功能高分子材料论文
医用高分子材料论文

医用高分子材料论文医用高分子材料是指用于医疗器械、医药包装、医用卫生材料等方面的高分子材料。
随着医疗技术的不断发展和人们对健康的重视,医用高分子材料的应用范围和需求量也在不断增加。
本文将从医用高分子材料的特点、应用领域和发展趋势等方面进行论述。
首先,医用高分子材料具有良好的生物相容性和生物降解性。
在医疗器械和医用卫生材料方面,高分子材料需要与人体组织接触,因此其生物相容性是至关重要的。
良好的生物相容性可以减少对人体的刺激和损害,有利于医疗器械的安全使用。
同时,一些医用高分子材料还具有生物降解性,可以在一定时间内被人体代谢和吸收,避免二次手术带来的伤害,因此在医疗器械和医用卫生材料中有着广泛的应用前景。
其次,医用高分子材料在医药包装领域也有着重要的应用。
医药包装需要具备良好的密封性、保鲜性和防渗透性,以保护药品的质量和安全。
高分子材料由于其优异的物理和化学性能,可以满足医药包装的各项要求,同时还可以实现包装材料的轻量化和环保化,符合现代医药包装的发展趋势。
另外,医用高分子材料还在医疗器械和医用卫生材料中发挥着重要作用。
例如,医用高分子材料可以用于制备手术缝线、人工关节、医用胶水等医疗器械产品,同时也可以制备口罩、手套、敷料等医用卫生材料,为医疗行业提供必要的支持。
随着医疗技术的不断进步和人们对健康的不断追求,医用高分子材料的应用领域和需求量将会不断扩大。
未来,随着生物医学工程、纳米医学、智能医疗等领域的发展,医用高分子材料将会迎来更广阔的发展空间和应用前景。
综上所述,医用高分子材料在医疗器械、医药包装、医用卫生材料等方面具有重要的应用价值,其特点和应用领域决定了其在医疗行业中的不可替代地位。
随着医疗技术的不断发展和人们对健康的不断关注,医用高分子材料必将迎来更加广阔的发展前景。
功能高分子材料的制备及性能研究

功能高分子材料的制备及性能研究一、本文概述随着科技的飞速发展,高分子材料作为一类重要的工程材料,在日常生活、工业生产以及科学研究等领域中发挥着日益重要的作用。
其中,功能高分子材料凭借其独特的物理和化学性质,如优异的机械性能、电学性能、光学性能、热学性能以及生物相容性等,在众多领域展现出广阔的应用前景。
因此,对于功能高分子材料的制备及其性能研究,具有重大的理论意义和应用价值。
本文旨在探讨功能高分子材料的制备方法、性能表征以及应用前景。
将详细介绍几种常见的功能高分子材料的制备方法,包括化学合成、物理改性以及生物技术等。
随后,通过对这些功能高分子材料的力学、电学、光学、热学等性能进行系统的表征和测试,深入探究其性能与结构之间的关系。
还将讨论功能高分子材料在航空航天、电子信息、生物医疗、环境保护等领域的潜在应用。
通过本文的研究,期望能够为功能高分子材料的制备和应用提供有益的参考和指导,推动功能高分子材料领域的进一步发展。
二、功能高分子材料的制备方法功能高分子材料的制备方法多种多样,这些方法的选择取决于所需的功能性质以及材料的最终应用。
以下是几种常见的制备方法。
化学合成法:这是制备功能高分子材料最常用的方法之一。
通过精确的化学反应,如聚合、接枝、交联等,可以制备出具有特定功能的高分子材料。
例如,通过聚合反应可以合成具有不同分子量、分子结构和功能基团的高分子。
物理法:物理法主要包括熔融纺丝、溶液纺丝、拉伸、热处理等。
这些方法主要用于改变高分子材料的形态、结构和性能。
例如,熔融纺丝可以制备出高强度、高模量的纤维材料;热处理可以改变高分子材料的结晶度和热稳定性。
生物法:随着生物技术的发展,生物法在功能高分子材料的制备中也得到了越来越多的应用。
例如,利用酶催化反应可以合成具有特定结构的高分子材料;利用微生物发酵可以制备出具有生物活性的高分子材料。
复合法:复合法是将两种或多种不同性质的高分子材料通过物理或化学方法复合在一起,以制备出具有综合性能的新型功能高分子材料。
功能高分子材料范文

功能高分子材料范文功能高分子材料是一种具有特殊性能的高分子材料,能够通过结构设计、改性或添加特殊功能组分来实现特定的功能或性能。
这些功能可以包括力学性能、电学性能、热学性能、光学性能、化学稳定性等等。
功能高分子材料在各个领域都具有广泛的应用前景,如电子领域、医疗领域、能源领域、环保领域等。
一、力学性能功能高分子材料在力学性能方面有很多独特的优势。
例如,基于炭纳米管增强的高分子复合材料具有很高的强度和刚度,可以应用于航空航天、汽车制造等高强度要求的领域。
另外,具有特殊结构的高分子材料,如形状记忆聚合物,能够通过温度或其他外界刺激改变形态,具有很大的形状可变性,可以应用于智能材料、机器人等领域。
二、电学性能功能高分子材料在电学性能方面也有很多特点。
例如,导电高分子材料具有良好的导电性能,可以应用于电子设备、传感器、柔性显示等领域。
另外,功能高分子材料还可以调控电荷迁移、离子传输等电学特性,用于研究电荷载流子行为、发展新型电介质材料等。
三、热学性能功能高分子材料在热学性能方面也有广泛的应用。
例如,高分子材料的导热性能有时是一个重要的考虑因素,对于需要散热的电子设备、光学器件等有很大的作用。
此外,高分子材料的热膨胀系数可以调控,从而制备出具有特殊热膨胀特性的材料,用于热致形状记忆材料、超高温材料等。
四、光学性能功能高分子材料在光学性能方面也有独特优势。
例如,具有高折射率的高分子材料可以应用于光学透镜、光纤通信等领域。
另外,具有光学活性的高分子材料可以应用于手性催化、光学降解等领域。
此外,基于聚合物基底的有机发光二极管(OLED)具有特殊的光电性能,用于照明、显示等领域。
五、化学稳定性功能高分子材料在化学稳定性方面也有很多特点。
例如,阻燃高分子材料具有很好的抗火性能,可以用于电缆、建筑材料等领域。
另外,耐腐蚀高分子材料可以应用于化工、医药包装等领域。
此外,具有特殊透气性的高分子材料可以应用于膜分离、纳米过滤等领域。
高分子材料论文总结

高分子材料论文总结近年来,许多学者对高分子材料进行了深入研究,并取得了一系列重要的研究成果。
本篇论文将对其中几篇具有代表性的高分子材料论文进行总结。
首先,研究团队在《高分子材料的自组装性质研究》一文中探讨了高分子材料的自组装性质。
他们制备了一种新型的高分子材料,并通过扫描电子显微镜(SEM)观察了其自组装结构。
结果表明,该高分子材料能够形成具有有序排列的自组装结构,从而展现出良好的物理性能。
该研究为进一步研发高性能高分子材料提供了理论基础和实验依据。
其次,在《聚合物交联网络的合成与性能研究》一文中,研究人员通过控制交联剂的添加量和反应时间,成功合成了一种具有优异性能的聚合物交联网络。
他们通过拉伸实验和热分析,研究了该聚合物交联网络的力学性能和热性能。
结果表明,该聚合物交联网络具有较高的机械强度和优异的热稳定性。
这为应用于高温环境的材料开发提供了新思路。
再次,在《功能性高分子材料的合成及应用研究》这篇论文中,研究人员通过改变单体的结构和反应条件,合成了一系列功能性高分子材料。
他们通过红外光谱和核磁共振等测试手段,确认了所合成材料的化学结构。
同时,他们还对这些材料进行了抗氧化性能和光电性能的测试,并研究了其应用于电子器件中的潜在用途。
研究结果表明,这些功能性高分子材料具有较好的性能和广阔的应用前景。
综上所述,近年来高分子材料的研究取得了不俗的成果。
上述论文从不同角度对高分子材料的性能、合成及应用进行了深入研究,并取得了一系列重要的研究成果。
这些研究为高分子材料的进一步应用开发和科学研究提供了重要的理论基础和实验依据。
相信未来,随着高分子材料研究的不断深入,高分子材料将在新材料领域中发挥更为重要的作用。
生物医用高分子材料论文

生物医用高分子材料1 生物医用高分子材料概述科技关爱健康,医用高分子材料的应运而生是医疗技术发展史卜的一次飞越。
高分子材料充分体现了人类智慧,是上 1 世纪人类科学枝术的重要科技进步成果之一,在二战前后得到了迅速发展;到上世纪末,光是塑料在体积上就明显超过了钢铁。
所谓高分子一般是指由许重复单元共价连接而成的、分子量很大的一类大分子,相关材料也称为聚合物,往往具有粘弹性。
主要大品种合成聚合物材料有塑料、橡胶、合成纤维3 大类,还有涂料、粘结剂等。
医用高分子材料属于一种特殊的功能高分子材料,通常用于对生物体进行诊断、治疗、以及替换或修复、合成或再生损伤组织和器官。
简单地说,医用高分子材料学,是介于现代医学和高分子科学之间,并且涉及到物理、化学、生物学、医学等的一门交叉学科。
目前,医用高分子材料的发展可谓异军突起,医用高分子材料的应用如雨后春笋遍及整个医学领域,其用量也在持续稳定地增长。
生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。
研究领域涉及材料学、化学、医学、生命科学。
虽已四十多年的研究历史,但蓬勃发展始于20世纪70年代,随着高分子化学工业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器以及骨生长诱导剂等。
近十年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。
生物医用材料最基本的要求是它必须与生物系统直接结合,生物医用材料都必须具备生物学性能,即生物相容性,这是生物医用材料区别于其它功能材料的最重要的特征,并且要求这种材料不会因与生物系统直接结合而降低其效能与使用寿命。
生物医用材料与活体系统的相互作用表面在两个方面:一是材料反应,即活体系统对材料的作用,包括生物环境对材料的腐蚀、磨损和性质退化、甚至破坏。
功能高分子材料论文黄俊强

功能高分子材料课程论文生物降解高分子材料的研究现状及应用前景姓名:黄俊强班级:高分子08-1班老师:齐民华日期:生物降解高分子材料的研究现状及应用前景摘要:目前,处理高分子材料的一些传统方法,如焚烧法、掩埋法、熔融共混挤出法、回收利用等都存在一定的缺陷和局限性,给环境保护带来严重的困难。
因此,开发环境可接受的降解性高分子材料是解决环境污染的重要途径。
生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程。
论述了生物降解高分子材料的研究现状,并对生物降解高分子材料的降解机理、影响因素及其在医学、农业、包装业和其他领域的潜在应用前景进行了探讨。
关键词:生物降解高分子材料定义降解机理影响因素研究现状应用前景0 引言随着大量高分子材料在各个领域的使用,废弃高分子材料对环境的污染有着日益加剧的趋势。
塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废塑料所造成的白色污染已成为世界性的公害。
目前,处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。
生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程,这种方法简洁有效,而且对环境的保护有积极的作用。
同时,随着高新技术的发展,生物降解高分子材料也满足了医学和农业及其他方面的需求,成为近年来研究的热点。
1.生物降解高分子材料的定义和分类生物降解高分子材料( Biodegradable polymeric materials)是指在一定的条件下,一定的时间内, 能被微生物( 细菌、真菌、霉菌、藻类等) 或其分泌物在酶或化学分解作用下发降解的高分子材料。
生物降解的高分子材料具有以下特点: 易吸附水, 含有敏感的化学基团, 结晶度低,分子量低,分子链线性化程度高和较大的比表面积等。
功能高分子材料课程总结论文

功能高分子材料课程总结我们都知道,材料是与我们日常生活息息相关的,而高分子材料由于具有许多优良性能,适合现代化生产,经济效益显著,因而在工业上取得了突飞猛进的开展,其中功能高分子材料就是它的一个重要应用,它可以在高分子材料的主链或者侧链上参加一些具有特殊功能的功能基团,使高分子同时具有高分子的性质和这些功能基团,即高分子材料功能化。
这个学期齐教师给我们详细讲解了功能高分子材料这门学科,让我对功能高分子材料这门学科有了根本的认识,比方,吸附别离高分子材料、高分子别离膜、电功能高分子材料、光功能高分子材料、环境降解高分子材料、生物医用高分子材料等材料的作用、性能、应用。
也让我深刻了解到功能高分子材料的重要性,下面就谈谈我对这门学科了解到的一些内容。
一、功能高分子材料的定义及特点〔1〕功能高分子材料的定义一般说来,性能是指材料对外部作用的表征与抵抗特性,而功能那么是外部作用引起材料内部变化而产生的输出特性,因而我们可定义为:对物质、能量和信息具有传输、转换或贮存作用的高分子及其复合材料称为功能高分子材料,通常也可简称为功能高分子,有时也称为精细高分子或特种高分子(包括高性能高分子)。
(2)功能高分子材料的分类功能高分子从制造和构造的角度可分为两类:一类是高分子本身具有特殊功能作用的构造型功能高分子;另一类是高分子本身不具有功能作用,而仅仅作为基体或载体与其他功能材料进展复合而制成的复合型功能高分子材料,按照功能特性通常可分成:光、电、磁、热、力、声、化学和生物等八大类。
(3)功能高分子材料的特点功能高分子之所以开展迅速,是因为除了具有重量轻、易加工、可大面积成膜、原材料来源广泛等优点之外,还具有如下特点:①涉及面广;②技术密集,附加值高;③开发难度大,周期长,竞争剧烈;④专用性强,品种多,产量小,价格贵。
(4)功能高分子材料的应用功能高分子材料主要应用在制备吸附别离高分子材料、高分子别离膜、电功能高分子材料、光功能高分子材料、环境降解高分子材料、生物医用高分子材料等方面。
功能高分子材料论文 生物医学方面的应用

功能高分子材料论文(生物医学方面的应用)摘要:了解生物医用功能高分子材料近年来的应用研究及发展状况,综述国内外生物医用高分子材料的分类、特性及研究成果,展望对未来的生物医用高分子材料的发展趋势,通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。
关键词:功能高分子材料,生物医用高分子材料。
1 生物医用高分子材料的现状生物医用高分子材料是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的高分子材料,生物医用高分子材料是在高分子材料科学不断向医学和生命科学渗透,高分子材料广泛应用于医学领域的过程中,逐渐发展起来的一类生物材料,它已形成一门介于现代医学和高分子科学之间的边缘科学。
在功能高分子材料领域, 生物医用高分子材料可谓异军突起, 目前已成为发展最快的一个重要分支。
生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937 年,其特点是所用高分子材料都是已有的现成材料, 如用丙烯酸甲酯制造义齿的牙床。
第二阶段始于1953 年, 其标志是医用级有机硅橡胶的出现, 随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚- 氨) 酯心血管材料, 从此进入了以分子工程研究为基础的发展时期。
该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计, 有目的地开发所需要的高分子材料。
目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。
其特点是这种材料一般由活体组织和人工材料有机结合而成, 在分子设计上以促进周围组织细胞生长为预想功能, 其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度在国外,生物医用高分子材料研究已有50多年的历史,早在1947 年美国已发表了展望性论文。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物医用高分子材料摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。
关键词:功能高分子材料,生物医用高分子材料。
功能高分子材料功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。
功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。
近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。
这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。
如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。
可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。
功能高分子材料按照功能特性通常可分成以下几类:(1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。
功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。
随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。
一般归纳起来医用高分子材料应符合下列要求:1、化学稳定性好,在人体接触部分不能发生影响而变化;2、组织相容性好,在人体内不发生炎症和排异反应;3、不会致癌变;4、耐生物老化,在人体内材料长期性能无变化;5、耐煮沸,灭菌、药液消毒等处理方法;6、材料来源广、易于加工成型。
经多年研究,能较好符合上述要求的高分子化合物主要有两大类,一类是有机硅化合物,第二类是有机氟化物,最主要的两种产品是硅橡胶和聚四氟乙烯,例如美国GE公司开发了一批主要是有机硅方面的用于医学领域的功能高分子化合物。
生物医用高分子材料的现状和发展趋势生物医用高分子材料是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的高分子材料,即biomedical polymeric materials ,生物医用高分子材料是在高分子材料科学不断向医学和生命科学渗透,高分子材料广泛应用于医学领域的过程中,逐渐发展起来的一类生物材料,它已形成一门介于现代医学和高分子科学之间的边缘科学。
在功能高分子材料领域, 生物医用高分子材料可谓异军突起, 目前已成为发展最快的一个重要分支。
生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937 年,其特点是所用高分子材料都是已有的现成材料, 如用丙烯酸甲酯制造义齿的牙床。
第二阶段始于1953 年, 其标志是医用级有机硅橡胶的出现, 随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚- 氨) 酯心血管材料, 从此进入了以分子工程研究为基础的发展时期。
该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计, 有目的地开发所需要的高分子材料。
目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。
其特点是这种材料一般由活体组织和人工材料有机结合而成, 在分子设计上以促进周围组织细胞生长为预想功能, 其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度在国外,生物医用高分子材料研究已有50多年的历史,早在1947 年美国已发表了展望性论文。
随后,美国、日本、欧洲等工业发达国家不断有文章报道,有些并已在临床上得到应用。
我国研究历史较短,上世纪70年代开始进行人工器官的研制,并有部分器官进入临床应用。
1980 年成立了中国生物医疗工程学会,并于1982 年又成立了中国医学工程学会人工脏器及生物材料专业委员会,使得生物医学器材获得进一步发展. 生物医用高分子材料作为一门边缘科学,融合了高分子化学和物理、高分子材料工艺学、药理学、病理学、解剖学和临床医学等方面的知识,还涉及许多工程学问题。
生物医用高分子材料的发展,对于战胜危害人类的疾病,保障人民身体健康,探索人类生命奥秘具有重大意义。
1 生物医用高分子材料的基本要求及生物相容性对于生物医用高分子材料来说,除了要有医疗功能外,还必须强调安全性,即不仅要治病,而且对人体健康无害。
当然,对生物医用高分子材料的要求也不是一律不变的,可因其使用环境或功能的不同而异,如外用医疗材料与肌体接触时间短,要求可稍低,而与血液直接接触,或体内使用的材料则要求较高。
2 生物医用高分子材料的种类及发展生物医用高分子材料按性质可分为非降解和可生物降解两大类。
非生物降解的生物医用高分子包括:聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等,其在生理环境中能长期保持稳定,不发生降解、交联或物理磨损等,并具有良好的力学性能。
可生物降解的生物医用高分子材料则包括胶原、脂肪族聚酯、聚氨基酸、聚己内酯等,这些材料能在生理环境中发生结构性破坏,且降解产物能通过正常的新陈代谢被基体吸收或排出体外。
非降解和可生物降解生物医用高分子材料在生物医学领域各具有自己独特的发展地位,然而,随着生物医学和材料科学的发展,人们对生物医用高分子材料提出了更高的要求,可生物降解生物医用高分子材料越来越得到人们的亲睐。
因此,在这里主要讨论可生物降解医用高分子材料的种类。
根据来源来划分,可生物降解医用高分子材料可分为天然可生物降解和合成可生物降解两大类。
3 生物医用高分子材料的应用及展望生物技术将是21世纪最有前途的技术, 生物医用高分子材料将在其中扮演重要角色, 其性能将不断提高, 应用领域也将进一步拓宽。
生物医用高分子材料应用主要有以下几个方面:(1)与血液接触的高分子材料。
与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣膜、人工肺等的生物医用材料, 要求这种材料要有良好的抗凝血性、抗细菌粘附性, 即在材料表面不产生血栓、不引起血小板变形, 不发生以生物材料为中心的感染。
此外, 还要求它具有与人体血管相似的弹性和延展性以及良好的耐疲劳性等。
(2)组织工程用高分子材料。
组织工程学是近十年来新兴的一门交叉学科,它是应用工程学和生命科学的原理和方法来了解正常和病理的哺乳类组织的结构- 功能关系, 以及研制生物代用品以恢复、维持或改善其功能的一门科学。
细胞大规模培养技术的日臻成熟和生物相容性材料的开发与研究, 使得创造由活细胞和生物相容性材料组成的人造生物组织或器官成为可能。
(3)药用高分子材料。
与低分子药物相比,药用高分子具有低毒、高效、缓释、长效、可定点释放等优点。
根据药用高分子结构与制剂的形式, 药用高分子可分为三类: a. 具有药理活性的高分子药物,它们本身具有药理作用,断链后即失去药性, 是真正意义上的高分子药物。
b.低分子药物的高分子化。
低分子药物在体内新陈代谢速度快, 半衰期短,体内浓度降低快, 从而影响疗效, 故需大剂量频繁进药, 而过高的药剂浓度又会加重副作用, 此外, 低分子药物也缺乏进入人体部位的选择性。
将低分子药物与高分子结合的方法有吸附、共聚、嵌段和接枝等。
C.药用高分子微胶囊,即将细微的药粒用高分子膜包覆起来形成微小的胶囊,其作用有:延缓、控制释放药物, 提高疗效; 掩蔽药物的毒性、刺激性和苦味等不良性质, 减小对人体的刺激; 使药物与空气隔离, 防止药物在存放过程中的氧化、吸潮等不良反应, 增加贮存的稳定性。
(4)医药包装用高分子材料。
用于药物包装的高分子材料正逐年增加,包装药物的高分子材料大体上可分为软、硬两种类型。
硬型材料如聚酯、聚苯乙烯、聚碳酸酯等, 由于其强度高、透明性好、尺寸稳定、气密性好,常用来代替玻璃容器和金属容器, 制造饮片和胶囊等固体制剂的包装。
新型聚酯聚萘二甲酸乙二醇酯除具有优异的力学性能及阻隔性能外, 还有较强的耐紫外线性, 可用于口服液、糖浆等的热封装。
软型材料如聚乙烯、聚丙烯、聚偏氯乙烯及乙烯- 醋酸乙烯共聚物等, 常加工成复合薄膜, 主要用来包装固体冲剂、片剂等药物。
而半硬质聚氯乙烯片材则被用作片剂、胶囊的铝塑泡罩包装的泡罩材料。
至于药膏、洗剂、酊剂等外用药液的包装, 则用耐腐蚀性极强且综合性能优良的聚四氟乙烯来担任。
(5)隐形眼镜是最常见的眼科用高分子材料制品。
对这类材料的基本要求是: ①具有优良的光学性质, 折光率与角膜相接近;②良好的润湿性和透氧性; ③生物惰性, 即耐降解且不与接触面发生化学反应; ④有一定的力学强度, 易于精加工及抗污渍沉淀等。
常用的隐形眼镜材料有聚甲基丙烯酸β-羟乙酯, 聚甲基丙烯酸β- 羟乙酯- N - 乙烯吡咯烷酮, 聚甲基丙烯酸β- 羟乙酯- 甲基丙烯酸戊酯, 聚甲基丙烯酸甘油酯- N - 乙烯吡咯烷酮等。
浙江工业大学的邬润德等研究的聚钛硅氧烷化合物, 由于在聚合体系中加入了钛烷氧化物交联剂,使材料的致密性增加, 减少了固化收缩, 制备了一种优良的隐形眼镜材料。
此外, 发生病变的角膜和晶状体也可用人工角膜和人工晶状体替代。
人工角膜可用硅橡胶、聚甲基丙烯酸酯类或聚酯等薄膜制备。
人工晶状体的主体材料可用聚甲基丙烯酸酯类, 其起固定作用的附加爪状细枝可用甲基丙烯酸甲酯和甲基丙烯酸丁酯的共聚物或甲基丙烯酸环己酯和甲基丙烯酸丁酯的共聚物等。
(6)医用粘合剂与缝合线。
生物医用粘合剂是指将组织粘合起来的组织粘合剂, 它们除了应具备一般软组织植入物所应有的条件外, 还应满足下列要求: ①在活体能承受的条件下固化, 使组织粘合; ②能迅速聚合而没有过量的热和毒副产物产生; ③在创伤愈合时粘合剂可被吸收而不干扰正常的愈合过程。
常用的粘合剂有α- 氰基丙烯酸烷基酯类, 甲基丙烯酸甲酯- 苯乙烯共聚物及亚甲基丙二酸甲基烯丙基酯等。
手术用缝合线可分为非吸收型和可吸收型两大类。
非吸收类包括天然纤维(如蚕丝、木棉、麻及马毛等) 和合成纤维(如PET、PA、PP、PE 单丝、PTFE 及PU 等) 。
可吸收类包括天然高分子材料(如羊肠线、骨胶原、纤维蛋白等) 和合成高分子材料(如聚乙烯醇、聚羟乙基丁酸酯、聚乳酸、聚氨基酸及聚羟基乙酸等) 。