直流电动机控制系统
直流电机PWM控制系统设计

0 前言在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用,无论在工业农业生产、交通运输、国防航空航天、医疗卫生、商务与办公设备,还是在日常生活中的家用电器,都在大量地使用着各式各样的电动机。
据资料统计,现在有的90%以上的动力源来自于电动机,电动机与人们的生活息息相关,密不可分。
随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。
直流电动机具有优良的调速特性,调速平滑、方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转,能满足生产过程自动化系统各种不同的特殊运行要求。
直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。
直流电机的数字控制是直流电动机控制的发展趋势,用单片机的数字控制的发展趋势,用单片机进行控制是实现电动机数字控制的最常用的手段。
由于电网相控变流器供电的直流电机调速系统能够引起电网波形畸变、降低电网功率因数,除此之外,该系统还有体积大、价格高、电压电流脉动频率低、有噪声等缺点。
而采用直流电动机的PWM调速控制系统可以克服电网相控调速系统的上述诸多缺点。
电动机的控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、电动控制技术、微机应用技术的最新发展成果。
正是这些技术的进步使电机控制技术在近20多年内发生了翻天覆地的变化,其中电动机的控制部分已由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字和模拟的混合控制系统和纯数字控制的应用,并曾向全数字化控制方向快速发展。
电动机的驱动部分所用的功率器件经历了几次更新换代,目前开关速度更快、控制更容易的全控型功率器件MOSFET和IGBT成为主流。
功率器件控制条件的变化和微电子技术的使用也使新型的电动控制方法能够得到实现,脉宽调制控制方法(PWM和SPWM),变频技术在直流调速和交流调速中获得广泛的应用。
第一章 直流电动机的数学模型及其闭环控制系统

图 1-10 PWM控制器与变换器的框图
图1-9不可逆PWM变换器—直流电动机系统
结合PWM变换器工作情况可以看出:当控制 电压变化时,PWM变换器输出平均电压按线性规 律变化,因此,PWM变换器的放大系数可求得, 即为
4.直流调速系统的广义被控对象模型
(1)额定励磁状态下直流电动机的动态结构图 图1-12所示的是额定励磁状态下的直流电动机动 态结构图。
图1-12 额定励磁状态下直流电动机的动态结构框图
由上图可知,直流电动机有两个输入量,一个是施加在电枢
上的理想空载电压U d0 ,另一个是负载电流 I L 。前者是控制输入量,
它已不起作用,整流电压并不会立即变化,必须等
到 t3时刻该器件关断后,触发脉冲才有可能控制另
一对晶闸管导通。
设新的控制电压
U ct2
U
对应的控制角为
ct1
2 1 ,则另一对晶闸管在 t4 时刻导通,平均整
流电压降低。假设平均整流电压是从自然换相点
开始计算的,则平均整流电压在 t3 时刻从U d01降
Tm
GD2 R
375K
e
K
m
2 d
(1-23)
因其中d 的减小而变成了时变参数。由此 可见,在弱磁过程中,直流调速系统的被控对象 数学模型具有非线性特性。这里需要指出的是, 图1-15所示的动态结构图中,包含线性与非线性 环节,其中只有线性环节可用传递函数表示,而 非线性环节的输入与输出量只能用时域量表示, 非线性环节与线性环节的连接只是表示结构上的 一种联系,这是在应用中必须注意的问题。
Ks
U d U ct
第4章 直流电动机调速控制系统

调速指标
静态调速指标
• 调速范围 • 静差率 • 调速范围与静差率的关系
动态调速指标
• 跟随性能指标 • 抗扰性能指标
单闭环直流调速系统
单闭环有静差调速系统 单闭环无静差调速系统
单闭环有静差调速系统
系统的组成及原理 系统的静特性及静态结构图
系统的反馈控制规律 单闭环调速系统的动态特性
电动机转速与转矩的关系
如果把E =Cen代入式(4-8) ,便可得出电枢电流I的表达式 Ia=(U- Cen )/Ra (4-9) 由上式可见,直流电动机和一般的直流电路不一样,它的电流不仅 取决于外加电压和自身电阻,并且还取决于与转速成正比的反电动 势(当φ为常数) 。将式(4-1) 代入(4-9) 式,可得 n=U/Ce-R Te/ Ce Cm (4-10) 其中Cm=Kmφ,式(4-10)称为电动机的机械特性,它描述了电 动机的转速与转矩之间的关系。 图4-5是机械特性曲线族。在这一曲线族中,不同的电枢电压对应于 不同的曲线,各曲线是彼此平行的。n0( U/Ce)称为“理想空载转 速” ,而⊿n(R Te/ Ce Cm) 称为转速降落。
脉宽调制器是一个电压—脉冲变换装置。由控制 电压Uct进行控制,为PWM变换器提供所需的脉 冲信号。 脉宽调制器的基本原理是将直流信号和一个调制 信号比较,调制信号可以是三角波,也可以是锯 齿波。锯齿波脉宽调制器电路如图4-42所示, 由锯齿波发生器和电压比较器组成。锯齿波发生 器采用最简单的单结晶体管多谐振荡器4-42a), 为了控制锯齿波的线性度,使电容器C充电电流 恒定,由晶体管VT1和稳压管VST构成恒流源。
电流截止负反馈环节 带电流截止负反馈环节的单闭环无静差调 速系统
第5章无刷直流电动机控制系统

图5-4 霍尔传感器的三相波形(120度)
三、三相直流无刷电动机的换相原理
图5-4表明,三相永磁无刷直流电 动机转子位置传感器输出信号Ha、 Hb、Hc在每360°电角度内给出了6 个代码,按其顺序排列,6个代码 是101、100、110、010、011、001。 当然,这一顺序与电动机的转动方 向有关,如果转向反了,代码出现 的顺序也将倒过来。 图5-5是三相永磁无刷直流电动机 的电子换向器主回路,也就是由6 只功率开关元件组成的三相H转子是由永磁材料制成的,是具有一定磁极对数的永磁体。 无刷直流电动机为了去掉电刷,将电枢放到定子上去,但是这样定 子上的电枢通过直流电后,只能产生恒定的磁场,电动机依然转不起来。 为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样 才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁 磁场始终保持90°左右的空间角,产生转矩推动转子旋转。
B
Z
2 3 1 A 4 6
X
5
C
Y
图5-6 三相永磁无刷直流电动机 绕组结构图
可以通过两种不同的途径来分析无刷电动机的换相过程:
Ø 第一条途径是:利用“定子空间的扇区图” 来分析换相过程(6个扇 区对应6个代码) (p148), ; Ø 第二条途径是:通过分析电动机的三相反电动势来理解换相过程。
运用“定子空间扇区图”可以分析三相无刷直流电动机在360º 电角度内的换 相过程,从分析可以看出,定子的磁场是步进地、跨越地前进的,每步跨越60º 电角度,而转子当然是连续地运行的。 从分析三相无刷直流电动机的三相反电势的角度,同样也可以理解其换相 过程。基本思路是这样的:为了获得最大的转矩,应当使每相的反电势与该相的 电流的相位相同。 无论是从“定子空间扇区图”还是从电动机定子绕组的反电势来分析三相 无刷电动机的换相过程,所得出的开关管的导通和关断状态与转子位置的关系都 是相同的。
无刷直流电动机控制系统设计

无刷直流电动机控制系统设计方案第1章概述 (1)1.1 无刷直流电动机的发展概况 (1)1.2 无刷直流永磁电动机和有刷直流永磁电动机的比较 (2)1.3 无刷直流电动机的结构及基本工作原理 (3)1.4 无刷直流电动机的运行特性 (6)1.4.1 机械特性 (6)1.4.2 调节特性 (6)1.4.3 工作特性 (7)1.5 无刷直流电动机的使用和研究动向 (8)第2章无刷直流电动机控制系统设计方案 (10)2.1 无刷直流电动机系统的组成 (10)2.2 无刷直流电动机控制系统设计方案 (12)2.2.1 设计方案比较 (12)2.2.2 无刷直流电动机控制系统组成框图 (13)第3章无刷直流电动机硬件设计 (15)3.1 逆变主电路设计 (15)3.1.1 功率开关主电路图 (15)3.1.2 逆变开关元件选择和计算 (15)3.2 逆变开关管驱动电路设计 (17)3.2.1 IR2110功能介绍 (17)3.2.2 自举电路原理 (19)3.3 单片机的选择 (20)3.3.1 PIC单片机特点 (20)3.3.2 PIC16F72单片机管脚排列及功能定义 (22)3.3.3 PIC16F72单片机的功能特性 (22)3.3.4 PWM信号在PIC单片机中的处理 (23)3.3.5 时钟电路 (23)3.3.6 复位电路 (24)3.4 人机接口电路 (24)3.4.1 转把和刹车 (24)3.4.2 显示电路 (25)3.5 门阵列可编程器件GAL16V8 (27)3.5.1 GAL16V8图及引脚功能 (27)3.6 传感器选择 (28)3.7 周边保护电路 (30)3.7.1 电流采样及过电流保护 (30)3.7.2 LM358双运放大电路 (31)3.7.3 欠电压保护 (32)3.8 电源电路 (32)第4章无刷直流电动机软件设计 (33)4.1 直流无刷电机控制器程序的设计概况 (33)4.2 系统各部分功能在软件中的实现 (33)4.3 软件流程图 (34)结束语 (36)致谢 (37)参考文献 (38)附录1 (39)附录2 (51)第1章概述1.1 无刷直流电动机的发展概况无刷直流电动机是在有刷直流电动机的基础上发展起来的,这一渊源关系从其名称中就可以看出来。
第三章直流电动机速度控制系统

机械特性与静差率
n n01
额定转速降
ΔnN
R nN I N Ce
U d1
n02
是一个恒值。 调速系统在不 同电压下的机 械特性是互相 平行的,两者 的硬度相同。
1-25
ΔnN
Ud2
0
TeN
Te
图3-4 不同转速下的机械特性
机械特性与静差率
• 调速系统在不同电压下的理想空载转速 不一样。 • 理想空载转速越低时,静差率越大。 • 同样硬度的机械特性,随着其理想空载 转速的降低,其静差率会随之增大, • 调速系统的静差率指标应以最低速时能 达到的数值为准。
1-12
n n0
Ra Ra+R1 Ra+R2 Ra+R3
0
Id
图3-1 直流电动机调阻调速时的机械特性
1-13
减弱磁通调速法
U R n T n n 0 2 e K K K (3-3) e e m
• 理想空载转速 n 0 将随 增大。 的减少而
1-14
减弱磁通调速法
1-4
第一节
直流电动机控制基础
• 直流伺服电机的分类 直流电机按其励磁方式分为永磁式、励磁式(他 励、并励、串励、复励)、混合式(励磁和永磁 合成)三种;按电枢结构分为有槽、无槽、印刷 绕组、空心杯形等;按输出量分为位置、速度、 转矩(或力)三种控制系统;按运动模式分为增 量式和连续式;按性能特点及用途不同又有不 同品种。
(3-5)
1-23
2. 静差率
• 当系统在某一转速下运行时,负载由理 想空载增加到额定值时电动机转速的变 化率,称为静差率s。
• 用百分数表示 s
nN s n0
直流电机控制原理图

直流电机控制原理图
直流电机是一种常见的电动机,它通过直流电源驱动,能够将
电能转换为机械能,广泛应用于工业生产、交通运输、家用电器等
领域。
直流电机的控制原理图是直流电机控制系统的重要组成部分,它能够帮助我们了解直流电机的工作原理和控制方式,本文将介绍
直流电机控制原理图的相关知识。
首先,直流电机控制原理图包括直流电机、电源、控制器等组件。
直流电机通常由定子、转子、碳刷、电枢等部分组成,电源为
直流电源,控制器则是用来控制电机运行的设备。
在直流电机控制
原理图中,这些组件通过电气连线连接在一起,形成一个完整的控
制系统。
在直流电机控制原理图中,电源为直流电源,它可以是电池、
直流发电机、直流稳压电源等。
电源的电压和电流大小将直接影响
到直流电机的运行性能,因此在设计直流电机控制系统时,需要根
据实际需要选择合适的电源。
控制器是直流电机控制系统中的关键部件,它可以根据外部输
入信号控制电机的启停、正反转、速度调节等功能。
常见的直流电
机控制器有直流调速器、直流电机驱动器、直流电机控制板等,它们可以根据具体的控制要求选择使用。
在直流电机控制原理图中,还会包括一些辅助元件,如限流电阻、过载保护器、电流传感器等。
这些辅助元件能够提高电机控制系统的稳定性和安全性,保护电机免受过载、短路等异常情况的影响。
总的来说,直流电机控制原理图是直流电机控制系统的重要组成部分,它通过电气连线将直流电机、电源、控制器等组件连接在一起,形成一个完整的控制系统。
掌握直流电机控制原理图的相关知识,能够帮助我们更好地理解直流电机的工作原理和控制方式,为实际应用提供参考和指导。
无刷直流电动机控制系统课件

针对电机在实验中表现出的稳 定性不足的问题,可以增强系 统的稳定性以提高其运行可靠 性。例如,增加保护电路或改 进散热设计等。
06 无刷直流电动机控制系统 的发展趋势与展望
技术创新与进步
数字化控制
采用先进的数字信号处理器和控制器,实现无刷直流电动机的高 性能控制,提高系统精度和稳定性。
智能传感技术
航空航天
无刷直流电动机控制系统在航空航 天领域中也得到了广泛的应用,如 无人机、直升机、卫星等。
汽车电子
无刷直流电动机控制系统在汽车电 子领域中也有广泛的应用,如汽车 空调、电动车窗、电动座椅等。
02 无刷直流电动机控制系统 的工作原理
无刷直流电动机的工作原理
结构特点
无刷直流电动机主要由电机本体、位置传感器和电子换向器 组成。电机本体具有多个线圈,电子换向器通过晶体管控制 电流的流向,实现电机的旋转。
通信协议调试
对通信协议进行调试,确保通信的稳定性和可靠性。
调试与优化
系统调试
对整个无刷直流电动机控制系统进行调试,包括 硬件电路、软件程序和通信等。
性能测试
对控制系统的性能进行测试,包括响应时间、稳 态误差等指标。
优化建议
根据调试和性能测试的结果,提出优化建议,进 一步提高控制系统的性能。
05 无刷直流电动机控制系统 的性能测试与评估
应用磁编码器、光电编码器等传感器,实现对无刷直流电动机的精 确速度和位置控制。
容错控制技术
引入多种传感器和算法,提高系统的容错能力,确保无刷直流电动 机在故障情况下的安全运行。
应用领域拓展
工业自动化
随着工业自动化水平的提高,无刷直流电动机控制系统在 机器人、数控机床等领域的应用不断扩大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤炭工程学院课程设计题目:直流电动机转速控制系统专业班级:学生姓名:学号:指导教师:日期:摘要当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。
无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。
据资料显示,在所有动力资源中,百分之九十以上来自电动机。
同样,我国生产的电能中有百分之六十是用于电动机的。
电动机与人的生活息息相关,密不可分。
电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。
简单控制是指对电动机进行启动,,制动,正反转控制和顺序控制。
这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。
还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。
电机在各行各业发挥着重要的作用,而电机转速是电机重要的性能指标之一,因而测量电机的转速和电机的调速,使它满足人们的各种需要,更显得重要,而且随着科技的发展,PWM调速成为电机调速的新方式。
随着数字技术的迅速发展,微控制器在社会的各个领域得到了广泛的应用,由于数字系统有着模拟系统所没有的优势,如抗干扰性强、便于和PC机相联、系统易于升级维护。
本设计是以单片机AT89S52和L298控制的直流电机脉宽调制调速系统。
利用AT89S52芯片进行低成本直流电动机控制系统的设计,能够简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。
系统实现对电机的正转、反转、急停、加速、减速的控制,以及PWM的占空比在LCD上的实时显示。
关键词:直流电机;AT89S52;PWM调速;L298目录摘要 (1)目录 (2)一﹑绪论 (3)1.1直流电机的介绍 (3)1.2单片机的介绍 (4)二﹑总体方案 (5)2.1系统框架设计 (5)2.2设计思路 (6)三﹑各模块的介绍 (7)3.1 PWM脉宽调制原理 (7)3.2系统硬件设计 (9)3.3 AT89S52 .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍10 3.4独立式键盘控制模块 (12)3.5 L298电机驱动模块 (13)3.6光电测速模块 (16)3.7 LCD显示模块 (19)3.8系统软件设计 (22)结论 (23)致谢 (24)参考文献﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍24附录﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍25一﹑绪论1.1直流电机1.1.1直流电机的发展直流电动机在冶金、矿山、化工、交通、机械、纺织、航空等领域中已经得到广泛的应用。
而以往直流电动机的控制只是简单的控制,很难进行调速,不能实现智能化。
如今,直流电动机的调速控制已经离不开单片机的支持,单片机应用技术的飞速发展促进了自动控制技术的发展,使人类社会步入了自动化时代,单片机应用技术与其他学科领域交叉融合,促进了学科发展和专业更新,引发了新兴交叉学科与技术的不断涌现。
现代科学技术的飞速发展,改变了世界,也改变了人类的生活。
由于单片机的体积小、重量轻、功能强、抗干扰能力强、控制灵活、应用方便、价格低廉等特点,计算机性能的不断提高,单片机的应用也更加广泛特别是在各种领域的控制、自动化等方面。
在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的能量转换效率;二是应能根据生产工艺的要求调整转速。
电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。
因此,调速技术一直是研究的热点。
1.1.2直流电机控制方法和工作原理直流电动机转速的控制方法可分为两类:励磁控制法与电枢电压控制法。
励磁控制法控制磁通,其控制功率虽然小但低速时受到磁场饱和的限制,高速时受到换向火花和转向器结构强度的限制,而且由于励磁线圈电感较大动态响应较差。
所以常用的控制方法是改变电枢端电压调速的电枢电压控制法。
传统的改变端电压的方法是通过调节电阻来实现的,但这种调压方法效率低。
随着电力电子技术的发展,创造了许多新的电枢电压控制方法。
其中脉宽调制(Pulse Width Modulation,PWM)是常用的一种调速方法。
其基本原理是用改变电机电枢电压的接通和断开的时间比(即占空比)来控制马达的速度,在脉宽调速系统中当电机通电时,其速度增加,电机断电时其速度降低。
只要按照一定的规律改变通断电的时间,就可使电机的速度保持在一稳定值上。
直流电机可按其结构、工作原理和用途等进行分类,其中根据直流电机的用途可分为以下几种:直流发电机(将机械能转化为直流电能)、直流电动机(将直流电能转化为机械能)、直流测速发电机(将机械信号转换为电信号)、直流伺服电动机(将控制信号转换为机械信号)。
直流电机电路模型如图1-1所示,磁极N、S间装着一个可以转动的铁磁圆柱体,圆柱体的表面上固定着一个线圈abcd。
当线圈中流过电流时,线圈受到电磁力作用,从而产生旋转。
根据左手定则可知,当流过线圈中电流改变方向时,线圈的方向也将改变,因此1-1。
图1.1 直流电机工作图1-1 直流电动机电路模型1.2单片机及微处理器控制系统的发展单片微型计算机的诞生是计算机发展史上的一个新的里程碑。
近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。
直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。
而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强I/O功能等方向发展。
随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。
这是因为单片机具有很多优点:体积小,功能全,抗干扰能力强,可靠性高,结构合理,指令丰富,控制功能强,造价低等。
所以选用单片机作为控制系统的核心以提高整个系统的可靠性和可行性。
早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,如存在温漂、零漂电压,构成系统的器件较多,使得模拟直流传动系统的控制精度及可靠性较低。
随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。
由于微处理器以数字信号工作,控制手段灵活方便,抗干扰能力强。
所以,全数字直流调速控制精度、可靠性和稳定性比模拟直流调速系统大大提高。
所以,直流传动控制采用微处理器实现全数字化,使直流调速系统进入一个崭新的阶段。
微处理器诞生于上个世纪七十年代,随着集成电路大规模及超大规模集成电路制造工艺的迅速发展,微处理器的性价比越来越高。
此外,由于电力电子技术的发展,制作工艺的提升,使得大功率电子器件的性能迅速提高。
为微处理器普遍用于控制电机提供了可能,利用微处理器控制电机完成各种新颖的、高性能的控制策略,使电机的各种潜在能力得到充分的发挥,使电机的性能更符合工业生产使用要求,还促进了电机生产商研发出各种如步进电机、无刷直流电机、开关磁阻电动机等便于控制且实用的新型电机,使电机的发展出现了新的变化。
对于简单的微处理器控制电机,只需利用用微处理器控制继电器、电子开关元器件,使电路开通或关断就可实现对电机的控制。
现在带微处理器的可编程控制器,已经在各种的机床设备和各种的生产流水线中普遍得到应用,通过对可编程控制器进行编程就可以实现对电机的规律化控制。
对于复杂的微处理器控制电机,则要利用微处理器控制电机的电压、电流、转矩、转速、转角等,使电机按给定的指令准确工作。
通过微处理器控制,可使电机的性能有很大的提高。
目前相比直流电机和交流电机他们各有所长,如直流电机调速性能好,但带有机械换向器,有机械磨损及换向火花等问题;交流电机,不论是异步电机还是同步电机,结构都比直流电机简单,工作也比直流电机可靠,但在频率恒定的电网上运行时,它们的速度不能方便而经济地调节[2]。
高性能的微处理器如DSP (DIGITAL SIGNAL PROCESSOR即数字信号处理器)的出现,为采用新的控制理论和控制策略提供了良好的物质基础,使电机传动的自动化程度大为提高。
在先进的数控机床等数控位置伺服系统,已经采用了如DSP等的高速微处理器,其执行速度可达数百万兆以上每秒,且具有适合的矩阵运算。
二﹑总体方案2.1系统框架设计方案说明:直流电机PWM调速系统以AT89S52单片机为控制核心,由命令输入模块、LCD显示模块及电机驱动模块组成。
采用独立式键盘作为命令的输入,单片机在程序控制下,定时不断给L298直流电机驱动芯片发送PWM波形,完成电机正,反转和急停控制;同时单片机不停的将PWM脉宽调制占空比送到LCD数码管完成实时显示,见图2-1。
图2-1 系统框架设计采用传统的直流电机调速系统的模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。
而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。
另外,由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。
PWM 具有很强的抗噪性,且有节约空间、比较经济等特点。
2.2设计思路直流电机PWM控制系统的主要功能包括:实现对直流电机的加速、减速以及电机的正转、反转和急停,能够很方便的实现电机的智能控制。
主体电路:即直流电机PWM控制模块。
这部分电路主要由AT89S52单片机的I/O端口、定时计数器、外部键盘等控制直流电机的加速、减速以及电机的正转和反转,能够很方便的实现电机的智能控制。
其间是通过AT89S52单片机产生脉宽可调的脉冲信号并输入到L298驱动芯片来控制直流电机工作的。
该直流电机PWM控制系统由以下电路模块组成:设计输入部分:这一模块主要是利用独立式键盘来实现对直流电机的加速、减速以及电机的正转、反转和急停控制。
设计控制部分:主要由AT89S52单片机的外部键盘扩展电路组成。
直流电机PWM控制实现部分主要由一些二极管、电机和L298直流电机驱动模块组成。
设计测速部分:主要有光电对管和AT89S52实现。
设计显示部分: LCD数码管显示部分,实现对速度实时显示。
三﹑各模块的介绍3.1 PWM脉宽调速原理PWM(脉冲宽度调制)是通过控制固定电压的直流电源开关频率,改变负载两端的电压,从而达到控制要求的一种电压调整方法。