中,由正弦定理()sin120sin 60AB PB=︒︒-α,即()sin 2sin 60α=︒-α,sin sin α=α-α,所以tan α=sin PB α==ABP ∆的面积11sin 22S AB PB α=⋅==. 【点睛】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强.24.(1)π6θ=(2)当π12θ=,CH CP +【解析】(1)设ABC PCB θ∠=∠=,则在直角ΔABC 中,sin AC θ=,cos BC θ=,计算得到2sin sin 1AC CP θθ+=-++,计算最值得到答案.(2)计算sin cos CH θθ=⋅,得到πsin 23CH CP θ⎛⎫+=+ ⎪⎝⎭.【详解】(1)设ABC PCB θ∠=∠=,则在直角ΔABC 中,sin AC θ=,cos BC θ=. 在直角ΔPBC 中,2cos cos cos cos PC BC θθθθ=⋅=⋅=, sin sin cos sin cos PB BC θθθθθ=⋅=⋅=.22sin cos sin 1sin AC CP θθθθ+=+=+-2sin sin 1θθ=-++,π0,3θ⎛⎫∈ ⎪⎝⎭,所以当1sin 2θ=,即π6θ=,AC CP +的最大值为54. (2)在直角ΔABC 中,由1122ABC S CA CB AB CH ∆=⋅=⋅,可得sin cos sin cos 1CH θθθθ⋅==⋅. 在直角ΔPBC 中,πsin 3PC BC θ⎛⎫=⋅- ⎪⎝⎭ππcos sin cos cos sin 33θθθ⎛⎫=⋅- ⎪⎝⎭,所以1sin cos cos sin 2CH CP θθθθθ⎫+=+-⎪⎪⎝⎭,π0,3θ⎛⎫∈ ⎪⎝⎭,所以211sin 2sin cos 22CH CP θθθθ+=-11πsin 22sin 2423θθθ⎛⎫==+ ⎪⎝⎭所以当π12θ=,CH CP + 【点睛】本题考查了利用三角函数求最值,意在考查学生对于三角函数知识的应用能力. 25.(Ⅰ)11,88⎡⎤-⎢⎥⎣⎦(Ⅱ)9,4⎛⎫-+∞ ⎪⎝⎭ 【解析】(Ⅰ)根据向量的数量积的坐标运算可得函数()f x 的解析式,化成二次函数型函数,求得值域;(Ⅱ)首先根据三角函数的变换规则求得()h x 的解析式,要使()()sin 20f x h x x m ++-<在0,2x π⎡⎤∈⎢⎥⎣⎦有解,即不等式()()sin2m f x h x x >++在0,2x π⎡⎤∈⎢⎥⎣⎦有解,令()()sin2y f x h x x =++求出函数的最小值,即可得实数m 的取值范围.【详解】 解:(1)()222991sin cos 1cos cos cos cos 888f x x x x x x x =+-=-+-=-+- ()211cos 28f x x ⎛⎫∴=--+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦0cos 1x ∴≤≤()1188f x ∴-≤≤ ()f x ∴的值域为11,88⎡⎤-⎢⎥⎣⎦(2)函数()21cos cos 8f x x x =-+-的图像向左平移2π个单位长度后得到函数()h x 的图像,()2211cos cos sin sin 2288h x x x x x ππ⎛⎫⎛⎫∴=-+++-=--- ⎪ ⎪⎝⎭⎝⎭,依题意,不等式()()sin2m f x h x x >++在0,2x π⎡⎤∈⎢⎥⎣⎦有解,设()()5sin2cos sin sin24y f x h x x x x x =++=--+52sin cos cos sin ,0,42y x x x x x π⎡⎤=+--∈⎢⎥⎣⎦,令[]cos sin ,0,1,142t x x x x t ππ⎛⎫⎡⎤=-=+∈∴∈- ⎪⎢⎥⎝⎭⎣⎦, 则[]2211,1,142y t t t t ⎛⎫=-+-=--∈- ⎪⎝⎭∴函数()()sin2y f x h x x =++的值域为9,04⎡⎤-⎢⎥⎣⎦.∴ min 94m y >=-故实数m 的取值范围为9,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查正弦函数的性质,二次函数的性质以及辅助角公式,属于中档题. 26.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】(1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭.又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭. 02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x在7,6ππ⎛⎫⎪⎝⎭是单调函数,∴2622ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩,∴,62ππϕ⎡⎤∈⎢⎥⎣⎦.【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题.27.(1)4-(2)22515421()611282(1)t t tg t t tt t t⎧⎛⎫-+<-⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩(3)--22∞⋃+∞(,)(,)【解析】【分析】(1)直接代入计算得解;(2)先求出1sin(2)[,1]42xπ-∈-,再对t分三种情况讨论,结合二次函数求出()g t的表达式;(3)令2()()9h t g t k t=-+,即2()(6)t10h t k=-++有一个实数根,利用一次函数性质分析得解.【详解】(1)当1t=时,2()sin22sin2444f x x t xππ⎛⎫⎛⎫=----⎪ ⎪⎝⎭⎝⎭,所以48fπ⎛⎫=-⎪⎝⎭.(2)因为[,]242x∈ππ,所以32[,]464xπππ-∈-,所以1sin(2)[,1]42xπ-∈-2()[sin(2)]614f x x t tπ=---+([,]242x∈ππ)当12t<-时,则当1sin(2)42xπ-=-时,2min5[()]54f x t t=-+当112t-≤≤时,则当sin(2)4x tπ-=时,min[()]61f x t=-+当1t>时,则当sin(2)14xπ-=时,2min[()]82f x t t=-+故22515421()611282(1)t t tg t t tt t t⎧⎛⎫-+<-⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩(3)当112t-≤≤时,()61g t t=-+,令2()()9h t g t k t=-+即2()(6)t10h t k=-++欲使2()9g t kt =-有一个实根,则只需1()02(1)0h h ⎧-≤⎪⎨⎪≥⎩或1()02(1)0h h ⎧-≥⎪⎨⎪≤⎩ 解得-2k ≤或2k ≥.所以k 的范围:--22∞⋃+∞(,)(,). 【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题. 28.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】 【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可. 【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴=()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫⎪⎝⎭对称2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m =()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.29.(1)13; (2【解析】 【分析】(1)先由ABC ∆的面积为23sin AD B 且D 为BC 的中点,得到ABD ∆的面积;再由三角形的面积公式和正弦定理即可求出结果;(2)根据(1)的结果和6BC AB =,可求出sin BDA ∠和sin BAD ∠;再由余弦定理,即可求出结果. 【详解】(1)由ABC ∆的面积为23sin AD B 且D 为BC 的中点可知:ABD ∆的面积为26sin AD B, 由三角形的面积公式可知:21sin 26sin AD AB BD B B ⋅⋅=, 由正弦定理可得:3sin sin 1BAD BDA ∠⋅∠=, 所以1sin sin 3BAD BDA ∠⋅∠=,(2)6BC AB = ,又因为D 为中点,所以BC 2BD 6AB ==,即BD 3AB =, 在ABD ∆中由正弦定理可得sin sin BD ABBAD BDA=∠∠,所以sin 3sin BAD BDA ∠=∠由(1)可知1sin sin 3BAD BDA ∠⋅∠=所以1sin ,sin 13BDA BAD ∠=∠=,()0,BAD π∠∈ ∴ ,2BAD π∠=在直角ABD ∆中13AD BDA =∠=,所以1,3AB BD ==.BC 2BD =,BC 6∴=在ABC ∆中用余弦定理,可得22212cos 13621633,3b ac ac B b =+-=+-⨯⨯⨯=∴=【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理以及面积公式,即可求解,属于常考题型.30.(1)π4x =;(2)2⎤⎦.【解析】 【分析】(1)根据|a |=b |,利用化简函数化简解得x 的值; (2根据f (x )=2a •b .结合向量的坐标运算,根据x ∈[6π-,3π],求解范围,)﹣f (x )﹣m ≤m 的取值范围. 【详解】解:(1)由|a b |, 可得222a b =; 即4sin 2x =2(cos 2x +sin 2x ) 即sin 2x =12;∴sin x = ∵x ∈[-6π,3π], ∴x =4π(2)由函数f (x )=2a •b =2sin2x 2x=sin2x +1122-cos2x )=sin2x x (2x -3π)∵x ∈[-6π,3π], ∴2x -3π∈[-23π,3π],2≤2sin (2x -3π)要使f (x )-m则2m m ⎧-≤⎪⎨≥⎪⎩2m ≤故得m 的取值范围是2]. 【点睛】本题考查三角函数的化简能力和向量的运算,考查转化思想以及计算能力.。
专题01 锐角三角函数和特殊角的三角函数(六大类型)(题型专练)(解析版)

专题01 锐角三角函数和特殊角的三角函数(六大类型)【题型1锐角三角函数的概念】【题型2 锐角三角函数的增减性】【题型3特殊角三角函数值】【题型4 同角三角函数的关系】【题型5 互余两角三角函数的关系】【题型6 三角函数的计算】【题型1锐角三角函数的概念】1.(2022秋•道县期末)在Rt△ABC中,∠C=90°,AC=5,BC=12,则tan A 的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,∠C=90°,AC=5,BC=12,∴tan A=.故选:B.2.(2023•南岗区校级开学)在Rt△ABC中,∠C=90°,AB=2BC,则tan B 等于( )A.B.C.D.【答案】D【解答】解:∵∠C=90°,AB=2BC,∴AC===BC,∴tan B===.故选:D.3.(2022秋•路北区校级期末)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.【答案】A【解答】解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.4.(2023•新华区校级模拟)在Rt△ABC中,∠C=90°,若c为斜边,a、b 为直角边,且a=5,b=12,则sin A的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,c===13,sin A=.故选:B.5.(2023•陈仓区模拟)如图,在Rt△ABC中,∠A=90°,AB=8,BC=10,则sin B的值是( )A.B.C.D.【答案】C【解答】解:∵在Rt△ABC中,∠A=90°,AB=8,BC=10,∴AC=,∴sin B===,故选:C .6.(2023•虹口区一模)如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2,那么cos A 的值为( )A .B .2C .D .【答案】C【解答】解:在Rt △ABC 中,∠C =90°,AC =1,BC =2,由勾股定理,得AB ==.由锐角的余弦,得cos A ===.故选:C .7.(2023•金山区一模)在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则∠B 的正切值等于( )A .B .C .D .【答案】A【解答】解:∵∠ACB =90°,AC =4,BC =3,∴tan B ==.故选:A .8.(2023•长宁区一模)在△ABC 中,∠C =90°,已知AC =3,AB =5,那么∠A 的余弦值为( )A .B .C .D .【答案】C【解答】解:在Rt △ABC 中,AC =3,AB =5,故选:C.【题型2 锐角三角函数的增减性】9.(2023•未央区校级三模)若tan A=2,则∠A的度数估计在( )A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间【答案】D【解答】解:∵tan45°=1,tan60°=,而tan A=2,∴tan A>tan60°,∴60°<∠A<90°.故选:D.10.(2022秋•惠山区校级期中)已知∠A为锐角,且tan A=3,则∠A的取值范围是( )A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【答案】D【解答】解:tan30°=,tan45°=1,tan60°=,∵tan A=3,∴3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.11.(2021秋•淮北月考)已知角α为△ABC的内角,且cosα=,则α的取值范围是( )A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【答案】C【解答】解:∵cos60°=,cos45°=,∴cos60°<cosα<cos45°,∴45°<α<60°,故选:C.【题型3特殊角三角函数值】12.(2022秋•嵊州市期末)已知tan A=,∠A是锐角,则∠A的度数为( )A.30°B.45°C.60°D.90°【答案】A【解答】解:∵,且∠A是锐角,∴∠A=30°,故选:A.13.(2023•河西区模拟)计算2cos30°的结果为( )A.B.1C.D.【答案】C【解答】解:∵cos30°=,∴2cos30°=2×=.故选:C.14.(2023•肃州区三模)sin60°的相反数( )A.B.C.D.【答案】C【解答】解:∵sin60°=,∴sin60°的相反数是﹣.故选:C.15.(2023•高州市一模)在Rt△ABC中,∠C=90°,若cos A=,则∠A的大小是( )A.30°B.45°C.60°D.75°【答案】C【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A为锐角,∵cos A=,∴∠A=60°,故选:C.16.(2023•南开区二模)下列三角函数中,结果为的是( )A.cos30°B.tan30°C.sin60°D.cos60°【答案】D【解答】解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.17.(2023•河西区一模)cos60°的值等于( )A.B.C.D.【答案】D【解答】解:cos60°=,故选:D.18.(2023•东莞市校级一模)已知∠A为锐角且tan A=,则∠A=( )A.30°B.45°C.60°D.不能确定【答案】C【解答】解:∵∠A为锐角,tan A=,∴∠A=60°.故选:C.19.(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是( )A.15°B.45°C.30°D.60°【答案】D【解答】解:在Rt△ABC中,∠C=90°,∵tan B===,∴∠B=60°,故选:D.【题型4 同角三角函数的关系】20.(2023•泉港区模拟)已知∠A是锐角△ABC的内角,,则cos A的值是( )A.B.C.D.【答案】C【解答】解:由勾股定理可得sin2A+cos2A=1,∵,∴()2+cos2A=1,∴cos2A=,∴cos A=或cos A=﹣(舍去),故选:C.21.(2022秋•日照期末)若α为锐角,且sinα=,则tanα为( )A.B.C.D.【答案】D【解答】解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.22.(2022秋•桐柏县期末)已知在Rt△ABC中,∠C=90°.若sin A=,则cos A等于( )A.B.C.D.1【答案】A【解答】解:∵sin2A+cos2A=1,sin A=,∴+cos2A=1,∵∠A为锐角,∴cos A=.故选:A.23.(2022秋•滦州市期中)在Rt△ABC中,∠C=90°,,则cos A=( )A.B.C.D.【答案】C【解答】解:在Rt△ABC中,∠C=90°,=,可设BC=4k,则AB=5k,由勾股定理得,AC==3k,∴cos A==,故选:C.24.(2023•钟楼区校级模拟)在Rt△ABC中,∠C=90°,tan A=,则cos A 等于( )A.B.C.D.【答案】D【解答】解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.25.(2023秋•二道区校级月考)在Rt△ABC中,∠C=90°,若cos A=,则sin A的值为 .【答案】.【解答】解:∵sin2A+cos2A=1,又∵,∴,∴sin A=或(舍去),故答案为:.【题型5 互余两角三角函数的关系】26.(2023秋•肇源县校级月考)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∵∠C=90°,,∴,设BC=12x,则AB=13x,,∴,故选:D.27.(2023•二道区校级模拟)在Rt△ABC中,AC≠BC,∠C=90°,则下列式子成立的是( )A.sin A=sin B B.sin A=cos B C.tan A=tan B D.cos A=tan B 【答案】B【解答】解:A、sin A=,sin B=,sin A≠sin B,故不符合题意;B、sin A=,cos B=,sin A=cos B,故B符合题意;C、tan A=,tan B=,tan A≠tan B,故不符合题意;D、cos A=,tan B=,则cos A≠tan B,故不符合题意;故选:B.28.(2023秋•东阿县校级月考)在Rt△ABC中,∠C=90°,sin A=,则cos B 的值为( )A.B.C.D.【答案】B【解答】解:∵cos B=,sin A==,∴cos B=.故选:B.29.(2022秋•双牌县期末)已知在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=4a,AB=5a,∴AC===3a,∴tan B==,故选:D.30.(2023•新邵县校级一模)已知△ABC中,∠A=90°,tan B=,则sin C= .【答案】.【解答】解:如图.∵∠A=90°,tan B=,∴设AC=x,则AB=2x.∴BC==.∴sin C=.故答案为:.31.(2023•未央区校级二模)在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为 .【答案】.【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=3a,AB=5a,∴AC===4a,∴tan B===.故答案为:.【题型6 三角函数的计算】32.(2023春•江岸区校级月考)计算:.【答案】1.【解答】解:==2﹣1=1.33.(2022秋•蜀山区校级期末)计算:sin245°+tan60°•cos30°.【答案】2.【解答】解:原式=()2+×=+=2.34.(2023春•朝阳区校级期末)计算:.【答案】见试题解答内容【解答】解:=2×﹣+1﹣×=﹣+1﹣=.35.(2022秋•武功县期末)计算:sin45°+2cos30°﹣tan60°.【答案】见试题解答内容【解答】解:原式=+2×﹣=+﹣=.36.(2022秋•南通期末)计算:tan45°﹣2sin30°+4cos230°.【答案】3.【解答】解:原式==1﹣1+3=3.37.(2022秋•辛集市期末)计算:sin60°•tan30°+.【答案】1.【解答】解:原式==+=1.。
历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。
2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
2023-2024学年高考数学三角函数专项练习题(附答案)

2023-2024学年高考数学三角函数小专题一、单选题1.函数的最小正周期为( )()2sin 222sin 4f x x xπ⎛⎫=-- ⎪⎝⎭A .B .C .D .π2ππ42π2.若,则等于( )sin tan 0x x ⋅<1cos2x +A .B .C .D .2cos x 2cos x -2sin x 2sin x-3.已知,均为锐角,则( )251cos ,tan()53ααβ=-=-,αββ=A .B .C .D .5π12π3π4π64.将函数的图象平移后所得的图象对应的函数为,则进行的平移πsin 23y x ⎛⎫=+ ⎪⎝⎭cos 2y x =是( )A .向左平移个单位B .向右平移个单位C .向右平移个单位π12π6π12D .向左平移个单位π65.若,则( )1cos 63πα⎛⎫-=⎪⎝⎭sin 26πα⎛⎫+= ⎪⎝⎭A .B .C .D .42979429-79-6.设函数,其图象的一条对称轴在区间内,且的()3sin cos (0)f x x x ωωω=+>ππ,63⎡⎤⎢⎥⎣⎦()f x 最小正周期大于,则的取值范围为( )πωA .B .C .D .1,12⎛⎫⎪⎝⎭()0,2[)1,2()1,27.已知,且,求( )π4sin 45α⎛⎫+= ⎪⎝⎭π3π44<<αcos α=A .B .C .D .2106222610A .函数的图像可由()f xB .函数在区间()f xC .函数的图像关于直线()f xC .D .o o2sin15sin 75o oo otan 30tan151tan 30tan15+-11.已知函数的图像关于直线对称,函数关于点对称,则下列说(21)f x +1x =(1)f x +(1,0)法不正确的是( )A .B .4为的周期(1)(1)f x f x -=+()f x C .D .(1)0f =()32f x f x ⎛⎫=- ⎪⎝⎭12.已知函数的图象关于直线对称,则( )ππ()sin(3)()22f x x ϕϕ=+-<<π4x =A .函数为奇函数π()12f x +B .函数在上单调递增()f x ππ[,]126C .若,则的最小值为12|()()|2f x f x -=12||x x -2π3D .将函数图象上所有点的横坐标缩小为原来的,得到函数的图象()f x 13sin()y x ϕ=+三、填空题13.计算:=.tan 73tan1933tan 73tan13︒︒︒︒--14.已知,,则 .1sin cos 5αα+=-()0,πα∈tan α=15.已知函数的最小正周期为,则.π()2sin()(0)3f x x ωω=+>4πω=16.已知函数,则函数的对称轴的方程为22()2cos 43sin cos 2sin f x x x x x =+-()f x .答案:1.B【分析】把函数化成的形式,利用公式求函数的最小正周期.()sin y A x ωϕ=+2πT ω=【详解】因为()2sin 222sin 4f x x x π⎛⎫=-- ⎪⎝⎭()22sin 2cos 221cos 222x x x =---.22sin 2cos 2222x x =+-πsin 224x ⎛⎫=+- ⎪⎝⎭所以,函数的最小正周期为.2ππ2T ==故选:B 2.B【分析】先由已知条件判断的符号,然后对配凑升幂公式即可.cos x 1cos2x +【详解】由题知:2sin sin tan 00cos 0cos xx x x x ⋅<⇒<⇒<.21cos21cos222cos 2cos 2cos 2xx x x x++=⨯===-故选:B.3.C【分析】由两角差的正切公式求解即可.【详解】因为,,,π02α<<25cos 5α=25sin 1cos 5αα=-=,sin 1tan cos 2ααα==,()()()11tan tan 23tan tan 1111tan tan 123ααββααβααβ⎛⎫-- ⎪--⎝⎭⎡⎤=--===⎣⎦+-⎛⎫+⋅- ⎪⎝⎭所以.π4β=故选:C.4.A【分析】分析各选项平移后的函数解析式,由此作出判断即可.【详解】对于A :向左平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π12,符合;πππsin 2sin 2cos 21232y x x x⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于B :向右平移个单位可得到,不πsin 23y x ⎛⎫=+ ⎪⎝⎭π6ππsin 2sin 2cos 263y x x x ⎡⎤⎛⎫=-+=≠ ⎪⎢⎥⎝⎭⎣⎦符合;对于C :向右平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π12,不符合;πππsin 2sin 2cos 21236y x x x⎡⎤⎛⎫⎛⎫=-+=+≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于D :向左平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π6,不符合;ππ2πsin 2sin 2cos 2633y x x x⎡⎤⎛⎫⎛⎫=++=+≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故选:A.5.D【分析】利用二倍角公式和诱导公式解题.【详解】因为2217cos(2)=cos22cos 121cos(2)366393ππππαααα⎛⎫⎛⎫⎛⎫--=--=⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以.7sin 2sin 2cos 262339ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=--=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:D 6.C【分析】根据题意,得到,取得对称轴的方程,由的()π2sin()6f x x ω=+ππ,Z 3k x k ωω=+∈k 取值,结合题意,即可求解.【详解】由函数,()π3sin cos 2sin()6f x x x x ωωω=+=+令,可得,πππ,Z 62x k k ω+=+∈ππ,Z3k x k ωω=+∈因为图象的一条对称轴在区间内,可得,可得,ππ,63⎡⎤⎢⎥⎣⎦ππππ633k ωω≤+≤131231k k ωω⎧≤+⎪⎨⎪≥+⎩又因为的最小正周期大于,可得,解得,()f x π2ππω>2ω<当且仅当时,解得.0k =ω1≤<2综上可得,实数的取值范围为.ω[1,2)故选:C.7.A【分析】利用平方关系和两角差的余弦公式计算.【详解】因为,所以,,π3π44<<απππ24α<+<2ππ3cos()1sin ()445αα+=--+=-,ππππππ3422cos cos ()cos()cos sin()sin ()44444455210αααα⎡⎤=+-=+++=-+⨯=⎢⎥⎣⎦故选:A.8.B【分析】根据给定的函数图象,结合“五点法”作图求出函数解析式,再根据正弦函数的单调性、对称性,结合三角函数图象的平移变换,逐项判断作答.【详解】由图象可知,,2A =由图,因为,所以,,()10=1sin =2f ϕ⇒π02ϕ<<π=6ϕ()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭由图,则,5π012f ⎛⎫= ⎪⎝⎭5ππ122π,=,12655k k k k ωω⨯+=∈⇒-∈Z Z由图可知,所以,所以,1π5π12002125T ωω=>-⇒<<=2ω()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭对于A ,的图像向左平移个单位得到的sin =2sin2y A x x ω=π6ππ2sin2+=2sin 2+63y x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭图象,选项A 不正确;对于B ,由,可得,πππ2π22π,262k x k k -+≤+≤+∈Z ππππ,36k x k k -+≤≤+∈Z则函数的单调递增区间为,则在区间上单调递增,()f x πππ,π,36k k k ⎡⎤-++∈⎢⎥⎣⎦Z ()f x ππ,36⎡⎤-⎢⎥⎣⎦所以在区间上单调递增,选项B 正确;()f x ππ,312⎡⎤-⎢⎥⎣⎦对于C ,由于,则直线不是函数图象的对称轴,选项π2ππ2sin 12336f ⎛⎫⎛⎫=+=≠± ⎪ ⎪⎝⎭⎝⎭π3x =()f x C 不正确;对于D ,由,可得,则函数的图象关于点π2π,6x k k +=∈Zππ,122k x k =-+∈Z ()f x 对称,选项D 不正确.ππ,0,122k k ⎛⎫-+∈ ⎪⎝⎭Z 故选:B .9.ABD【分析】令,求得,可判定A 不正确;令,求得5π12x =5π3()122f =π8x =-可判定B 不正确;由时,可得,可判定C 正π5π()sin()812f -=-π22π,π,0,π6x -=--()0f x =确;由,结合正弦函数的性质,可判定D 不正确.π7ππ2(,)666x -∈--【详解】对于函数,()sin 26πf x x ⎛⎫=- ⎪⎝⎭对于A 中,令,可得,5π12x =5π5ππ2π3()sin(2)sin 1212632f =⨯-==所以函数的图象不关于点中心对称,所以A 不正确;()f x 5π,012⎛⎫⎪⎝⎭对于B 中,令,可得不是最值,π8x =-πππ5π()sin(2)sin()88612f -=-⨯-=-所以函数的图象不关于直线对称,所以B 不正确;()f x π8x =-对于C 中,由,可得,()π,πx ∈-π13π11π2,666x ⎛⎫-∈- ⎪⎝⎭当时,可得,π22π,π,0,π6x -=--()0f x =所以在上有4个零点,所以C 正确;()f x ()π,π-对于D 中,由,可得,π[,0]2x ∈-π7ππ2(,)666x -∈--根据正弦函数的性质,此时先减后增,所以D 不正确.()f x故选:ABD.10.BC【分析】由诱导公式先求出的值,然后用三角恒等公式逐一验证即可.11sin(6-π)【详解】由题意有,11ππ1sin sin 662⎛⎫-== ⎪⎝⎭对于A 选项:因为,故A 选项不符合题意;2o o 312cos 151cos3022-==≠对于B 选项:因为,故B 选项符合()o o o o o o o 1cos18cos 42sin18sin 42cos 1842cos 602-=+==题意;对于C 选项:因为,故()()o o o o o o o o 12sin15sin 75cos 7515cos 7515cos 60cos902=--+=-=C 选项符合题意;对于D 选项:因为,故D 选项不符合题意;()o o o o o o otan 30tan151tan 3015tan 4511tan 30tan152+=+==≠-故选:BC.11.CD【分析】根据题意结合函数的对称性可推出函数的周期以及对称轴,从而判断A ,B ;举特例符合题意,验证C ,D 选项,即得答案.【详解】由函数的图像关于直线对称,可得,(21)f x +1x =(2(1)1)(2(1)1)f x f x ++=-+即,即,(32)(32)f x f x +=-(3)(3)f x f x +=-以代换x ,则;1x +(4)(2)f x f x +=-由函数关于点对称,可得,(1)f x +(1,0)(2)(2)0f x f x ++-=结合可得,(4)(2)f x f x +=-(4)(2)f x f x +=-+即,则,即4为的一个周期,B 正确;(2)()f x f x +=-(4)()f x f x +=()f x 又,结合,(2)(2)f x f x +=--(2)()f x f x +=-可得,故,A 正确;(2)()f x f x -=(1)(1)f x f x -=+由以上分析可知函数关于直线对称,且关于点成中心对称,()f x 1x =(2,0)其周期为4,则满足题意,π()sin2f x x=但是,故C 错误;π(1)sin 12f ==说明函数图象关于直线对称,3()2f x f x ⎛⎫=- ⎪⎝⎭34x =而,即直线不是对称轴,D 错误,33π()sin 148f =≠±34x =π()sin 2f x x =故选:CD 12.AB【分析】利用三角函数的图象与性质结合图象变换一一判定即可.【详解】由题意可知,又,()πππ3πZ π424k k k ϕϕ⨯+=+∈⇒=-+ππ22ϕ-<<故,()ππ,sin 344f x x ϕ⎛⎫=-=- ⎪⎝⎭对于A 项,,由诱导公式知,即函πππsin 3sin 312124f x x x⎡⎤⎛⎫⎛⎫+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 3sin 3x x -=-数为奇函数,故A 正确;π()12f x +对于B 项,,由正弦函数的图象及性质可知函数在上ππππ[,]30,12644x x ⎡⎤∈⇒-∈⎢⎥⎣⎦()f x ππ[,]126单调递增,故B 正确;对于C 项,易知,若,则与一个取得最大值,一个()max 1f x =12|()()|2f x f x -=()1f x ()2f x 取得最小值,即与相隔最近为半个周期,即的最小值为,故C 错误;1x 2x 12||x x -π23T =对于D 项,由三角函数的伸缩变换可知,函数图象上所有点的横坐标缩小为原来的,()f x 13得到函数的图象,故D 错误.sin(9)y x ϕ=+故选:AB.13.3【分析】由题意由两角差的正切公式即可得解.【详解】由题意.()()tan 73tan133tan 73tan13tan 73131tan 73tan133tan 73tan133︒︒︒︒︒︒︒︒︒︒--=-+-=故.314./34-0.75-【分析】根据同角平方和关系可得,进而根据齐次式即可求解.12sin cos 25αα-=【详解】由可得,故,1sin cos 5αα+=-112sin cos 25αα+=12sin cos 25αα-=又,解得或,222sin cos tan 12sin cos sin cos tan 125αααααααα-===++3tan 4α=-4tan 3α=-由于,,故,12sin cos 025αα-=<()0,πα∈sin 0,cos 0αα><又,故,因此,1sin cos 05αα+=-<sin cos αα<tan 1α<故,3tan 4α=-故34-15./120.5【分析】利用正弦函数的周期公式即可得解.【详解】因为的最小正周期为,π()2sin()(0)3f x x ωω=+>4π所以,则.2π2π4πT ωω===ω=12故答案为.1216.ππ(Z)62kx k =+∈【分析】先利用三角函数恒等变换公式对函数化简变形,然后由可求得ππ2π(Z)62x k k +=+∈答案.【详解】22()2cos 43sin cos 2sin 1cos 223sin 2cos 21f x x x x x x x x =+-=+++-,π23sin 22cos 24sin 26x x x ⎛⎫=+=+ ⎪⎝⎭令,解得:.ππ2π(Z)62x k k +=+∈ππ(Z)62k x k =+∈故ππ(Z)62kx k =+∈。
高三数学三角函数练习大题经典22套

三角函数(三)1、在△ABC 中,AC=3,sinC=2sinA.(1)求AB 的值。
(2)求sin(2A -4π)的值。
2、设△ABC 的内角A 、B 、C 所以的边长分别为a,b,c ,3cos cos 5a Bb A C -=,(1)tan cot A B 的值。
(2)tan()A B -的最大值。
3、在△ABC中,5cos13B=-,4cos5C=.(I)sin A的值;(II)设△ABC的面积S△ABC=332,求BC的长。
4、设△ABC的内角A、B、C的对边分别为,,a b c,且A=60°,c=3b。
求(I)ac的值;(II)cot cotB C+的值.三角函数(四)1、在△ABC 中ambmc 分别为角A 、B 、C 的对的边长,a = ,tantan 422A B C++=,2sin sin cos 2AB C =。
求A 、B 及a 、c .2、在△ABC 中,内角A 、B 、C 对边的边长分别为,,a b c ,已知2,3c C π==(I )若S △ABC ,a b .(II )若sin sin()2sin 2C B A A +-=,求△ABC 的面积。
3、设锐角△ABC的内角A、B、C的对边分别为,,a b c,2sina b A=.(I)求角B的大小;(II)求cos sinA C+的取值范围。
4、在△ABC中,1tan4A=,3tan5B=,(I)求角C的大小;(II)若△ABC三角函数(五)1、已知△ABC的内角A、B及其对边,a b满足cot cot,a b a A b B+=+求内角C.2、△ABC中,D为BC上的一点,BD=33,5sin13B=,3cos5ADC∠=,求AD.3、在△ABC 中,角A 、B 、C 所对的边分别为,,a b c ,已知1cos 24C =-. (I )求sin C 的值;(2)当2,2sin sin a A C ==时,求b c 及的长。
高考三角函数专题(含答案)

高考三角函数专题(含答案)高考专题复习三角函数专题模块一 ——选择题一、选择题:(将正确答案的代号填在题后的括号内.)1.(2010·天津)下图是函数y =A sin(ωx +φ)(x ∈R)在区间⎣⎢⎢⎡⎦⎥⎥⎤-π6,5π6上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R)的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变解析:观察图象可知,函数y =A sin(ωx +φ)中A =1,2πω=π,故ω=2,ω×⎝⎛⎭⎪⎪⎫-π6+φ=0,得φ=π3,所以函数y =sin ⎝⎛⎭⎪⎪⎫2x +π3,故只要把y =sin x 的图象向左平移π3个单位,再把各点的横坐标缩短到原来的12即可.答案:A2.(2010·全国Ⅱ)为了得到函数y =sin ⎝⎛⎭⎪⎪⎫2x -π3的图象,只需把函数y =sin ⎝⎛⎭⎪⎪⎫2x +π6的图象( )A .向左平移π4个长度单位 B .向右平移π4个长度单位 C .向左平移π2个长度单位 D .向右平移π2个长度单位 解析:由y =sin ⎝⎛⎭⎪⎪⎫2x +π6――→x →x +φy =sin ⎣⎢⎢⎡⎦⎥⎥⎤2(x +φ)+π6=sin ⎝⎛⎭⎪⎪⎫2x -π3,即2x +2φ+π6=2x -π3,解得φ=-π4,即向右平移π4个长度单位.故选B.答案:B3.(2010·重庆)已知函数y =sin(ωx +φ)⎝⎛⎭⎪⎪⎫ω>0,|φ|<π2的部分图象如图所示,则( )A .ω=1,φ=π6B .ω=1,φ=-π6 C .ω=2,φ=π6 D .ω=2,φ=-π6解析:依题意得T =2πω=4⎝ ⎛⎭⎪⎪⎫7π12-π3=π,ω=2,sin ⎝⎛⎭⎪⎪⎫2×π3+φ=1.又|φ|<π2,所以2π3+φ=π2,φ=-π6,选D.答案:D4.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]上的图象如图所示,那么ω=( )A .1B .2 C.12 D.13解析:由函数的图象可知该函数的周期为π,所以2πω=π,解得ω=2.答案:B5.已知函数y =sin ⎝⎛⎭⎪⎪⎫x -π12cos ⎝ ⎛⎭⎪⎪⎫x -π12,则下列判断正确的是( )A .此函数的最小正周期为2π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π12,0 B .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π12,0C .此函数的最小正周期为2π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π6,0D .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π6,0解析:∵y =sin ⎝⎛⎭⎪⎪⎫x -π12·cos ⎝ ⎛⎭⎪⎪⎫x -π12=12sin ⎝ ⎛⎭⎪⎪⎫2x -π6,∴T =2π2=π,且当x =π12时,y =0.答案:B6.如果函数y =sin2x +a cos2x 的图象关于直线x =-π8对称,则实数a 的值为( ) A.2 B .- 2 C .1 D .-1分析:函数f (x )在x =-π8时取得最值;或考虑有f ⎝⎛⎭⎪⎪⎫-π8+x =f ⎝ ⎛⎭⎪⎪⎫-π8-x 对一切x ∈R 恒成立. 解析:解法一:设f (x )=sin2x +a cos2x ,因为函数的图象关于直线x =-π8对称,所以f ⎝ ⎛⎭⎪⎪⎫-π8+x =f ⎝ ⎛⎭⎪⎪⎫-π8-x对一切实数x 都成立,即sin2⎝⎛⎭⎪⎪⎫-π8+x +a cos2⎝ ⎛⎭⎪⎪⎫-π8+x=sin2⎝⎛⎭⎪⎪⎫-π8-x +a cos2⎝ ⎛⎭⎪⎪⎫-π8-x即sin ⎝⎛⎭⎪⎪⎫-π4+2x +sin ⎝ ⎛⎭⎪⎪⎫π4+2x=a ⎣⎢⎢⎡⎦⎥⎥⎤cos ⎝⎛⎭⎪⎪⎫π4+2x -cos ⎝ ⎛⎭⎪⎪⎫-π4+2x ,∴2sin2x ·cos π4=-2a sin2x ·sin π4,即(a +1)·sin2x =0对一切实数x 恒成立,而sin2x 不能恒为0,∴a +1=0,即a =-1,故选D.解法二:∵f (x )=sin2x +a cos2x 关于直线x =-π8对称.∴有f ⎝⎛⎭⎪⎪⎫-π8+x =f ⎝ ⎛⎭⎪⎪⎫-π8-x 对一切x ∈R 恒成立. 特别,对于x =π8应该成立.将x =π8代入上式,得f (0)=f ⎝ ⎛⎭⎪⎪⎫-π4,∴sin0+a cos0=sin ⎝⎛⎭⎪⎪⎫-π2+a cos ⎝ ⎛⎭⎪⎪⎫-π2∴0+a =-1+a ×0. ∴a =-1.故选D.解法三:y =sin2x +a cos2x =1+a 2sin(2x +φ),其中角φ的终边经过点(1,a ).其图象的对称轴方程为2x +φ=k π+π2(k ∈Z),即x =k π2+π4-φ2(k ∈Z).令k π2+π4-φ2=-π8(k ∈Z).得φ=k π+3π4(k ∈Z).但角φ的终边经过点(1,a ),故k 为奇数,角φ的终边与-π2角的终边相同,∴a =-1.解法四:y =sin2x +a cos2x =1+a 2sin(2x +φ),其中角φ满足tan φ=a .因为f (x )的对称轴为y =-π8,∴当x =-π8时函数y =f (x )有最大值或最小值,所以1+a 2=f ⎝⎛⎭⎪⎪⎫-π8或-1+a 2=f ⎝⎛⎭⎪⎪⎫-π8, 即1+a 2=sin ⎝⎛⎭⎪⎪⎫-π4+a cos ⎝⎛⎭⎪⎪⎫-π4, 或-1+a 2=sin ⎝⎛⎭⎪⎪⎫-π4+a cos ⎝⎛⎭⎪⎪⎫-π4. 解之得a =-1.故选D. 答案:D评析:本题给出了四种不同的解法,充分利用函数图象的对称性的特征来解题.解法一是运用了方程思想或恒等式思想求解.解法二是利用了数形结合的思想求解,抓住f (m +x )=f (m -x )的图象关于直线x =m 对称的性质,取特殊值来求出待定系数a 的值.解法三利用函数y =A sin(ωx +φ)的对称轴是方程ωx +φ=k π+π2(k ∈Z)的解x =k π+π2-φω(k ∈Z),然后将x =-π8代入求出相应的φ值,再求a 的值.解法四利用对称轴的特殊性质,在此处函数f (x )取最大值或最小值.于是有f ⎝⎛⎭⎪⎪⎫-π8=[f (x )]max或f ⎝⎛⎭⎪⎪⎫-π8=[f (x )]min .从而转化为解方程问题,体现了方程思想.由此可见,本题体现了丰富的数学思想方法,要从多种解法中悟出其实质东西.模块二——填空题二、填空题:(把正确答案填在题后的横线上.) 7.(2010·福建)已知函数f (x )=3sin ⎝⎛⎭⎪⎪⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,则f (x )的取值范围是________.解析:∵f (x )与g (x )的图象的对称轴完全相同,∴f (x )与g (x )的最小正周期相等,∵ω>0,∴ω=2,∴f (x )=3sin ⎝⎛⎭⎪⎪⎫2x -π6,∵0≤x ≤π2,∴-π6≤2x -π6≤5π6,∴-12≤sin ⎝⎛⎭⎪⎪⎫2x -π6≤1,∴-32≤3sin ⎝ ⎛⎭⎪⎪⎫2x -π6≤3,即f (x )的取值范围为⎣⎢⎢⎡⎦⎥⎥⎤-32,3.答案:⎣⎢⎢⎡⎦⎥⎥⎤-32,38.设函数y =cos 12πx 的图象位于y 轴右侧所有的对称中心从左依次为A 1,A 2,…,A n ,….则A 50的坐标是________.解析:对称中心横坐标为x =2k +1,k ≥0且k ∈N ,令k =49即可得.答案:(99,0)9.把函数y =cos ⎝⎛⎭⎪⎪⎫x +π3的图象向左平移m 个单位(m >0),所得图象关于y 轴对称,则m 的最小值是________.解析:由y =cos(x +π3+m )的图象关于y 轴对称,所以π3+m =k π,k ∈Z ,m =k π-π3,当k =1时,m 最小为2 3π.答案:2 3π10.定义集合A,B的积A×B={(x,y)|x∈A,y∈B}.已知集合M={x|0≤x≤2π},N={y|cos x≤y≤1},则M×N所对应的图形的面积为________.解析:如图所示阴影面积可分割补形为ABCD的面积即BC×CD=π·2=2π.答案:2π模块三——解答题三、解答题:(写出证明过程或推演步骤.)11.若方程3sin x+cos x=a在[0,2π]上有两个不同的实数解x1、x2,求a的取值范围,并求x1+x2的值.分析:设函数y 1=3sin x +cos x ,y 2=a ,在同一平面直角坐标系中作出这两个函数的图象,应用数形结合解答即可.解:设f (x )=3sin x +cos x =2sin ⎝⎛⎭⎪⎪⎫x +π6,x ∈[0,2π].令x +π6=t ,则f (t )=2sin t ,且t ∈⎣⎢⎢⎡⎦⎥⎥⎤π6,13π6.在同一平面直角坐标系中作出y =2sin t 及y =a 的图象,从图中可以看出当1<a <2和-2<a <1时,两图象有两个交点,即方程3sin x +cos x =a 在[0,2π]上有两个不同的实数解.当1<a <2时,t 1+t 2=π, 即x 1+π6+x 2+π6=π,∴x 1+x 2=2π3;当-2<a <1时,t 1+t 2=3π, 即x 1+π6+x 2+π6=3π,∴x 1+x 2=8π3.综上可得,a 的取值范围是(1,2)∪(-2,1). 当a ∈(1,2)时,x 1+x 2=2π3;当a ∈(-2,1)时,x 1+x 2=8π3.评析:本题从方程的角度考查了三角函数的图象和对称性,运用的主要思想方法有:函数与方程的思想、数形结合的思想及换元法.解答本题常见的错误是在换元时忽略新变量t 的取值范围,仍把t 当成在[0,2π]中处理,从而出错.12.(2010·山东)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎢⎡⎦⎥⎥⎤0,π4上的最大值和最小值.解:(1)因为f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝⎛⎭⎪⎪⎫π2+φ(0<φ<π),所以f (x )=12sin2x sin φ+1+cos2x 2cos φ-12cos φ=12sin2x sin φ+12cos2x cos φ=12(sin2x sin φ+cos2x cos φ) =12cos(2x -φ), 又函数图象过点⎝⎛⎭⎪⎪⎫π6,12, 所以12=12cos ⎝ ⎛⎭⎪⎪⎫2×π6-φ,即cos ⎝ ⎛⎭⎪⎪⎫π3-φ=1,又0<φ<π,所以φ=π3.(2)由(1)知f (x )=12cos ⎝ ⎛⎭⎪⎪⎫2x -π3,将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,可知g (x )=f (2x )=12cos ⎝⎛⎭⎪⎪⎫4x -π3, 因为x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π4,所以4x ∈⎣⎢⎡⎦⎥⎤0,π, 因此4x -π3∈⎣⎢⎢⎡⎦⎥⎥⎤-π3,2π3,故-12≤cos ⎝ ⎛⎭⎪⎪⎫4x -π3≤1.所以y =g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值分别为12和-14.13.(2009天津卷理)在⊿ABC 中,BC=5,AC=3,sinC=2sinA (I) 求AB 的值:(II) 求sin 24A π⎛⎫- ⎪⎝⎭的值 本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系、二倍角的正弦与余弦、两角差的正弦等基础知识,考查基本运算能力。
三角函数练习及高考题(带答案)

三角函数练习及高考题(带答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN三角函数练习及高考题1.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位 2.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( B )A .1BCD .23.()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x4.若02,sin απαα≤≤>,则α的取值范围是:( C )(A),32ππ⎛⎫ ⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫⎪⎝⎭(D)3,32ππ⎛⎫ ⎪⎝⎭5.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是C(A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π=+,x R ∈(C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈6.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则D(A )c b a << (B )a c b << (C )a c b << (D )b a c << 7.将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π- B .(,0)6π-C .(,0)12πD .(,0)6π8.已知cos (α-6π)+sin α=的值是则)67sin(,354πα-(A )-532 (B )532 (C)-54 (D) 54 9.(湖北)将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是AA.π125 B. π125- C. π1211 D. 1112π-10.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( C )A.1B.12C.3211.函数f(x)02x π≤≤) 的值域是B(A )] (B)[-1,0] (C )] (D )[-]12.函数f (x )=cos x (x )(x ∈R)的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为AA.2π B.π C.-πD.-2π13.在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是C(A )0 (B )1 (C )2 (D )414.若,5sin 2cos -=+a a 则a tan =B (A )21 (B )2 (C )21- (D )2- 15.已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( B ) A. 1 B. 2 C. 1/2D. 1/316.0203sin 702cos 10--=( C )A.12B.22C. 2D.3217.函数f (x )=3sin x +sin(π2+x )的最大值是 218.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =6π. 19.()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= .1020.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .π21.已知()sin (0)363f x x ff ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,则ω=__________.14322.设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.23.在ABC △中,5cos 13B =-,4cos 5C =.(Ⅰ)求sin A 的值; (Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 解:(Ⅰ)由5cos 13B =-,得12sin 13B =,由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ········· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ························ 8分又sin 20sin 13AB B AC AB C ⨯==,故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ···················· 10分24.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()sin 222x f x x ωω-=+11sin 2cos 2222x x ωω=-+ π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭.因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤,因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.25.求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考三角函数分类练习题.求值41.(09 北京文)若sin ,tan 0,则cos .5152. 是第三象限角,sin(),则cos = cos()=223. (08北京)若角的终边经过点P(1,2),则cos = tan2 =4. (07重庆)下列各式中,值为3的是()2(A)2sin15 cos15 (B)cos2 15 sin 2 15 (C) 2 sin 2 15 1(D)sin 2 15 cos2 155. 若0 2 ,sin 3cos ,则的取值范围是:()43 (A), (B), (C), (D),3 2 3 3 3 3 2二.最值1. (09 福建)函数f (x) sin xcosx 最小值是。
2. (09江西)若函数f (x)(1 3tanx)cosx,0 x ,则f (x)的最大值为23. (08海南)函数f (x) cos2x 2sin x 的最小值为最大值为。
4.(06 年福建)已知函数f(x) 2sin x( 0)在区间, 上的最小值是2 ,则342sin2x 1 5. (08辽宁)设x 0,,则函数y 2sin x 1的最小值为.2 sin 2x7.若动直线x a与函数f(x) sinx和g(x) cos x的图像分别交于M,N两点,则MNA . 1B .2 C.3 D .228. 函数f (x) sin2x 3sin xcos x在区间, 上的最大值是()42A.1B. 1 3C. 3D.1+ 322三. 单调性1. (04 天津)函数y 2sin( 2x)(x [0, ])为增函数的区间是(的最小值等于6.将函数y sin x 3cosx 的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是7πA.6πB.3C.πD.的最大值为()77 5 5A. [0,3]B. [12 ,712 ]C. [3,56]D. [56 ,]函数函数 y sinx 的一个单调增区间是B . ,3C .D .f (x) sin x 3cosx(x [ ,0]) 的单调递增区间是 A .[ , 6] B .[ 6 , 6] C .[ 3,0] 07天津卷) 设函数 f (x) 在区间 2 ,7 上是增函数 36 在区间 , 上是增函数 34 3,2sin x 3 (x R ),则 f (x) B .在区间,上是减函数2D .在区间,5 上是减函数36函数 y 2cos 2 x 的一个单调增区间是 A . ( , ) B . (0, ) 4 4 2 若函数 f(x) 同时具有以下两个性质:① 可以是 (4,4)f(x)是偶函数,②对任意实数A . f(x)=cosxB . f(x)=cos(2x)2. 周期性07 江苏卷) 下列函数中,周期为 的是 2 A . y sin x 2B . y sin2x 08 江苏) f x cos x 6 04 全国)函数 1) 2) 1) (2) (3).. ( , )2x ,都有 f( x)= f(x ),则 f(x)的解析式4()C .f(x)=sin(4x ) 2D . f(x)=cos6xx . y cos 4. y cos4x的最小正周期为 ,其中 5 xy |sin | 的最小正周期是( 2函数 f(x) sin x cos x 的最小正周期是). 04 北京) 04江苏)函数 y 2cos 2x 1 (x R)的最小正周期为( 函数 f (x) sin2x cos2 x 的最小正周期是 0,则=).09江西文)函数 f(x) (1 3 tan x) cos x 的最小正周期为 08 广东)函数 f (x) (sin x cos x)sin x 的最小正周期是2. 3. 4. A. C. 5. 6. 四 1. 2. 3. 4. 5.(4) ( 04年北京卷 .理 9)函数 f (x) cos2x 2 3sin x cos x 的最小正周期是 6.(09 年广东文 ) 函数 y 2cos 2(x ) 1是 407 福建)函数 y sin 2x π的图象3C.关于点,0 对称 D.关于直线 x 对称434.( 09 全国)如果函数y 3cos(2 x4) 的图像关于点 ( ,0) 中心对称,3那么 的最小值为 ()(A)(B) (C)(D)64325.已知函数 y=2sinwx的图象与直线 y+2=0 的相邻两个公共点之间的距离为22,则 w 的值为( 3)321A .3B .C .D .23 3六.图象平移与变换1.(08 福建)函数 y=cosx(x ∈R)的图象向左平移 个单位后,得到函数 y=g(x )的图象,则 g(x)的解析式为22. (08 天津)把函数 y sinx ( x R )的图象上所有点向左平行移动 个单位长度,再把所得图象上所有点的31 横坐标缩短到原来的 1倍(纵坐标不变) ,得到的图象所表示的函数是2A .最小正周期为 的奇函数 B. 最小正周期为 的偶函数 C. 最小正周期为的奇函数 D. 最小正周期为 的偶函数227. (浙江卷 2)函数 2y (sin x cos x) 2 1 的最小正周期是8.函数 f(x)1cos wx 3 (A)2x(w 0) 的周期与函数 g(x) tan 的周期相等,则 2D) 1 41 B)1 ( C) 12w 等于五. 对称性1. (08 安徽) 函数 y sin(2 x) 图像的对称轴方程可能是A .B . x12C .D .x 122.下列函数中,图象关于直线 x 3 对称的是 A y sin( 2xB y sin(2x )6C y sin( 2 x)6xD y sin( )263.A.关于点 ,0 对称 A.关于点 3 对称 B.关于直线π对称49 .若函数y 2sin x 的图象按向量( ,2) 平移后,它的一条对称轴是6 x ,则的一个可能的值是45A.12七.图象B.C.6D.121.( 07 宁夏、海南卷) 函数y sin 2x π在区间32(浙江卷7)在同一平面直角坐标系中,函数3. (09 山东)将函数y sin 2x的图象向左平移个单位, 再向上平移1个单位,所得图象的函数解析式是4f(x) sin(wx )(x R,w 0)的最小正周期为,将y f ( x)的图像向左平移4| | 个单位长度,所得图像关于y 轴对称,则的一个值是()3A B C D28486. 将函数y = 3 cos x-sin x的图象向左平移m( m > 0)个单位,所得到的图象关于y 轴对称,则m 的最小正值是 ( )25 A.6B. 3C.3D.67. 函数f ( x)=cos x( x)( x R)的图象按向量(m,0) 平移后,得到函数y=-f ′ ( x)的图象,则m的值可以为( )A. B. C.- D. -228.将函数y=f(x) sinx 的图象向右平移个单位,4再作关于x 轴的对称曲线,得到函数y=1-2sin 2x 的图象,则f ( x)是()A.cosx B.2cosx C .Sinx D.2sinx4. (1)(07 山东)要得到函数y sin x 的图象,只需将函数y cos x 的图象向平移个单位5. ( 2009 天津卷文)已知函数的简图是y 1的交点个数是22π,π2- 4 -A )0B )1C )2D )4- 5 -A .向左平移 4π个长度单位 B .向右平移 4π个长度单位 C .向左平移 2π个长度单位 D .向右平移 2π个长度单位 7.已知函数 y = sin x - 1π2 cos x -1π2 ,则下列判断正确的是( )A .此函数的最小正周期为 2π,其图象的一个对称中心是 1π2, 0B .此函数的最小正周期为 π,其图象的一个对称中心是 1π2, 0C .此函数的最小正周期为 2π,其图象的一个对称中心是 6π, 0D .此函数的最小正周期为 π,其图象的一个对称中心是6π, 0八 ..综合1. (04年天津)定义在 R 上的函数 f ( x)既是偶函数又是周期函数,若f ( x)的最小正周期是 ,且当 x [0, ]25时, f (x) sin x ,则 f ( ) 的值为32.(04 年广东 )函数 f(x) f (x ) sin 2( x ) sin 2( x )是( )A .周期为 的偶函数B .周期为 的奇函数C . 周期为 2 的偶函数D ..周期为 2 的奇函数3.( 09 四川)已知函数 f (x) sin(x )(x R) ,下面结论错误..的是( )2 ..A. 函数 f (x )的最小正周期为 2B. 函数 f (x) 在区间[ 0, ]上是增函数 2C. 函数 f ( x)的图象关于直线 x =0对称D. 函数 f (x)是奇函数 4.(07 安徽卷 ) 函数 f (x) 3sin(2x ) 的图象为 C , 如下结论中正确的是311 2①图象 C 关于直线 x对称; ②图象 C 关于点 ( ,0) 对称;12 33.已知函数 y=2sin( ωx+φ)( ω>0)在区间 [0,2π] 的图像如下:那么 ω= A. 1 B.2C. 1/2D. 1/34.(2006 年四川卷)下列函数中,(A ) y sin x6(C ) y cos 4x36. (2010 ·全国 Ⅱ )为了得到函图象的一部分如右图所示的是( B ) y sin 2x (B )6( D ) y cos 2x( D )6 y =sin2x - 3π的图象,只需把函数 y = sin 2x + 6π的图象 ()5- 6 -③函数 f (x)在区间 ( , ) 内是增函数 ;12 12④由 y 3 sin 2x 的图象向右平移 个单位长度可以得到图象 C.35. (08广东卷)已知函数 f(x) (1 cos2x)sin 2 x, x R ,则 f (x)是 B、最小正周期为 的奇函数 2D、最小正周期为 的偶函数21.(06福建文)已知函数 f(x) sin 2x 3sinxcosx 2cos 2 x,x R.I )求函数 f (x) 的最小正周期和单调增区间;II )函数 f(x) 的图象可以由函数 y sin 2x( x R)的图象经过怎样的变换得到?2. 已知函数 f(x) sin 2 x 3sin xsin x π( 0 )的最小正周期为 π.2(Ⅰ)求 的值;(Ⅱ)求函数 f(x)在区间 0,2π上的取值范围.33. 已知函数 f (x) cos(2 x ) 2sin( x )sin( x )3 4 4(Ⅰ)求函数 f (x) 的最小正周期和图象的对称轴方程 (Ⅱ)求函数 f (x)在区间 [ , ] 上的值域12 24. (2009 陕西卷) 已知函数 f (x) Asin( x ),x R (其中 A 0, 0,0 )的周期为 ,且图象 22 上一个最低点为 M ( , 2). 3( Ⅰ)求 f ( x)的解析式; (Ⅱ)当 x [0, ],求 f(x)的最值 .12A 、最小正周期为 的奇函数C 、最小正周期为 的偶函数6. 在同一平面直角坐标系中,函数A )0B )1 x 3 1y cos( )(x [0,2 ]) 的图象和直线 y 的交点个数是2 2 2 (C )2D )47.已知函数 f (x) 2sin( x )A 、2或 0B 、 2或 2九. 解答题 C 、0对任意 x 都有 f ( x) f ( x) ,则 f ( ) 等于6 6 6D 、 2 或 0。