水力学例题
《水力学》练习题1—6

水力学习题1一、单项选择题1.某流体的运动粘度v=3×10-6m2/s,密度ρ=800kg/m3,其动力粘度μ为( )A.3.75×10-9Pa·sB.2.4×10-3Pa·sC.2.4×105Pa·sD.2.4×109Pa·s2.图中相互之间可以列总流伯努利方程的断面是A.1-1断面和2-2断面B.2-2断面和3-3断面C.1-1断面和3-3断面D.3-3断面和4-4断面3.如图所示,孔板上各孔口的大小形状相同,则各孔口的出流量是( )A.Q A>Q BB.Q A=Q BC.Q A<Q BD.不能确定4.并联管道A、B,两管材料、直径相同,长度 B=2 A,两管的水头损失关系为( )A.hfB =hfAB.hfB =2hfAC.hfB =1.41hfAD.hfB =4hfA5.如图所示,水泵的扬程是( )A.z1B.z2C.z1+ z2D.z1+ z2+h w6.在已知通过流量Q、渠道底坡i、边坡系数m及粗糙系数n的条件下,计算梯形断面渠道尺寸的补充条件及设问不能是( )A.给定水深h,求底宽bB.给定宽深比β,求水深h与底宽bC.给定最大允许流速[v]max,求水底h与底宽bD.给定水力坡度J,求水深h与底宽b7.断面单位能量e随水深h的变化规律是( )A.e存在极大值B.e存在极小值C.e随h增加而单调增加D.e随h增加而单调减少8.下列各型水面曲线中,表现为上凸型的水面曲线是( )A.M3型B.C3型C.S3型D.H3型9.根据堰顶厚度与堰上水头的比值,堰可分为( )A.宽顶堰、实用堰和薄壁堰B.自由溢流堰、淹没溢流堰和侧收缩堰C.三角堰、梯形堰和矩形堰D.溢流堰、曲线型实用堰和折线型实用堰10.速度v、长度l、运动粘度v的无量纲组合是( )A.vlv2B.v lv2C.v lv22D.vlv二、填空题(不写解答过程,将正确的答案写在每小题的空格内。
水力学例题

例题1:如下图所示,一圆锥体绕自身轴线等速旋转,锥体与固定壁面间的距离为K ,空隙全部被动力粘滞系数为μ的牛顿流体所充满。
当旋转角速度为ω,锥体底部半径为R ,高为H ,求作用于圆锥的阻力矩。
解:M=⎰⎰⎰⎰====Kdhr KdA rKdAr Ku dAr322cos 2πμωαπμωωμμτ=HK Rαπμωcos23而22cos RHH+=α;故:M=2232RHKR+⨯πμω例题2:涵洞进口处,装有与水平线成600倾角而边长为1m 的正方形平板闸门(AB=1m ),求闸门所受静水总压力的大小及作用点。
解:坐标只能建在水面上。
A kp p 807.91807.9=⨯=aB kp p 300.18)231(807.9=+⨯=KNp p P BA 050.14112=⨯⨯+=h h Ay I y y C C C C C D 6.160sin 433.112160sin 433.1160sin 121160sin 03=+=⨯⨯+=+=0=D x矩形和圆形的C y 和C I 值矩形:2hy C =123bhI C =圆形:r y C =44rI C π=例题3:一直立矩形闸门,用三根工字梁支撑,门高及上游水深H 均为3m,把此闸门所受静水压强分布图分为三等份,每根工字梁分别设在这三等份的重心,求三个工字梁的位置?解:设静水压力分布图的面积为A ,则每一等份为A/3mh H A h 3,21313211221=∴⨯==γγ mh H A h 45.2,213232212222=∴⨯==γγm h h h h m h h c 091.22718.0121212=-+==-m Ah J h y c xc c 11.2718.0091.212)718.0(091.2322=⨯+=+=mh H h h m h H c 725.2255.02232=-+==-mAh J h y c xc c 73.2725.212)55.0(725.22333=+=+=mh h h h h h h y m h y 11.22)(31,15.1322121121211=++-+===。
工程水力学基础例题

45sin 3sin 311α闸门右侧水压力:kN b h gh P 74.27145sin 228.9100021sin 21222=⨯⨯⨯⨯⨯=⋅=αρ 作用点:m h h 943.045sin 32sin 32'2===α 总压力大小:kN P P P 67.3474.2741.6221=-=-=对B 点取矩:'D '22'11Ph h P h P =-'D 67.34943.074.27414.141.62h =⨯-⨯m h 79.1'D =作用在闸门上的总压力的作用点距离闸门下端的距离是1.79m 。
2. 一弧形闸门如图所示,闸门宽度b=1m ,圆心角φ=45°,水头h=3m 。
求水对闸门的静水总压力及方向。
[解] 水平分力:kN b h h g A gh F x c px 145.4432.381.910002=⨯⨯⨯=⋅⨯==ρρ压力体体积:322221629.1)45sin 3(8]321)345sin 3(3[)45sin (8]21)45sin ([b m h b h h hh V =-⨯+-⨯=-+-=ππ 铅垂分力:kN gV F pz 41.111629.181.91000=⨯⨯==ρ合力:kN F F F pz px p 595.4541.11145.442222=+=+=方向:5.14145.4441.11arctanarctan===pxpz F F θ3. 图示管路由两根不同直径的管子与一渐变连接管组成。
已知d A =200mm ,d B =400mm ,A 点相对压强P A =68.6kPa ,B 点相对压强P B =39.2kPa ,B 点的断面平均流速v B =1m/s ,A 、B 两点高差△z=1.2m 。
试判断流动方向,并计算两断面间的水头损失hw 。
[解] B B A A v d v d 2244ππ=s m v d d v B A B A /41)200400(222=⨯==∴假定流动方向为A →B ,则根据伯努利方程w BB B B A A A A h gv g p z g v g p z +++=++2222αραρ其中z z z A B ∆=-,取0.1≈=B A ααz gv v g p p h BA B A w ∆--+-=∴222ρ2.1807.92149807392006860022-⨯-+-=056.2>=m故假定正确。
水力学练习题

水力学练习题水力学练习题水力学是研究液体在不同条件下的运动和力学性质的学科。
它在工程领域中有着广泛的应用,涉及到水的供应、排水系统设计、水坝和水电站等方面。
在学习水力学的过程中,练习题是提高理论知识和解决实际问题的有效方法。
本文将通过一些水力学练习题,帮助读者更好地理解和应用水力学的知识。
题目一:流量计算某水厂的进水管道直径为0.5米,流速为2米/秒。
请计算该管道的流量。
解析:流量是单位时间内通过某一横截面的液体体积。
根据流量的定义,我们可以通过以下公式计算流量:Q = A × V其中,Q表示流量,A表示横截面积,V表示流速。
根据题目中的数据,进水管道的直径为0.5米,半径为0.25米。
横截面积可以通过圆的面积公式计算:A = π × r²代入数据,得到横截面积为0.19634954084936207平方米。
流速为2米/秒,代入公式,得到流量:Q = 0.19634954084936207平方米× 2米/秒Q = 0.39269908169872414立方米/秒因此,该管道的流量为0.39269908169872414立方米/秒。
题目二:水头计算某水坝的高度为50米,水面距离坝顶的高度为40米。
请计算水的压力。
解析:水的压力是由于水的重力作用而产生的。
根据水的压力公式,我们可以通过以下公式计算水的压力:P = ρ × g × h其中,P表示压力,ρ表示水的密度,g表示重力加速度,h表示水的高度。
根据题目中的数据,水的高度为40米。
代入公式,我们需要知道水的密度和重力加速度。
水的密度一般取998千克/立方米,重力加速度取9.8米/秒²。
代入公式,得到水的压力:P = 998千克/立方米× 9.8米/秒² × 40米P = 392720帕斯卡因此,水的压力为392720帕斯卡。
题目三:水流速度计算某水流的流量为0.2立方米/秒,管道直径为0.3米。
《水力学》作业题参考答案

μ=0.95。现测得水银压差计读数hp=150mm,问此时管中流量Q是多少。
解:
Q K
Hg 油
1 hp
பைடு நூலகம்
d12 2g 0.22 2 9.807
其中: 0.95; K
4
d1 d2
4
1
4
0.2 0.1
4
1
0.0359
hp 0.15 (m)
Q K
Hg 油
1 hp
可第行3章性判定:当
h1
增大时
yC
h1
h212 增大,则
IC yC A
减小,-1即2-
第2章 水静力学
作业 7、密闭盛水容器,已知h1=60cm,h2=100cm,水银测压计 读值△h=60cm。试求半径R=0.5m的半球盖AB所受总压力 的水平分力和铅垂分力。
解:(1)确定半圆中心压强P0
p0 h Hg g g(h2 h1) 76.(1 KPa)
Δh
解:找到基准面
B×
vA
dB dA
2
vB
0.4 0.2
2
1.5
6m
/
s
×A
HA
zA
pA
vA2 2g
0
30 9.807
62 2 9.807
4.89m
HB
zB
pB
vB2 2g
1.5
40 9.807
1.52 2 9.807
5.69m
第3章
18
HB HA BA
-18-
第3章 水动力学
(kPa)
(2)计算水平分量Px Px po A p0 R2 59.74KN
(3)计算铅垂分力Pz
水力学考前必看例题

X = 0,Y = 0,Z = 0,即有:
积分得:
dp 0
p c 其中 C 为积分常数;
液面处P= P0,确定积分常数C= P0,即当容器自由下落时压强分布规律为:
P= P0
8.盛有水的密闭容器,水面压强为P0,求当容器分别自由下 落和以重力加速度上升时容器的压强分布规律。 z
解:当容器以重力加速度上升时,根据欧拉平衡微分方程的
解:上半球受到的压力包括两部分,球内部水的压力 和外部水的压力,总压力为二者压力之差。
上半球压力实体如图:
总压力: F gV gr2 H1 H2
代入数值计算得: F 153800N
第三章习题
10、12、14、17、19 题
10. 水管直径D=50mm,末端阀门关闭时,压力表读值 PM1=21 kPa,阀门打开后读值降至5.5 kPa 。如不计水 头损失,求通过的流量Q。
断面1-1上作用的相对压强为零。
沿喷嘴轴线方向列动量方程:
Fx Fp FR Q(v2 v1)
其中: v1
4Q
d12
4 0.4
0.42
3.18m / s
v2
4Q
d
2 2
4
0.4 0.22
12.74m / s
取喷嘴断面中心的水平面为基准面,根据伯努利方程:
z1
p1
g
1v12
2g
z2
p2
g
2v22
2g
hw
其中p2=0,z1=z2=0,hw=0,1 = 2 =0
代入数据得:
p1
2
水力学题(完整资料).doc

水力学题(完整资料).doc【最新整理,下载后即可编辑】⒈在倾角θ=30°的斜面上有一厚度为δ=0.5 mm的油层。
一底面积A=0.15m2,重G=25N的物体沿油面向下作等速滑动,如图所示。
求物体的滑动速度u 。
设油层的流速按线性分布,油的动力粘度μ=0.011 N·s/ m2。
2.有一与水平面成倾斜角α=60°的自动翻版闸门,如图所示。
当上游水深超过h1= 2.5m,下游水深h2= 0.5m时,闸门便自动开启。
求翻板闸门铰链的位置l值。
(不计摩擦力和闸门自重)3.有一水电站的水轮机装置,如图所示。
已知尾水管起始断面1的直径d=1 m ,断面1与下游河道水面高差h=5 m。
当通过水轮机的流量Q=1.5 m3/s 时,尾水管(包括出口)水头损失h=1.5m 。
求断面1的动水压强。
4.某渠道在引水途中要穿过一条铁路,于路基下修建圆形断面涵洞一座,如图所示,已知涵洞设计流量(即渠道流量)Q=1 m3/s ,涵洞上下游允许水位差z =0.3 m ,涵洞水头损失1h ω =1.4722v g (v 为洞内流速)。
涵洞上下游渠道流速极小。
求涵洞直径d 。
5.图示一从水库引水灌溉的虹吸管,管径d=10 cm ,管中心线的最高点B 高出水库水面2 m 。
管段AB (包括进口)的水头损失AB h ω=3.522v g ,管段BC 的水头损失BC h ω=1.522v g (v 为管中流速)。
若限制管道最大真空高度不超过6 m 水柱,问:(1)虹吸管引水流量量有无限制?如有,最大值为多少?(2)水库水面至虹吸管出口的高差h 有无限制?如有,最大值为多少?B6.有一大水箱,水箱面积很大,下接一管道,如图所示。
已知大管和收缩段管径分别为d 1=5 cm 和d 2=4 cm ,水箱水面与管道出口中心点的高度差H =1 m 。
如不计水头损失,问容器A 中的水是否会沿管B 上升?如上升,上升高度h 为若干?7.有一从水箱引水的管道如图所示。
水力学习题及答案

水力学习题及答案水力学习题及答案一、选择题1、下列哪个参数不是水动力学的研究对象? A. 流量 B. 速度 C. 压力 D. 重量2、一根水平放置的管道,两端开口,当一端进水,另一端出水时,其流速与流量之间的关系为? A. 反比关系 B. 正比关系 C. 不相关 D. 无法确定3、一水坝的形状为抛物线形,其水头高度为30米,底部宽度为50米,则水坝的顶部的宽度为? A. 10米 B. 20米 C. 30米 D. 40米4、在没有特殊说明的情况下,通常情况下,所说的水密度是指? A. 在4摄氏度时的密度 B. 在100摄氏度时的密度 C. 在常温常压下的密度 D. 在海平面的平均密度二、简答题5、请简述水动力学的基本研究方法和主要应用领域。
51、请描述层流和湍流的定义,并解释它们在流体运动中的区别。
511、请阐述水头损失的物理意义和计算方法。
5111、对于一个给定的管径和流速,如何计算管道的流量?请给出计算公式并解释每个公式的物理意义。
三、综合题9、通过数值模拟方法研究流体运动时,有哪些可能遇到的困难和挑战?如何解决这些困难和挑战?91、假设在一个直径为1米的管道中流动的水,其平均流速为1米/秒。
请计算该管道的流量。
再假设在该管道的入口处加入一个水泵,使得管道内的流速增加到2米/秒,请问流量是否会翻倍?为什么?答案:一、选择题1、D。
水动力学主要研究的是流体(包括水)的运动状态和规律,不涉及物体的重量。
因此,重量不是水动力学的研究对象。
2、B。
根据伯努利定理,在不可压缩的稳定流场中,流速与流量成正比。
因此,流速与流量之间存在正比关系。
3、A。
根据抛物线的几何性质,抛物线的顶点位于其对称轴上。
因此,水坝顶部的宽度为底部的1/2,即25米。
又因为题目中给出的底部宽度为50米,所以水坝顶部的宽度为10米。
因此,答案为A。
4、C。
在工程应用中,通常所说的水密度是指常温常压下的密度。
因此,答案为C。
二、简答题5、水动力学的基本研究方法是基于物理学和数学的流体动力学理论和实验方法,研究流体运动的规律和特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 绪论例1:已知油品的相对密度为0.85,求其重度。
解:3/980085.085.0m N ⨯=⇒=γδ例2:当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。
解:0=+=⇒=dV Vd dM V M ρρρρρd dVV -=Padp d dpVdV E p84105.2105%02.01111⨯=⨯⨯==-==ρρβ例3已知:A =1200cm 2,V =0.5m/sμ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F绘制:平板间流体的流速分布图及应力分布图 解:(前提条件:牛顿流体、层流运动)dy du μτ=⎪⎪⎩⎪⎪⎨⎧-=-=⇒2221110h u h u V μτμτ因为 τ1=τ2 所以sm h h V h u h u h u V /23.02112212211=+=⇒=-μμμμμNh u V A F 6.411=-==μτ第2章 水静力学例1:如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。
解:分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合0=+s gz ax等压面与x 轴方向之间的夹角g a tg =θPaL tg H h p A A 177552=⎪⎭⎫ ⎝⎛⋅+==θγγPaL tg H h p B B 57602=⎪⎭⎫ ⎝⎛⋅-==θγγ例2:(1)装满液体容器在顶盖中心处开口的相对平衡分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变:Cz grp +-⋅=)2(22ωγ利用边界条件:r =0,z =0时,p =0作用于顶盖上的压强:grp 222ωγ=(表压)(2)装满液体容器在顶盖边缘处开口的相对平衡压强分布规律:Cz grp +-⋅=)2(22ωγ边缘A 、B 处:r =R ,z =0,p =0gRC 222ωγ-=作用于顶盖上的压强:()2222rRgp --=ωγ例3:已知:r 1,r 2,Δh 求:ω0解:0212120=-s z gr ω (1)222220=-s z gr ω (2)因为hz z s s ∆==21所以 212202r r h g -∆=ω例4已知:一圆柱形容器,直径D =1.2m ,完全充满水,顶盖上在r 0=0.43m 处开一小孔,敞开测压管中的水位a =0.5m ,问此容器绕其立轴旋转的转速n 多大时,顶盖所受的静水总压力为零? 已知:D =1.2m ,r 0=0.43m ,a =0.5m 求:n解:据公式 )(Z d z Y d y X d x dp ++=ρ坐标如图,则 x X 2ω=,y Y 2ω=,g Z -= 代入上式积分:Cz grp +-⋅=)2(22ωγ (*)由题意条件,在A 点处:r =r 0,z =0,p =γa 则 Cgr a +-⋅=)02(22ωγγ所以 )2(22gr a C ωγ-⋅=所以 )2()2(2222gr a z grp ωγωγ-⋅+-⋅=当z =0时: )2(22222gr a grp ωγωγ-⋅+=它是一旋转抛物方程:盖板上静压强沿径向按半径的二次方增长。
而 02)2(22202220=⋅⎥⎥⎦⎤⎢⎢⎣⎡-⋅+=⋅==⎰⎰⎰r d r g r a g r r d r p pdA P RRAπωγωγπ 所以0)2(2202320=⎥⎥⎦⎤⎢⎢⎣⎡-+⎰dr r g r a g r Rωω 即 02)2(420220242=⎥⎥⎦⎤⎢⎢⎣⎡-+Rr g r a r g ωω则 2202022224042Rr ga ga r R -=⇒=+-ωωω所以 22024212Rr ga n -==ππω代入数据得:n =7.118转/秒例5:闸门宽1.2m ,铰在A 点,压力表G 的读数为-14700Pa ,在右侧箱中装有油,其重度γ0=8.33KN/m 3,问在B 点加多大的水平力才能使闸门AB 平衡? 解:把p 0折算成水柱高:mp h 5.19800147000-=-==γ相当于液面下移1.5m ,如图示虚构液面则左侧:()()N A h P c 7056022.11298001=⨯⨯+⨯==γ压力中心距A 点:3.11-2=1.11m右侧:设在B 点加水平力F 使闸门AB 平衡,对A 点取矩 ∑ M A =0 即 AB F h P h P D D +=2211KNF 87.25233.1992.1911.156.70=⨯-⨯=例6:一示压水箱的横剖面如图所示,压力表的读数为0.14个大气压,圆柱体长L =1.2m ,半径R =0.6m 求:使圆柱体保持如图所示位置所需的各分力(圆柱体重量不计)。
解:水平分力:→N A h P x c x 2.119952.16.07.19800=⨯⨯⨯==γ第3章 水动力学基础例1:已知:⎪⎩⎪⎨⎧=+-=+=0z y x u t y u t x u 求:t =0 时,A (-1,1)点流线的方程。
解: ty dy tx dx+-=+积分:ln(x+t)=-ln(-y+t)+C → (x+t) (-y+t)=C`当t =0时,x =-1,y =1,代入上式得: C`=1 所以,过A (-1,1)点流线的方程为:xy =-1例2、伯努利方程式的应用实例 例2-1 : 一般水力计算问题有一喷水装置如图示。
已知h 1=0.3m ,h 2=1.0m ,h 3=2.5m ,求喷水出口流速,及水流喷射高度h (不计水头损失)。
解:① 以3-3断面为基准面,列1-1、3-3两断面的能量方程:()320320000h h p p h h +=⇒++=+++γγ以2-2断面为基准面,列2-2、4-4两断面的能量方程:()gV h h p 200024120+++=++γ所以,()()()[]()sm h h h h g h h g p gV /57.63.05.28.9222212321204=-⨯⨯=+-+=+-=γ②mgV h 20.2224==例2-2: 节流式流量计已知:U 形水银压差计连接于直角弯管, d 1=300mm ,d 2=100mm ,管中流量Q =100L/s 试问:压差计读数Δh 等于多少? (不计水头损失)解:以0-0断面为基准面,列1-1、2-2两断面的能量方程:()2g V 2gV 0222211++∆+=++γγp h z p()2gV V 212221-+∆+=-h z p p γ又s m A Q V /42.13.014.31.04211=⨯⨯==,sm A Q V /74.121.014.31.04222=⨯⨯==由等压面a -a 得压强关系:h p z p Hg ∆-=-γγ21 则 z h p p Hg γγ+∆=-21所以()6.1942.174.1222-+∆+=+∆h z zh Hgγγγmmm h Hg649649.018.8==-=∆γγγ例2-3: 毕托管原理水从立管下端泄出,立管直径为d =50mm ,射流冲击一水平放置的半径R =150mm 的圆盘,若水层离开盘边的厚度δ=1mm求:流量Q 及汞比压计的读数Δh 。
水头损失不计。
分析:1-1: p 1(=0), V 1(?), z 1(√) 2-2: p 2(=0), V 2(?), z 2(√) 3-3: p 3( ?), V 3(=0), z 3(√)(驻点) 每点都有一个未知数,可对任何两点列方程。
解: 以圆盘为基准面,列1-1、2-2两断面的能量方程:2g V 022gV 032221++=++δ①列1-1、3点的能量方程:02gV 03321++=++γp ②据连续性方程:212241V R V d Q ⋅=⋅=δππ ③③代入①式:2242222/4.766416sm d R gV =⎪⎪⎭⎫⎝⎛-=δ (忽略δ/2)V 2=8.74m/s, V 1=4.196m/sV 1代入②式: mp 898.32gV 3213=+=γ所以:s L V A V A Q /23.82211=⋅=⋅= h p Hg ∆=⋅+γγ5.133mmm p h Hg396396.098006.1398005.19800898.35.13==⨯⨯+⨯=⋅+=∆γγ例2-4: 流动吸力图示为一抽水装置,利用喷射水流在吼道断面上造成的负压,可将M 容器中的积水抽出。
已知:H 、b 、h (不计损失),求:吼道有效断面面积A 1与喷嘴出口断面面积A 2之间应满足什么样的条件能使抽水装置开始工作?解:以1-1为基准面,列0-0、1-1断面的能量方程:2g V 211+=γp h 以0`-0`为基准面,列1-1、2-2断面的能量方程:()2g V 2gV 22211=++-γp h H要使抽水机工作: bp ≥-γ1则:()gH V b h g V 2,221=+=又因为:2211V A V A ⋅=⋅所以:bh H V V A A +==1221例3:水头线(局部损失不计)例4: 已知:Q =0.001m 3/s ,D =0.01m H w 吸=1m ,h w 排=25m 求:H =?p B =?N 泵=?解:取1-1、2-2断面列伯努利方程:O mH h z z H w 21232)(=+-= 取1-1、B 断面列伯努利方程:W QH N Pap sm V VAQ h p B w B6.31332001.09800108.9/74.122gV7.0042=⨯⨯==⨯-=∴=⇒=+++=γγ泵吸例5:动量方程已知:一个水平放置的90º弯管输送水 d 1=150mm ,d 2=75mmp 1=2.06×105Pa ,Q =0.02m 3/s求:水流对弯管的作用力大小和方向(不计水头损失)分析: 1-1: p 1(√), V 1(可求), z 1(√)2-2: p 2(?), V 2(可求), z 2(√)解:sm dQA Q V /132.142111===πsm d QA Q V/527.442222===π取1-1、2-2对选取的控制体列动量方程:x 方向:)0(111V Q R A p x -=-ρy 方向:)0(222-=-V Q A p R y ρ 所以,NR NR y x 9583663==NRR R yx 378622=+=66.14==xy R R arctgθ所以,水流对弯管壁的作用力为F 的反作用力F`,大小相等,方向相反。