金属断口分析[深度分析]
金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法金属材料断口分析是一项综合性很强的技术分析工作,通常需要采用多种仪器联合测试检验的结果,从宏观到微观,从定性到定量进行研究分析。
因此,需要严格的科学态度和有步骤的操作。
断口分析的步骤包括:选择、鉴定、保存和清洗试样;宏观检验和分析断裂表面、二次裂纹以及其他表面现象;微观检验和分析;金相剖面的检验和分析以及化学分析;断口定量分析,如断裂力学方法;模拟试验等。
在进行断裂构件的处理和断口的保存时,需要采取措施把断口保存好并尽快制定分析计划。
对于不同情况下的断口,应采用不同的方法进行处理。
例如,对于大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗;对于带有油污的断口,应先用有机溶剂溶去油污,最后用无水乙醇清洗吹干;在腐蚀环境下发生断裂的断口,则需要进行产物分析。
通常可以采用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后再去掉产物观察断口形貌。
总之,断口分析是一项重要的金属材料分析技术,需要严格的科学态度和有步骤的操作。
去除腐蚀产物的方法之一是干剥法。
使用醋酸纤维纸(AC纸)进行清理是最有效的方法之一,特别是在断口表面已经受到腐蚀的情况下。
将一条厚度约为1mm的AC纸放入丙酮中泡软,然后放在断口表面上。
在第一张条带的背后衬上一块未软化的AC纸,然后用夹子将复型牢牢地压在断口表面上。
干燥后,使用小镊子将干复型从断口上揭下来。
如果断口非常污染,可以重复操作,直到获得一个洁净无污染的复型为止。
这种方法的一个优点是,它可以将从断口上除去的碎屑保存下来,以供以后鉴定使用。
此外,还可以使用复型法来长期保存断口。
断口表面不能使用酸溶液清洗,因为这会影响断口分析的准确性。
对于在潮湿空气中暴露时间比较长、锈蚀比较严重的断口,以及高温下使用的有高温氧化的断口,一定要去除氧化膜后才能观察,以避免假象。
如果一般有机溶液、超声波洗涤和复型都不能洁净断口表面,可以采用化学清洗。
金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法断口分析通常是一个从宏观到微观,从定性到定量的分析过程,并且是应用多种仪器联合测试检验的结果,是综合性很强的技术分析工作。
因此需要严格的科学态度,精心地、有步骤地进行研究分析。
断口分析步骤:(1)所有试样的选择、鉴定、保存以及清洗;(2)宏观检验和分析(断裂表面、二次裂纹以及其他的表面现象);(3)微观检验和分析;(4)金相剖面的检验和分析以及化学分析;(5)断口定量分析(断裂力学方法);(6)模拟试验。
1 断裂构件的处理及断口的保存在确定了断裂的金属构件后,就要采取措施把断口保存好,尽快制定分析计划。
通常金属构件的断裂不止一个断口,有时要立即判断主断口有困难,此时应该把所有断件收集好,在收集过程中切勿把断口碰伤或对接,也不要在断口上使用防蚀涂层。
保护和清理断口是断口分析的一个重要前提。
对断口和裂纹轨迹进行充分检查后方可进行清洗。
对于不同情况下的断口应该用不同方法处理:(1)大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗。
(2)对于带有油污的断口,首先用汽油,然后用丙酮、三氯甲烷、石油醚及苯等有机溶剂溶去油污,最后用无水乙醇清洗吹干。
当浸没处理还不能去除油污时,可使用蒸汽或超声波方法进一步去除。
(3)在腐蚀环境下发生断裂的断口,通常在断口上覆盖一层腐蚀产物,这层产物对于分析断裂原因是非常有用的,但对断口形貌观察常常带来很大的麻烦。
在这种情况下,需要用综合分析的方法来考虑。
因为有许多腐蚀产物容易水解或分解,因此进行产物分析要抓紧时间,同时不要进行任何清洗和处理。
通常把带有腐蚀产物的断口试样,先用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后去掉产物再观察断口形貌。
去掉腐蚀产物有时可采用干剥法。
用醋酸纤维纸(称AC纸,由7%的醋酸纤维素、丙酮溶液制成厚度0.1~1mm的均匀薄膜)复型进行清理是最有效的方法之一,尤其是断口表面已经受到腐蚀的时候。
金属断口分析

名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体结构。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口表面,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂;沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)切断:断面取向与最大切应力相一致,与最大应力成45º交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形:裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型)裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似)a Y K c c πσ⋅=1:断裂应力(剩余强度) a :裂纹深度(长度)Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关)脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T 型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
金属拉伸试样的断口分析

金属拉伸试样的断口分析金属拉伸试样是材料科学和工程领域中常用的实验方法之一,用于研究材料的力学性能和物理性质。
在拉伸过程中,试样会发生变形、裂纹和断裂等行为,而断口分析对于理解这些行为具有重要意义。
本文将从断口形态分析和特征分析两个方面,阐述金属拉伸试样断口的形态变化规律及其对材料性能的影响,同时探讨断口的预测与分析方法。
断口形态分析金属拉伸试样的断口形态通常可以分为韧性断裂和脆性断裂两种。
韧性断裂是指材料在拉伸过程中,首先发生均匀变形,随后在局部区域逐渐出现微裂纹,最终形成较大裂纹并导致断裂。
脆性断裂则是指在拉伸过程中,材料突然脆断,无明显的塑性变形和裂纹。
影响断口形态的因素包括拉伸率、应力和位错运动等。
在韧性断裂中,断口的形态通常为杯锥状断口,其形成与材料的韧性有关。
韧性好的材料在拉伸过程中能够承受较大的变形量,因此断口呈现出更为平整的形态。
脆性断裂的断口则通常为无杯锥状断口,呈现出较为尖锐的形态特征。
断口特征分析金属拉伸试样断口的特征可以通过观察和分析断口的形貌、结构和组成等方面来确定。
常见的断口特征包括尖角、波状、鱼脊等。
这些特征的形成与材料的力学性能和物理性质密切相关。
尖角断口通常出现在试样拉伸的起点处,主要是由于应力集中和局部变形导致的。
波状断口则通常出现在试样拉伸的中段,其形成与材料的韧性有关,往往是因微裂纹扩展和合并的结果。
鱼脊断口则出现在试样断裂的终点处,通常是因局部区域材料失稳和颈缩导致的。
断口预测与分析基于金属拉伸试样断口的形态、特征和原因,我们可以预测和分析材料的力学性能和物理性质。
例如,通过观察断口的形貌和组成,可以了解材料的断裂方式和机制,进而对其强度、韧性和耐腐蚀性等性能进行评估。
同时,通过对断口特征的分析,可以为材料的成分、结构和工艺等方面优化提供依据。
断口分析在金属拉伸试样中具有重要意义,通过对断口形态和特征的观察和分析,可以深入了解材料的力学性能和物理性质。
在实际应用中,断口分析可以为材料的研发、生产和应用提供重要参考依据,对于提高材料的综合性能和拓展其应用领域具有重要作用。
金属材料断口机理及分析

精心整理名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹纹。
正断韧性: 河流花样 氢脆:卵形韧窝等轴韧窝1.2.34裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似) :断裂应力(剩余强度)a :裂纹深度(长度)Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
断口的试样制备:截取,清洗,保存。
断口分析技术设备:1.宏观断口分析技术(用肉眼,放大镜,低倍率光学显微镜观察分析)2.光学显微断口分析(扫描电子显微镜光学显微镜,透射电子显微镜),3.电镜断口分析。
第三章延性断裂:12.3.1(1约成45(2(321.2.(1)内颈缩扩展:质点大小、分布均匀,韧窝在多处形核(裂纹萌生),随变形增加,微孔壁变薄,以撕裂方式连接(2)剪切扩展:材料中具有较多夹杂物,同时具有细小析出相时,微孔之间可能以剪切方式相连接。
注意:内颈缩扩展与剪切扩展在同一韧窝断口上可能同时发生。
影响韧窝的形貌因素:夹杂物或第二相粒子,基体材料的韧性,试验温度,应力状态。
金属断裂断口分析

断裂特征及断口特征 金属材料断裂前产生明显 宏观塑性变形的断裂,是 一种缓慢撕裂的过程,在 裂纹扩展过程中不断地消 耗能量。韧性断裂的断裂 面一般平行于最大切应力 并与主应力呈 45 度角。用 肉眼或放大镜观察时,断 口呈纤维状,灰暗色。纤 维状是塑性变形过程中微 裂纹不断扩展和相互连接 造成的,而灰暗色则使纤 维断口表面对光反射能力 很柔弱致。
断口形貌
1
韧性断裂
2
脆性断裂
脆性断裂是突然发生的断 裂,断裂前基本上不发生 塑性变形,没有任何征兆, 因而危险性很大。脆性断 裂的断裂面一般与正应力 垂直,断口平齐而光亮, 常呈放射状或结晶状。
3
穿晶断裂
多晶体金属断裂时,裂纹 扩展的路径可能是不同 的。穿晶断裂的裂纹穿过 晶内。穿晶断裂可以是韧 性断裂(如韧脆转变温度 以上的穿晶断裂) ,也可以 是脆性断裂(低温下的穿 晶解理断裂)
4
沿晶断裂
沿晶断裂的裂纹沿晶界扩 展,大多数是脆性断裂, 由晶界上的一薄层连续或 不连续脆性第二相、杂质 物,破坏了晶界的连续性 所造成,也可能时杂质元 素向晶界偏聚引起的。 应力腐蚀、氢脆、回火脆 性、淬火脆性、磨削裂纹 等大都是沿晶断裂。
5
解理断裂
金属材料在一定的条件下 (如低温) ,当外加正应力 达到一定数值后,以极快 速率沿一定晶体学平面产 生的穿晶断裂,因与大理 石断裂类似,古城此种晶 体学平面为解理面。家里 面一般是低指数晶面或表 面能最低的晶面。 例如: 晶体结构为 bcc: Fe、 解理面为{001}hcp 的主 要解理面为{0001} 金属材料在切应力作用下 沿滑移面分离断裂,其中 又分滑断(纯剪切断裂) 和微孔聚集性断裂。纯金 属尤其是单晶体金属常产 生纯剪切断裂,其断口呈 锋利的楔形(单晶体金属) 或刀尖形(多晶体金属的 完全韧性断裂) 。这是纯粹 由滑移流变所造成的断 裂。微孔聚集性断裂是通 过微孔形核、长大聚合而 导致材料分离的。由于实 际材料中常同时形成微 孔,通过微孔长大互相连 接而最终导致断裂。
金属断口分析

延性断裂为金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。延性断裂分两种,一种是韧窝-微孔聚集型断裂;另一种是滑移分类断裂。一些高强度材料其裂缝扩展阻力较小,对裂纹十分敏感,较小的裂纹
即可使其产生宏观脆性的低应力断裂,其断口为韧窝状,断裂机制是微孔聚
集型。
第一节韧窝断口的宏观形貌特征
从宏观上看,断裂分为脆性断裂和延性断裂
脆性断裂指以材料表面、内部的缺陷或是微裂纹为源,在较低的应力水平下(一般不超过材料的屈服强度),在无塑性变形或只有微小塑性变形下裂纹急速扩展。在多晶体中,断裂时沿着各个晶体的内部解理面产生,由于材料的各个晶体及解理面方向是变化的,因此断裂表面在外观上呈现粒状。脆性断裂主要沿着晶界产生,称为晶间断裂。其断口平齐。
此外,高强度马氏体钢纤维区还有环状花样特征。
第二节韧窝断口的微观形貌特征
韧窝断口的微观特征是一些大小不等的圆形或是椭圆形的凹坑(即韧窝)
在韧窝内经常看到夹杂物或是第二相粒子。
凹坑形状有等轴韧窝、剪切韧窝和撕裂韧窝三种,其形状与应力状态。
等轴韧窝是圆形微坑,在拉伸正应力作用下形成的。应力在整个断口表面分布均匀。
2.分叉法
样品断裂中,产生许多分叉,裂纹分叉的方向为裂纹扩展方向,扩展的反方向为裂源位置。
【注】T型法和分叉法是判别脆性断裂的主裂纹和裂纹源
3.变形法
延性断裂的样品,在断裂过程中发生变形后碎成几块,将碎片拼合后变形量大的部位为主裂纹,裂纹源在主裂纹所在的断口上
4.因环境因素引起的断裂的样品,如应力腐蚀、氢脆。裂纹源位于腐蚀或是
延性断裂是在较大的塑性变形产生的断裂。它是由于断裂缓慢扩展而造成的。其断口表面为无光泽的纤维状。延性断裂经过局部的颈缩,颈缩部位产生分散的空穴,小空穴不断增加和扩大聚合成微裂纹。
金属材料的断裂行为分析

金属材料的断裂行为分析金属材料在实际应用中经常面临着受力情况,而断裂行为是其中一个重要的因素。
本文将对金属材料的断裂行为进行分析,探讨其原因和影响因素。
一、断裂行为的定义金属材料的断裂行为指的是在外部作用力的作用下,材料发生断裂的过程。
断裂是材料失去载荷传递能力的结果,其破坏表现为断口形成。
二、断裂行为的原因1. 内部缺陷:金属材料内部可能存在各种缺陷,如气孔、夹杂物、晶界、位错等。
这些缺陷会集中应力,导致断裂的发生。
2. 外部影响:金属材料在使用过程中,承受着多种外部作用力,如拉伸、压缩、弯曲、挤压等。
这些作用力会引起金属的应力集中,进而导致断裂。
三、断裂行为的影响因素1. 材料的强度:金属材料的强度越高,其抵抗断裂的能力也就越强。
因此,金属的强度是断裂行为的一个重要影响因素。
2. 温度:温度对金属材料的断裂行为有着显著的影响。
在高温下,金属易于软化和熔化,从而导致断裂;而在低温下,金属脆性增加,也容易发生断裂。
3. 加载速率:加载速率是指外部作用力施加的速度。
在较高的加载速率下,金属材料容易发生动态断裂;而在较低的加载速率下,金属更容易发生静态断裂。
四、断裂行为的分析方法1. 断裂力学:通过断裂力学的理论和方法,可以定量分析金属材料的断裂行为。
其中,最常用的方法包括线弹性断裂力学、弹塑性断裂力学和韧性断裂力学。
2. 断口分析:通过观察金属材料的断口形貌,可以初步判断断裂的类型和原因。
常见的断口形貌有韧性断口、脆性断口等。
3. 数值模拟:利用有限元方法等数值模拟手段,可以模拟金属材料在受力下的断裂行为。
通过数值模拟可以更加准确地分析和预测金属材料的断裂行为。
五、断裂行为的应用对金属材料的断裂行为进行分析可以为材料的选用、设计和使用提供重要的依据。
通过了解材料的断裂性能,可以避免在实际应用中出现断裂导致的事故和损失。
六、结论金属材料的断裂行为是一个复杂而重要的问题。
内部缺陷和外部作用力是断裂行为的主要原因,而材料的强度、温度和加载速率是断裂行为的关键影响因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
何玉怀 北京航空材料研究院
2011年6月26日
内容提纲
1. 断口分析的作用及意义 2. 断口(断裂)分类 3. 断口(断裂)的基本特征与机理 4. 断口分析内容 5. 断口与失效分析 6. 典型案例
断口分析的作用及意义
断口是试样或零件在试验或使用过程中发生断裂 (或形成裂纹后打断)所形成的断面。 记录材料在载荷和环境作用下断裂前的不可逆变 形,以及裂纹的萌生和扩展直至断裂的全过程。 定性和定量分析识别,并将断口特征与发生损伤 乃至最终失效的过程联系起来,可以找出与失效相 关的内在或外在原因。 断口学作为失效分析学科的一个重要组成部分, 在断裂失效分析中发挥了很大的作用。
✓按断裂所需能量分类,可分为高能、中能及低能断裂等。 ✓按断裂速度分类,可分为快速、慢速以及延迟断裂等。 ✓按断裂形成过程分类,可分为工艺性断裂和服役性断裂。 如在铸造、锻造、焊接、热处理等过程形成的断裂为工艺性 断裂。
断口(断裂)的基本特征与机理
提纲
1.过载断口宏观特征三要素 2.穿晶韧窝断裂 3.滑移分离 4.解理断裂 5.准解理断裂 6.延晶断裂 7.疲劳断裂
而分裂为两部分(或几部分)的过程称为断 裂。包括裂纹萌生、扩展和最后瞬断三个阶 段。 ✓各阶段的形成机理及其在整个断裂过程中所 占的比例,与构件形状、材料种类、应力大 小与方向、环境条件等因素有关。 ✓断裂形成的断面称为断口。断口上详细记录 了断裂过程中内外因素的变化所留下的痕迹 与特征,是分析断裂机理与原因的重要依据。
断口(断裂)分类
按断裂机制分类 可分为解理、准解理、韧窝、滑移分离、沿晶以及疲劳等。
其他分类方法 ✓按应力状态分类,可分为静载断裂(拉伸、剪切、扭转)、
动载断裂(冲击如断拉裂伸、、疲劳冲断击裂、)爆等破。等为快速断裂, ✓按断裂环境分疲类劳,、可分蠕为变低等温为断慢裂速、断中温裂断,裂氢、脆高、温断裂、 腐蚀断裂、氢脆应及力液腐态蚀金属等致为脆延断迟裂断等裂。。
断口(断裂)分类
按断裂方式分类 按断面所受到的外力类型的不同分为正断、切断及混合断
裂三种。 ✓正断断裂,受正应力引起的断裂,其断口表面与最大正应 力方向相垂直。断口的宏观形貌较平整,微观形貌有韧窝、 解理花样等。 ✓切断断口,是在切应力作用下而引起的断裂,断面与最大 正应力方向成45°角,断口的宏观形貌较平滑,微观形貌为 抛物状的韧窝花样。 ✓混合断裂,正断与切断两者相混合的断裂方式,断口呈锥 杯状,混合断裂是最常见的断裂类型。
断口分析的作用及意义
在机电产品的各类失效中以断裂失效最主要,危 害最大。 断裂失效的分析与预防已发展为一门独立的边缘 学科。 断裂力学方法,它是根据弹性力学及弹塑性理论, 并考虑材料内部存在缺陷而建立起来的一种研究断 裂行为的方法。 金属物理的方法,从材料的显微组织、微观缺陷、 甚至分子和原子的尺度上研究断裂行为的方法。
剪切唇区:剪切唇区出现在断裂过程的最后阶段,表面较 光滑,与拉伸应力轴的交角约45°,属于切断型断裂。它是 在平面应力状态下发生的快速不稳定扩展,在一般情况下, 剪切唇大小是应力状态及材料性能的函数。
断口(断裂)的基本特征与机理
过载断口宏观特征三要素
在通常情况下,金属材料的断口均会出现断口三要素形貌特 征,所不同的仅仅是三个区域的位置、形状、大小及分布不同 而已。但有时在断口上只出现一种或两种断口形貌特征,即优 势有时断口三要素并不同时出现,这是受材质、温度、受力状 态等因素的影响。断口三要素的分布有下列四种情况: ✓断口上全部为剪切唇,例如纯剪切型断口或薄板拉伸断口就 属于这种情况。 ✓断口上只有纤维区和剪切唇区,而没有放射区。 ✓断口上没有纤维区,仅有放射区和剪切唇区,例如低合金钢 在-60℃时的拉伸断口。 ✓断口三要素同时出现,这是最常见的断口宏观形貌特征。
✓ 塑性-脆性混合型断裂,又称为准脆性断裂。 塑性断裂对装备与环境造成的危害远较脆性断裂小, 脆性断裂往往会引起危险的突发事故。
断口(断裂)分类
无微孔聚集沿晶断裂
微孔聚集沿晶断裂
按断裂路径分类 依断裂路径的走向可以分为穿晶断裂和沿晶断裂两类。
✓ 穿晶断裂,裂纹穿过晶粒内部。穿晶断裂可以是塑性 的,也可以是脆性的。前者端口具有明显的韧窝花样, 后者端口的主要特征为解理花样。
断口(断裂)的基本特征与机理
过载断口宏观特征三要素
纤维区:该区一般位于断口的中央,是材料处于平面应变 状态下发生的断裂,呈粗糙的纤维状,属于正断型断裂。纤 维区的宏观平面与拉伸应力轴相垂直,断裂在该区形核;
放射区:该区紧接纤维区,使裂纹由缓慢扩展转化为快速 的不稳定扩展的标志,其特征是放射线花样。放射线发散的 方向为裂纹扩展方向。放射条纹的粗细取决于材料的性能、 微观结构及试验温度等;
断口分析的作用及意义
断裂失效分析从裂纹和断口的宏观、微 观特征入手,研究断裂过程和形貌特征与 材料性能、显微组织、零件受力状态及环 境条件之间的关系,从而揭示断裂失效的 原因和规律。 断裂力学方法和金属物理方法之间架起 联系的桥梁。
断口(断裂)分类
1.断裂与断口 ✓构件或试样在外力作用下导致裂纹形成扩展
断口(断裂)分类
2. 断裂分类
按断裂性质分类 根据零件断裂前所产生的宏观塑性变形量的大ቤተ መጻሕፍቲ ባይዱ可分为:
✓ 塑性断裂:断裂前发生较明显的塑性变形。延伸率大于 5%的材料通常称为塑性材料。
✓ 脆性断裂:断裂前几乎不产生明显的塑性变形。延伸率 小于3%的材料通常称为脆性材料。脆性断裂有穿晶脆 断(如解理断裂、疲劳断裂)和沿晶脆断(如回火脆、 氢脆)之分。
✓ 沿晶断裂,断裂沿着晶粒边界扩展,可分为沿晶脆断 和沿晶韧断(在晶界面上有浅而小的韧窝)。
断口(断裂)分类
按断面相对位移形式分类 按两断面在断裂过程中相对运动的方向可以分为: ✓ 张开型(Ⅰ型)。裂纹表面移动的方向与裂纹表面垂
直。这种型式的断裂常见于疲劳及脆性断裂,其断口 齐平,是工程上最常见和最危险的断裂类型。 ✓ 前后滑移型(Ⅱ型)。裂纹表面在同一平面内相对移 动,裂纹表面移动方向与裂纹尖端的裂纹前沿垂直。 ✓ 剪切型(Ⅲ型)。裂纹表面几乎在同一平面内扩展, 裂纹表面移动的方向和裂纹前沿线一致。 剪切断口、斜断口和扭转断口是Ⅱ型以及Ⅱ型和Ⅲ型的 组合。