3.4.4整式的加减

合集下载

华东师大版七年级上册 3.4.4 整式的加减课件(31张PPT)

华东师大版七年级上册  3.4.4 整式的加减课件(31张PPT)

4n 6
思考 从这个整式的化简过程中,你发现了什么?
整式加减的一般步骤
(1)如果有括号,那么先去括号; (2)观察有无同类项; (3)利用加法的交换律和结合律,分组同类项。 (4)合并同类项。
概括:先去括号,再合并同类项
注意:整式加减运算的结果仍然是整式。
典例精讲 例1、求单项式5x2y,2x2y,2xy2,4x2y的和.
n (n 1) (n 2) (n 3)
解:n (n 1) (n 2) (n 3)
n n 1 n 2 n 3 去括号 标同类项
(n n n n) (1 2 3) 交换、结合
(1111)n 6
合并同类项
练习
(1)已知: A x3 2x2 x 4, B 2x3 5x 6,
求B 2A
(2)已知: A 1 x2,b x2 4x 3,c 5x2 4,
求多项式A 2A B 2(B C)
例6 代数式(x2+ax-2y+7)-(bx2-2x+9y-1)的 值与字母x的取值无关,求a、b的值。
4、第一个多项式是x2 2xy y2,第二个多项式 是第一个多项式的2倍少3,第三个是前两个多 项式的和,求这三个多项式的和
一个三位数,它的百位数字、十位数字和个位数字分别
为 a、b、c,若将这个三位数的百位数字与个位数字交换,
得到一个新的三位数,计算所得的新数与原数的差.这个差 能被 99 整除吗?
(3)当x=3时,该式的值为-10,求x=-3时该式的值
(4)在第(3)的条件下,若3a=5b成立,试比较 a+b与c的大小
整式加减的应用

3.4.4整式的加减

3.4.4整式的加减

课题:3.4.3整式的加减主备:审核:班级:使用人:日期:学习目标1、进一步经历用字母表示数量关系的过程,发展符号感;2、经历探索的整式加减运算的法则的过程,进一步培养学生观察、归纳、类比、概括等能力;3、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力;4、通过整式加减的运算,体验化繁为简的数学思想。

教学重点:会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力;教学难点:通过整式加减的运算,体验化繁为简的数学思想。

在草稿本上按照下面的步骤做一做:(1)任写一个两位数;(2)交换这个两位数的十位数字和个位数字,又得到一个两位数;(3)求这两个数的和。

在写几个两位数重复上面的过程。

这些和有什么规律?这个规律对任意的一个两位数都成立吗?为什么?解:如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为,交换这个两位数的十位数字和个位数字后得到的两位数是,则这两个两位数的和为,化简后的结果是。

所以任意一个两位数按上述步骤得出的结果一定是。

做一做:任意写一个三位数交换它的百位数字与个位数字,又得到一个三位数两个数相减在写几个两位数重复上面的过程。

这些和有什么规律? 这个规律对任意的一个三位数都成立吗?为什么?议一议:在上面的两个问题中,分别涉及了整式的什么运算?你是如何运算的?例题:计算:(1)2x 2 - 3x + 1与 -3x 2 + 5x- 7 的和(2)-x 2 + 3xy - 0.5y 2 与 -0.5x 2 + 4xy -1.5y 2的差随堂练习:计算:()()1374122-+-++k k k k )(()()227121535)2(z x y z x y ++--+()()p p p p p +---+323217)3( ⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛++-32323231)4(m n m m n m小结日记日期: 天气: 心情:今天数学课的课题:__________________所涉及的重要的数学知识______________•理解最好的地方____________________不明白或还需要进一步理解的地方______我学到的方法有。

《3.4.4整式的加减》教学案例与反思

《3.4.4整式的加减》教学案例与反思

《3.4.4 整式的加减》教学案例及反思上课教师:李定有一、教材分析整式的加减是第三章第四节最后一节的教学内容,它是在学生已经学习了去括号法则、合并同类项法则、整式的概念等内容以后,进一步探索加减运算法则的教学内容。

是全章知识的综合与运用,它充分运用了数的加减,加法的交换律、结合律、乘法关于加法的分配律及添括号与去括号的法则。

同时也是有理数运算的继续和发展。

它的基础是去括号、合并同类项。

从某种意义上计,掌握了整式的加减就掌握了本章的所有知识。

它能培养学生的分析、观察能力,能培养学生从特殊到一般的思维,训练学生的计算与灵活运用等能力。

二、教学目标1.知识目标:理解整式的加减实质就是去括号,合并同类项,其结果仍然是整式;掌握学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤;能够正确地进行整式的加减运算.2.能力目标:经历用字母表示数量关系的过程,发展符号感;培养用代数的方法解决实际生活中的问题的能力和口头表达能力.3.情感目标:渗透教学知识来源于生活,又要为生活而服务的辩证观点;整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美.三、教学重难点:重点:利用去括号、合并同类项进行整式的加减运算;难点:根据实际问题中的数量关系列出算式,并求出结果;四、教材处理与数学方法1.根据我班学生情况,安排2课时,由浅入深地学习知识,提高学生学习兴趣。

2.运用启发式教学,通过复习应用旧知识,创设情境,让学生自行归纳出整式的加减的步骤。

3.利用不同记号标出各同类项,有助学生合并同类项。

4.让学生在实际解题过程中,体会到整式的加减实际上就是已经学过的去括号法则与合并同类项这两个知识的综合,这样更有利于学生学会将新知转化为旧知,不断更新知识结构。

5.充分利用教学时间,把共性问题与典型题目展示,引导学生发现问题与纠错能力。

五、教学步骤(一)复习旧知识化简:⑴2x+(-3x+1)-(-4+7x) (2) (x2-4x+3)-2(3x2+7x-5)设计目的:前两节去括号、合并同类项的内容,其实就是整式加减内容的一部分,复习上述知识,学生可以很轻松地就过渡到整式加减这一节内容上来,使新旧知识很自然地衔接起来).(二)创设情境,引入新课出示情境问题1和问题2师提出问题:上述式子中,每个括号内的式子是什么式子?(整式)从而引出课题,并板书:整式的加减师总结板书:几个整式相加减,如果有括号的就先去括号,然后再合并同类项【教法说明】以合并同类项、去括号为铺垫,从而引出本节知识,可以说是自然顺畅,学生不会感到整式加减法陌生.(从实际问题出发,让学生经历一个实际背景,体会进行整式的加减运算的必要性,在通过复习、练习,为学生概括出整式的加减的一般步骤作必要的准备)(三)强化训练,提高学生的计算能力列式计算例1、求单项式5x2y, -2x2y, -2xy2, 4x2y的和.例2、求多项式5a2b- 2a2b 与-2ab2 + 4a2b的和.及时练习:1、一个三角形的三边长分别为2x+1、x2-2、x2-2x+1,求这三角形的周长2、已知某多项式与3x2-6x+5的差是 4x2+7x-6,求此多项式.3、计算:-2y3+(3xy2-x2y)-2(xy2-y3).4、一个整式与-2x2+4x-1的和为x2-7x-2,则这个整式为多少?5、已知A=4x2-4xy+y2,B=x2+xy-5y2,求:(1) A+B (1)A-3B;(2)3A+2B。

【精练精析】2014版七年级数学上册(华师大版)同步练习:3.4.4整式的加减

【精练精析】2014版七年级数学上册(华师大版)同步练习:3.4.4整式的加减

整式的加减(30分钟50分)一、选择题(每小题4分,共12分)1.一个多项式A与多项式B=2x2-3xy-y2的差是多项式C=x2+xy+y2,则A 等于( )A.x2-4xy-2y2B.-x2+4xy+2y2C.3x2-2xy-2y2D.3x2-2xy2.已知A=2a2-3a,B=2a2-a-1,当a=-4时,A-B等于( )A.8B.9C.-9D.-73.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A.4mcmB.4ncmC.2(m+n)cmD.4(m-n)cm二、填空题(每小题4分,共12分)4.化简:(x2+2y2)-3(x2-2y2)=________.5.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是________.6.如果M=3x2-2xy-4y2,N=4x2+5xy-y2,则4M-N的值为________.三、解答题(共26分)7.(8分)三角形的周长为a,它的一边长是周长的,另一边长是周长与4的差的一半,求第三边的长.8.(8分)已知M=4x2-3x+2,N=6x2-3x+6,试比较M,N的大小.【拓展延伸】9.(10分)有这样一道题:“先化简,再求值:(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b)-10a3+2,其中a=-3,b=-0.39.”小宝说:本题中“a=-3,b=-0.39”是多余的条件;小玉马上反对说:这个多项式中每一项都含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.答案解析1.【解析】选D.因为A与B的差是C,所以A=B+C,即A=(2x2-3xy-y2)+(x2+xy+y2)=2x2-3xy-y2+x2+xy+y2=3x2-2xy.2.【解析】选B.A-B=(2a2-3a)-(2a2-a-1)=2a2-3a-2a2+a+1=-2a+1. 当a=-4时,A-B=-2×(-4)+1=8+1=9.3.【解析】选B.设小长方形的长为acm,宽为bcm,所以上面的阴影周长为:2(n-a+m-a)cm,下面的阴影周长为:2(m-2b+n-2b)cm,所以总周长为:[4m+4n-4(a+2b)]cm,又因为a+2b=m,所以4m+4n-4(a+2b)=4m+4n-4m=4n(cm).4.【解析】原式=x2+2y2-3x2+6y2=-2x2+8y2.答案:-2x2+8y25.【解析】因为学校租用45座的客车x辆,则余下20人无座位,所以师生的总人数为45x+20,又因为租用60座的客车则可少租用2辆,所以乘坐最后一辆60座客车的人数为45x+20-60(x-3)=45x+20-60x+180=200-15x.答案:200-15x6.【解析】4M-N=4(3x2-2xy-4y2)-(4x2+5xy-y2)=12x2-8xy-16y2-4x2-5xy+y2=8x2-13xy-15y2.答案:8x2-13xy-15y27.【解析】依题意得,第一边长为,第二边长为(a-4),所以第三边长为a--(a-4)=a--a+2=a+2.8.【解析】比较M,N大小可用作差的方法,将差与0进行比较,当M-N>0时,M>N;当M-N=0时,M=N;当M-N<0时,M<N.M-N=4x2-3x+2-(6x2-3x+6)=4x2-3x+2-6x2+3x-6=-2x2-4=-(2x2+4).因为2x2+4>0,所以-(2x2+4)<0,即M-N<0,所以M<N.9.【解析】同意小宝的观点.因为(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b)-10a3+2=7a3-6a3b+3a2b+3a3+6a3b-3 a2b-10a3+2=2,所以本题中a=-3,b=-0.39是多余的条件.。

第3章 3.4 4 整式的加减

第3章 3.4 4 整式的加减

会化简求值 【例 2】先化简,再求值: (1)(2x2-5xy+2y2)-(x2+xy+2y2),其中 x=-1,y=2; (2)-m-[-(2m-3n)]+[-(-3m)-4n],其中 m=12,n=71. 【思路分析】 解这类题目,一般要先去括号、合并同类项,再代入字母 的值进行计算. 【规范解答】 (1)原式=2x2-5xy+2y2-x2-xy-2y2=x2-6xy.当 x=-1, y=2 时,原式(-1)2-6×(-1)×2=13; (2)原式=-m-(-2m+3n)+(3m-4n)=-m+2m-3n+3m-4n=4m- 7n.当 m=12,n=71时,原式=4×12-7×71=1.
6.一本书有 a 页,第一天读了全书的12,第二天读了剩下的21,则没有读完
的还有___________页.( A )
1 A.4a
B.21a
C.34a
D.23a
7.一个篮球的单价为 a 元,一个足球的单价为 b 元(b>a).小明买 6 个篮
球和 2 个足球,小刚买 5 个篮球和 3 个足球,则小明比小刚少花( B )
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/32021/9/32021/9/32021/9/39/3/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月3日星期五2021/9/32021/9/32021/9/3 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/32021/9/32021/9/39/3/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/32021/9/3September 3, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/32021/9/32021/9/32021/9/3

3.4.4整式的加减

3.4.4整式的加减
整式的加减
和平镇中学
2003.8
一、教材分析
本节内容主要通过创设情景, 本节内容主要通过创设情景,在学生观 实践的基础上去引出课题; 察、实践的基础上去引出课题;同时适时 让学生归纳出整式加减的一般步骤; 让学生归纳出整式加减的一般步骤;通过 练习,培养学生一定的计算能力; 练习,培养学生一定的计算能力;又对前 面所学的去括号法则、 面所学的去括号法则、合并同类项起到及 时的复习巩固作用。 时的复习巩固作用。
想一想
2、小明家有一池塘,放有鱼(2a+5b)条, 、小明家有一池塘,放有鱼( ) 由于天热,第一天发现有a条鱼死去 条鱼死去, 由于天热,第一天发现有 条鱼死去,到第 二天又发现有( - )条鱼死去,请问: 二天又发现有(2b-a)条鱼死去,请问: 最后小明家的鱼塘里有鱼多少条? 最后小明家的鱼塘里有鱼多少条? 3、小王在学校里生活节俭,父母给的零钱经常 、小王在学校里生活节俭, 用不完,于是他决心积累起来, 用不完,于是他决心积累起来,第一个月积下 2x+y) 3(x-y) (2x+y)元,第二个月积下 3(x-y)元,后 来由于班级开展活动,第三个月反而超支2y元 来由于班级开展活动,第三个月反而超支 元, 请你帮小王算一算这三个月他能多出多少钱? 请你帮小王算一算这三个月他能多出多少钱? 4、若第(3)题中的 、若第( )题中的x=5,y=3, , , 则答案该为多少? 则答案该为多少?
三、教学重点
会进行整式的加减运算
四、教学难点
正确运用去括号法则, 正确运用去括号法则, 减少运算中的符号错误。 减少运算中的符号错误。
一、创设情景,引出课题 创设情景,
1、如图红色部分是两个零件的截面面积, 、如图红色部分是两个零件的截面面积, 求A、B两个截面面积的和与差。 、 两个截面面积的和与差。 两个截面面积的和与差 3a a 2b A r 2b B

最新3.4整式的加减.4整式的加减课件PPT

通过身体练习可以提高中枢神经系统的 • 兴奋性,防止运动损伤、同时提高内脏器官 • 的功能。 • 准备活动可分为:一般准备活动和专项 • 准备活动。
• 一般准备活动:
• 主要是一些全身性身体练习,主要包括 • 跑步、踢腿、弯腰等等。
• 专门性准备活动:是指与所从事的体育锻
• 炼内容相适应的运动练习,如打篮球前先投 • 篮、运球,跑步前先慢跑等。
体育锻炼的基本卫生常识
1.早锻炼运动量不宜过大,时间也不宜过长 许多人喜欢在清晨进行体育锻炼。这是
因为清晨的空气新鲜,早锻炼有利于体内的 新陈代谢加强,提高锻炼的效果。但是,由 于清晨锻炼多在空腹情况下进行,所以运动 量不要太大,时间也不宜长,否则容易引发 “低血糖”现象。
• 2. 运动前要做好充分的准备活动
设35a+33b+3c-5=m ② ; ①+ ②得:-10=7+m,∴m=-17 即当x=3时,原式=-17
例在多项式ax5+bx3+cx-5中,当x=-3时, 它的值为7;当x=3时,它的值是多少?
解四:巧用特殊值 当x=-3时,原式=-35a-33b-3c-5=7. 由于a、b、c的值不确定,因此可
∴ -35a-33b-3c=12, ∵ (-35a-33b-3c)+(35a+33b+3c)=0,
∴35a+33b+3c=-12, 当x=3时,
原式=35a+33b+3c-5 =-12-5=-17
例在多项式ax5+bx3+cx-5中,当x=-3时, 它的值为7;当x=3时,它的值是多少?
解三:巧用方程 当x=-3时,原式=-35a-33b-3c-5=7 ① 当x=3时, 原式=35a+33b+3c-5

【精品课件】3.4.4整式的加减

解: 2 y3 (3xy2 x2 y) 2(xy2 y3 ) = 2 y3 3xy2 x2 y 2xy2 2 y3 =xy2 x2 y
已知m y3, n 3xy2 x2 y, p xy2 y3,求m n p.
解: mn p ( y3) (3xy2 x2 y) (xy2 y3) y3 3xy2 x2 y xy2 y3 ( y3 y3 ) (3xy2 xy2 ) x2 y 4xy2 x2 y
a
(1) 4ar- π r2
(2)不是,是二次二项式
4、如果A是5次多项式,B也是5次多项式, 那么A+B一定是( )D
(A)10次多项式。 (B)次数不低于5次的多项式。 (C)5次多项式。 (D)次数不高于5次的整式。
5、试说明代数式(a3+3a2+4a1)+(a2-3a-a3+3)-(a-5+4a2)的值是与 a的取值无关的一个定值,并求出这个 定值。
5x2 y 2x2 y 2xy2 4x2 y
(5x2 y 2x2 y 4x2 y) 2xy2 x2 y 2xy2
1、班级集体照相时,第一排站了n 名同学,从第二 排起,每一排都比前一排多1人,一共站了四排,则 该班共有多少人?
解:n (n 1) (n 2) (n 3)

3x2 x 5 4 x 7x2 (3x2 7x2)(x x)( 5 4)
4x2 2x 9
括号前是 “-”号, 把括号和它 前面的“-” 号去掉后, 括号里各项 都要变号
例2、计算: 2 y3 (3xy2 x2 y) 2(xy2 y3 )
整式的加减就是去括号,合并同类项
问题:两个或两个多项式的和一定与多项式中所含 的每个字母的值有关吗?
1、填空: (1)3x与-5x的和是_-_2_x_______,

华师大版初中数学七年级上册《3.4.4 整式的加减》同步练习卷(含答案解析

华师大新版七年级上学期《3.4.4 整式的加减》同步练习卷一.解答题(共50小题)1.计算(1)﹣×(+3);(2)3(4a2﹣2ab3)﹣2(5a2﹣3ab3)2.化简:2(x2﹣5xy)﹣3(﹣6xy+x2)3.王老师给同学们出了一道化简的题目:2(2x2y+x)﹣3(x2y﹣2x),小亮同学的做法如下:2(2x2y+x)﹣3(x2y﹣2x)=4x2y+x﹣3x2y﹣2x=x2y﹣x.请你指出小亮的做法正确吗?如果不正确,请指出错在哪?并将正确的化简过程写下来.4.计算化简(1)﹣24﹣2×(﹣3)+|﹣2﹣5|÷(﹣1)2017.(2)6a2﹣2[(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2)].5.2xy2﹣3(2x2﹣xy2+2)+(7x2﹣5xy2).6.已知:A=4a2﹣7ab+b,且B=2a2+6ab+7.(1)求A﹣2B.(2)若A+B+C=0,求C所表示的多项式.7.一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.8.阅读下面的解题过程:计算2(﹣4a+3b)﹣3(a﹣2b).解:原式=(﹣8a+6b)﹣(3a﹣6b)(第一步)=﹣8a+6b﹣3a﹣6b (第二步)=﹣11a+12b (第三步)回答:(1)上面解题过程中有两步错误,第一处是第步;第二处是第步.(2)请给出正确的计算过程.9.化简:(1)a﹣(3a+b)+(a﹣5b)(2)5abc﹣2a2b﹣[3abc﹣3(4ab2+a2b)].10.数轴上点A对应的数为a,点B对应的数为b,且多项式﹣﹣2xy+5的次数为a,常数项为b.(1)直接写出:a=,b=.(2)数轴上点A、B之间有一动点P(不与A、B重合),若点P对应的数为x,试化简:|2x+6|+4|x﹣5|﹣|6﹣x|+|3x﹣9|.(3)若M=3b2﹣2a2+5ab,N=4ab﹣2b2﹣a2,求3M﹣4N的值.11.已知a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,(1)求a,b,c的值;(2)求:4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3].12.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A ﹣B,并写出A﹣B值.13.化简:(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b);(2)7x+2(x2﹣2)﹣4(x2﹣x+3).14.已知天平左边托盘中的物体重量为x,右边托盘中的物体重量为y,其中x=30(1+a2)﹣3(a﹣a2),y=31﹣[a﹣2(a2﹣a)﹣31a2](1)化简x和y;(2)请你想一想,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?请说明理由.15.设A=﹣x﹣4(x﹣y)+(﹣x+y).(1)当x=﹣,y=1时,求A的值;(2)若y﹣3x=2,则(1)中A=.16.已知A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1(1)求5A﹣3(A﹣B)的值(2)若(1)中的值与x的值无关,求m的值.17.化简下列各式:(1)5(a2b﹣2ab2)﹣4(3a2b﹣2ab2).(2)﹣2x2﹣[3y2﹣2(x2﹣3y2)+6].18.若定义=ad﹣bc,如:=2×b﹣a×(﹣1)=2b+a①计算,并指出结果是几次几项式.②若|x﹣3+y|与(xy+4)2互为相反数,求①式的值.19.计算.(1)5(2x﹣7y)﹣3(4x﹣10y);(2)(5a﹣3b)﹣3(a2﹣2b);(3)3(3a2﹣2ab)﹣2(4a2﹣ab)(4)2x﹣[2(x+3y)﹣3(x﹣2y)].20.化简(1)(2x2﹣+3x)﹣4(x﹣x2+)(2)x﹣2(x﹣)﹣(﹣)21.化简求值:2(a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.22.先化简再求值:2x2y﹣[3xy2﹣2(xy2+2x2y)],其中x=,y=﹣2.23.已知代数式A=﹣6x2y+4xy2﹣5,B=﹣3x2y+2xy2﹣3.(1)求A﹣B的值,其中x=1,y=﹣2.(2)请问A﹣2B的值与x,y的取值是否有关系,试说明理由.24.已知A=2ab﹣a,B=﹣ab+2a.(1)计算:5A+4B;(2)当|a+2|+(3﹣b)2=0,求5A+4B的值.25.先化简,再求值:2xy﹣(4xy﹣4x2y2)+2 (3xy﹣5x2y2),其中x,y满足(x+1)2+|y﹣2|=0.26.先化简,再求值:(1),其中x=3,y=﹣.(2)已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a﹣3ab)﹣(4ab﹣3b)的值.27.先化简,再求值:3(a2b﹣ab)﹣2(ab﹣3a2b+1),其中a=,b=6.28.先化简,再求值:5(3a2b﹣ab2)﹣3(﹣ab2+4a2b),其中a=﹣,b=.29.先化简,再求值:x﹣2(x﹣y2)﹣(﹣x+y2),其中x=3,y=﹣.30.先化简,再求值:(1)5x2﹣[2xy﹣3(xy+2)+4x2]﹣xy.其中x=﹣2,y=;(2)已知a=﹣1,b=2,求2a2﹣[8ab+(ab﹣4a2)]﹣ab的值.31.计算:(1)m2+2m+2m2﹣3m;(2)先化简,再求值:(ab﹣3a2)﹣[5ab﹣2(2a2﹣ab)],其中a=﹣2,b=1.32.先化简再求值:2m﹣2(m2+m﹣1),其中m=﹣2.33.先化简,再求代数式的值:2(x2y+xy2)﹣2(x2y﹣2)﹣(xy2+2),其中x=2018,y=﹣1.34.先化简,再求值:3a2b﹣6ab2﹣2(2a2b﹣3ab2﹣2),其中a=﹣1.b=2.35.先化简,再求值.4ab﹣[(a2+5ab﹣b2)﹣2(a2+3ab﹣b2),其中a=﹣1,b=2.36.先化简,再求值.已知|x﹣3|+(y+)2=0,先化简再求值:3x2y﹣[2xy2﹣3(xy﹣x2y)+xy]+5xy2 37.先化简,后求值.求2(a2b+ab2)﹣5(2ab2﹣1+a2b)﹣2的值,其中a=1,b=﹣2.38.①计算:3(2x2﹣xy)﹣2(3x2+xy﹣1)②先化简,再求值:2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b)其中:a=2,b=1.39.(1)先化简,再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣;(2)已知2x2﹣3x=7,求整式6x﹣4x2+5的值.40.化简:(1)3x2﹣3(x2﹣2x+1)+4;(2)先化简再求值:3x2y﹣[2xy2﹣2(xy﹣1.5x2y)+xy]+3xy2,其中x=﹣3,y=﹣2.41.(1)计算:﹣3(2a2﹣2ab)+4(a2+ab﹣6)(2)化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.42.先化简,再求值(﹣2x2+xy﹣y2)+2(x2﹣xy);其中x=2,y=﹣.43.先化简,再求值:5x2y﹣[x2﹣3(xy2﹣2x2y)+3xy2],其中x=6,|y|=,且xy<0.44.化简(1)求3a2﹣ab+1减4a2+6ab﹣7所得的差;(2)化简,求值4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=8.45.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=.46.化简求值:﹣3xy2﹣2(xy﹣x2y)﹣(3x2y﹣2xy2),其中x=﹣4,y=.47.化简后求值:3(x2y+xy2)﹣3(x2y﹣1)﹣4xy2﹣3,其中x、y满足|x﹣2|+(y+)2=0.48.先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab),其中,a=﹣2,b=3.49.先化简,再求值已知|x﹣2|+(y+1)2=0,求2x2﹣[5xy﹣3(x2﹣y2)]﹣5(﹣xy+y2)的值.50.先化简,再求值:2x﹣[3x﹣2(x﹣1)﹣3],其中x=﹣2.华师大新版七年级上学期《3.4.4 整式的加减》同步练习卷参考答案与试题解析一.解答题(共50小题)1.计算(1)﹣×(+3);(2)3(4a2﹣2ab3)﹣2(5a2﹣3ab3)【分析】(1)原式先计算乘方运算,再计算乘除运算即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣×3÷(﹣)=6;(2)原式=12a2﹣6ab3﹣10a2+6ab3=2a2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.化简:2(x2﹣5xy)﹣3(﹣6xy+x2)【分析】原式去括号合并即可得到结果.【解答】解:原式=2x2﹣10xy+18xy﹣3x2=﹣x2+8xy.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.王老师给同学们出了一道化简的题目:2(2x2y+x)﹣3(x2y﹣2x),小亮同学的做法如下:2(2x2y+x)﹣3(x2y﹣2x)=4x2y+x﹣3x2y﹣2x=x2y﹣x.请你指出小亮的做法正确吗?如果不正确,请指出错在哪?并将正确的化简过程写下来.【分析】根据整式的运算法则即可求出答案.【解答】解:不正确,去括号时出错2(2x2y+x)﹣3(x2y﹣2x)=4x2y+2x﹣3x2y+6x=x2y+8x【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.计算化简(1)﹣24﹣2×(﹣3)+|﹣2﹣5|÷(﹣1)2017.(2)6a2﹣2[(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2)].【分析】(1)先计算乘方,再计算乘除,最后计算加减即可;(2)去括号合并同类项即可;【解答】解:(1)﹣24﹣2×(﹣3)+|﹣2﹣5|÷(﹣1)2017.=﹣16+6+7﹣1=﹣4(2)6a2﹣2[(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2)]=6a2+6a2b﹣10ab2+20a2b﹣12ab2=6a2+26a2b﹣22ab2.【点评】本题考查整式的加减,熟练掌握去括号法则、合并同类项法在是解题的关键.5.2xy2﹣3(2x2﹣xy2+2)+(7x2﹣5xy2).【分析】先去括号,然后合并同类项即可.【解答】解:原式=2xy2﹣6x2+3xy2﹣6+7x2﹣5xy2=﹣6+x2.【点评】本题考查了整式的加减,整式加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.6.已知:A=4a2﹣7ab+b,且B=2a2+6ab+7.(1)求A﹣2B.(2)若A+B+C=0,求C所表示的多项式.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)A﹣2B=4a2﹣7ab+b﹣2a2﹣12ab﹣14=﹣19ab+b﹣14(2)由A+B+C=0,得C=﹣A﹣B=﹣(4a2﹣7ab+b)﹣(2a2+6ab+7)=﹣4a2+7ab﹣b﹣2a2﹣6ab﹣7=﹣6a2+ab﹣b﹣7【点评】本题考查整式的运算法则,解题的关键是熟练运用整式运算法则,本题属于基础题型.7.一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.【分析】(1)利用“相伴数对”的定义化简,计算即可求出b的值;(2)写出一个“相伴数对”即可;(3)利用“相伴数对”定义得到9m+4n=0,原式去括号整理后代入计算即可求出值.【解答】解:(1)∵(1,b)是“相伴数对”,∴+=,解得:b=﹣;(2)(2,﹣)(答案不唯一);(3)由(m,n)是“相伴数对”可得:+=,即=,即9m+4n=0,则原式=m﹣n﹣4m+6n﹣2=﹣n﹣3m﹣2=﹣﹣2=﹣2.【点评】此题考查了整式的加减,以及代数式求值,弄清题中的新定义是解本题的关键.8.阅读下面的解题过程:计算2(﹣4a+3b)﹣3(a﹣2b).解:原式=(﹣8a+6b)﹣(3a﹣6b)(第一步)=﹣8a+6b﹣3a﹣6b (第二步)=﹣11a+12b (第三步)回答:(1)上面解题过程中有两步错误,第一处是第二步;第二处是第三步.(2)请给出正确的计算过程.【分析】(1)根据去括号的法则及合并同类项的法则,即可作出判断.(2)先去括号,然后合并同类项,计算得出结果.【解答】解:(1)第一处错误在第二步;第二处错误在第三步;(2)2(﹣4a+3b)﹣3(a﹣2b)原式=(﹣8a+6b)﹣(3a﹣6b)(第一步)=﹣8a+6b﹣3a+6b (第二步)=﹣11a+12b.(第三步)【点评】本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.化简:(1)a﹣(3a+b)+(a﹣5b)(2)5abc﹣2a2b﹣[3abc﹣3(4ab2+a2b)].【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=a﹣3a﹣b+a﹣5b=﹣a﹣6b;(2)原式=5abc﹣2a2b﹣3abc+12ab2+3a2b=2abc+12ab2+a2b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.数轴上点A对应的数为a,点B对应的数为b,且多项式﹣﹣2xy+5的次数为a,常数项为b.(1)直接写出:a=3,b=5.(2)数轴上点A、B之间有一动点P(不与A、B重合),若点P对应的数为x,试化简:|2x+6|+4|x﹣5|﹣|6﹣x|+|3x﹣9|.(3)若M=3b2﹣2a2+5ab,N=4ab﹣2b2﹣a2,求3M﹣4N的值.【分析】(1)根据多项式的次数与常数项的定义即可求解;(2)由题意可得3<x<5,根据绝对值的意义去掉绝对值符号,再化简即可;(3)将M、N分别代入3M﹣4N,去括号、合并同类项即可.【解答】解:(1)∵多项式﹣﹣2xy+5的次数为a,常数项为b,∴a=3,b=5.故答案为3,5;(2)依题意,得3<x<5,则|2x+6|+4|x﹣5|﹣|6﹣x|+|3x﹣9|=(2x+6)+4(5﹣x)﹣(6﹣x)+(3x﹣9)=2x+6+20﹣4x﹣6+x+3x﹣9=2x+11;(3)∵M=3b2﹣2a2+5ab,N=4ab﹣2b2﹣a2,∴3M﹣4N=3(3b2﹣2a2+5ab)﹣4(4ab﹣2b2﹣a2)=9b2﹣6a2+15ab﹣16ab+8b2+4a2=17b2﹣2a2﹣ab.【点评】本题考查了整式的加减,绝对值的意义,多项式的有关定义,掌握定义与法则是解题的关键.11.已知a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,(1)求a,b,c的值;(2)求:4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3].【分析】(1)根据题意即可求出a、b、c的值;(2)先将原式化简,然后将a、b、c的值代入即可求出答案.【解答】解:(1)由题意可知:a=﹣4,b=1,c=(2)当a=﹣4,b=1,c=时,原式=4a2b3﹣(2abc+5a2b3﹣7abc﹣a2b3)=4a2b3﹣(4a2b3﹣5abc)=4a2b3﹣4a2b3+5abc=5abc=5×(﹣4)×1×=﹣10【点评】本题考查学生的运算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A ﹣B,并写出A﹣B值.【分析】先对整式A,B关于字母x进行降幂排列,再写出其各项系数,列出竖式计算A﹣B即可.【解答】解:A=2x4﹣2x3y﹣4x2y2﹣5xy3,B=3x3y+2x2y2﹣4xy3﹣y4,A的各项系数为:2+2﹣4﹣5+0,B的各项系数为:0+3+2﹣4﹣1,列竖式计算如下:,所以,A﹣B=2x4﹣x3y﹣6x2y2﹣xy3+y4.【点评】本题考查了整式的加减,多项式的排列,掌握合并同类项的法则是解题的关键.13.化简:(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b);(2)7x+2(x2﹣2)﹣4(x2﹣x+3).【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2;(2)原式=7x+2x2﹣4﹣2x2+4x﹣12=11x﹣16.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14.已知天平左边托盘中的物体重量为x,右边托盘中的物体重量为y,其中x=30(1+a2)﹣3(a﹣a2),y=31﹣[a﹣2(a2﹣a)﹣31a2](1)化简x和y;(2)请你想一想,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?请说明理由.【分析】(1)x与y去括号合并即可得到结果;(2)利用作差法判断x与y的大小,即可作出判断.【解答】解:(1)x=30+30a2﹣3a+3a2=33a2﹣3a+30,y=31﹣a+2a2﹣2a﹣2+31a2=33a2﹣3a+29;(2)天平会向左边倾斜,其理由是:∵x﹣y=(33a2﹣3a+30)﹣(33a2﹣3a+29)=1>0,∴x>y,∴天平会向左边倾斜.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.15.设A=﹣x﹣4(x﹣y)+(﹣x+y).(1)当x=﹣,y=1时,求A的值;(2)若y﹣3x=2,则(1)中A=4.【分析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)把已知等式代入计算即可求出值.【解答】解:(1)A=﹣x﹣4x+y﹣x+y=﹣6x+2y,当x=﹣,y=1时,原式=2+2=4;(2)由y﹣3x=2,得到A=2(﹣3x+y)=4,故答案为:4【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.已知A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1(1)求5A﹣3(A﹣B)的值(2)若(1)中的值与x的值无关,求m的值.【分析】(1)将A、B代替的代数式代入5A﹣3(A﹣B),去括号、合并同类项即可得;(2)根据整式的值与x的值无关知x的系数为0,据此列出关于m的方程,解之可得.【解答】解:(1)原式=5(﹣3x2﹣2mx+3x+1)﹣3[(﹣3x2﹣2mx+3x+1)﹣(2x2+mx ﹣1)]=﹣15x2﹣10mx+15x+5﹣3(﹣3x2﹣2mx+3x+1﹣2x2﹣mx+1)=﹣15x2﹣10mx+15x+5﹣3(﹣5x2﹣3mx+3x+2)=﹣15x2﹣10mx+15x+5+15x2+9mx﹣9x﹣6=﹣mx+6x﹣1;(2)原式=(6﹣m)x﹣1,∵该整式值与x的值无关,∴6﹣m=0,解得:m=6.【点评】本题主要考查整式的加减,整式的加减其实质就是去括号、合并同类项,所以解题的关键是掌握去括号、合并同类项的法则.17.化简下列各式:(1)5(a2b﹣2ab2)﹣4(3a2b﹣2ab2).(2)﹣2x2﹣[3y2﹣2(x2﹣3y2)+6].【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=5a2b﹣10ab2﹣12a2b+8ab2=﹣7a2b﹣2ab2(2)原式=﹣2x2﹣[3y2﹣2x2+6y2+6]=﹣2x2﹣[9y2﹣2x2+6]=﹣2x2﹣y2+x2﹣3=﹣y2﹣x2﹣3【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.18.若定义=ad﹣bc,如:=2×b﹣a×(﹣1)=2b+a①计算,并指出结果是几次几项式.②若|x﹣3+y|与(xy+4)2互为相反数,求①式的值.【分析】根据题意给出的运算法则以及整式的运算法则即可求出答案.【解答】解:①原式=5(﹣2y)﹣(9x﹣2xy﹣y+7)=xy﹣10y﹣9x+2xy+y﹣7=﹣9x﹣9y﹣7②由于|x﹣3+y|与(xy+4)2互为相反数,∴|x﹣3+y|+(xy+4)2=0,∴∴xy=﹣4,x+y=3∴原式=xy﹣9(x+y)﹣7=﹣18﹣9×3﹣7=﹣18﹣27﹣7=﹣52【点评】本题考查整式的运算,解题的关键熟练运用整式的运算法则,本题属于基础题型.19.计算.(1)5(2x﹣7y)﹣3(4x﹣10y);(2)(5a﹣3b)﹣3(a2﹣2b);(3)3(3a2﹣2ab)﹣2(4a2﹣ab)(4)2x﹣[2(x+3y)﹣3(x﹣2y)].【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=10x﹣35y﹣12x+30y=﹣2x﹣5y(2)原式=5a﹣3b﹣3a2+6b=﹣3a2+5a+3b(3)原式=9a2﹣6ab﹣8a2+2ab=a2﹣4ab(4)原式=2x﹣(2x+6y﹣3x+6y)=3x﹣12y【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.化简(1)(2x2﹣+3x)﹣4(x﹣x2+)(2)x﹣2(x﹣)﹣(﹣)【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=2x2﹣+3x﹣4x+4x2﹣2=6x2﹣x﹣;(2)原式=x﹣2x+y2+x﹣y2=y2.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.化简求值:2(a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.【分析】直接去括号进而合并同类项,再把已知代入即可.【解答】解:2(a2﹣ab)﹣3(2a2﹣ab)=2a2﹣2ab﹣6a2+3ab=﹣4a2+ab,把a=﹣2,b=3代入得:原式=﹣22.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.22.先化简再求值:2x2y﹣[3xy2﹣2(xy2+2x2y)],其中x=,y=﹣2.【分析】本题先进行化简,进行同类项合并,然后再代入x=,y=﹣2进行求值.【解答】解:2x2y﹣[3xy2﹣2(xy2+2x2y)]=2x2y﹣(3xy2﹣2xy2﹣4x2y)=2x2y﹣3xy2+2xy2+4x2y=6x2y﹣xy2.当x=,y=﹣2时,原式=6×()2×(﹣2)﹣×(﹣2)2=6××(﹣2)﹣×4=﹣3﹣2=﹣5.【点评】本题考查整式的化简求值,通过同类项合并进行化简后,代入求值即可.23.已知代数式A=﹣6x2y+4xy2﹣5,B=﹣3x2y+2xy2﹣3.(1)求A﹣B的值,其中x=1,y=﹣2.(2)请问A﹣2B的值与x,y的取值是否有关系,试说明理由.【分析】(1)先计算A﹣B的值,再将x和y的值代入可得结果;(2)先计算A﹣2B的值,再将x和y的值代入可得结果;【解答】解:(1)A﹣B=(﹣6x2y+4xy2﹣5)﹣(﹣3x2y+2xy2﹣3),=﹣6x2y+4xy2﹣5+3x2y﹣2xy2+3,=﹣3x2y+2xy2﹣2,当x=1,y=﹣2时,原式=﹣3×12×(﹣2)+2×1×(﹣2)2﹣2,=6+8﹣2,=12;(2)A﹣2B=(﹣6x2y+4xy2﹣5)﹣2(﹣3x2y+2xy2﹣3),=﹣6x2y+4xy2﹣5+6x2y﹣4xy2+6,=1;∴其值与x,y的值无关.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.24.已知A=2ab﹣a,B=﹣ab+2a.(1)计算:5A+4B;(2)当|a+2|+(3﹣b)2=0,求5A+4B的值.【分析】(1)将A,B所代表的代数式代入,然后去括号、合并同类项即可得;(2)先根据非负数的性质得出a,b的值,再代入化简后的式子计算可得.【解答】解:(1)∵A=2ab﹣a,B=﹣ab+2a,∴5A+4B=5(2ab﹣a)+4(﹣ab+2a)=10ab﹣5a﹣4ab+8a=6ab+3a;(2)∵|a+2|+(3﹣b)2=0,∴a+2=0,3﹣b=0,则a=﹣2,b=3,∴5A+4B=6ab+3a=6×(﹣2)×3+3×3=﹣36+9=﹣27.【点评】本题主要考查整式的加减﹣化简求值,解题的关键是熟练掌握整式的加减运算顺序和运算法则及非负数的性质.25.先化简,再求值:2xy﹣(4xy﹣4x2y2)+2 (3xy﹣5x2y2),其中x,y满足(x+1)2+|y﹣2|=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:∵(x+1)2+|y﹣2|=0,∴x=﹣1,y=2,则原式=2xy﹣2xy+2x2y2+6xy﹣10x2y2=﹣8x2y2+6xy,当x=﹣1,y=2时,原式=﹣32﹣12=﹣44.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.26.先化简,再求值:(1),其中x=3,y=﹣.(2)已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a﹣3ab)﹣(4ab﹣3b)的值.【分析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:(1)原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2=xy2+2xy,当x=3,y=﹣时,原式=﹣2=﹣1;(2)原式=5ab+4a+7b+6a﹣3ab﹣4ab+3b=﹣2ab+10(a+b),当a+b=7,ab=10时,原式=﹣20+70=50.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.27.先化简,再求值:3(a2b﹣ab)﹣2(ab﹣3a2b+1),其中a=,b=6.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=3a2b﹣3ab﹣2ab+6a2b﹣2=9a2b﹣5ab﹣2,当a=,b=6时,原式=6﹣10﹣2=﹣6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.先化简,再求值:5(3a2b﹣ab2)﹣3(﹣ab2+4a2b),其中a=﹣,b=.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+3ab2﹣12a2b=3a2b﹣2ab2,当a=﹣,b=时,原式=3×(﹣)2×﹣2×(﹣)×()2=+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.29.先化简,再求值:x﹣2(x﹣y2)﹣(﹣x+y2),其中x=3,y=﹣.【分析】原式去括号、合并得到最简结果,将y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2+x﹣y2=y2,当y=﹣时,原式=×=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.30.先化简,再求值:(1)5x2﹣[2xy﹣3(xy+2)+4x2]﹣xy.其中x=﹣2,y=;(2)已知a=﹣1,b=2,求2a2﹣[8ab+(ab﹣4a2)]﹣ab的值.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.(2)原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:(1)原式=5x2﹣2xy+3(xy+2)﹣4x2﹣xy=5x2﹣2xy+xy+6﹣4x2﹣xy=x2﹣2xy+6,当x=﹣2,y=时,原式=(﹣2)2﹣2×(﹣2)×+6=4+2+6=12;(2)原式=2a2﹣8ab﹣(ab﹣4a2)﹣ab=2a2﹣8ab﹣ab+2a2﹣ab=4a2﹣9ab,当a=﹣1,b=2时,原式=4×(﹣1)2﹣9×(﹣1)×2=4+18=22.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.31.计算:(1)m2+2m+2m2﹣3m;(2)先化简,再求值:(ab﹣3a2)﹣[5ab﹣2(2a2﹣ab)],其中a=﹣2,b=1.【分析】(1)合并同类项即可得;(2)原式去括号、合并同类项化成最简形式,再将a,b的值代入计算可得.【解答】解:(1)原式=3m2﹣m;(2)原式=ab﹣3a2﹣5ab+2(2a2﹣ab)=ab﹣3a2﹣5ab+4a2﹣2ab=a2﹣6ab,当a=﹣2,b=1时,原式=(﹣2)2﹣6×(﹣2)×1=4+12=16.【点评】本题主要考查考查整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.32.先化简再求值:2m﹣2(m2+m﹣1),其中m=﹣2.【分析】先去括号,再合并同类项化简原式,继而将m的值代入计算可得.【解答】解:原式=2m﹣2m2﹣2m+2=﹣2m2+2,当m=﹣2时,原式=﹣2×(﹣2)2+2=﹣2×4+2=﹣8+2=﹣6.【点评】本题主要考查考查整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.33.先化简,再求代数式的值:2(x2y+xy2)﹣2(x2y﹣2)﹣(xy2+2),其中x=2018,y=﹣1.【分析】原式去括号、合并同类项化成最简形式,再将x,y的值代入计算可得.【解答】解:原式=2x2y+2xy2﹣2x2y+4﹣xy2﹣2=xy2+2,当x=2018,y=﹣1时,原式=2018×(﹣1)2+2=2020.【点评】本题主要考查考查整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.34.先化简,再求值:3a2b﹣6ab2﹣2(2a2b﹣3ab2﹣2),其中a=﹣1.b=2.【分析】原式去括号、合并同类项化成最简形式,再将a,b的值代入计算可得.【解答】解:原式=3a2b﹣6ab2﹣4a2b+6ab2+4=﹣a2b+4,当a=﹣1,b=2时,原式=﹣1×(﹣1)2×2+4=﹣2+4=2.【点评】本题主要考查考查整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.35.先化简,再求值.4ab﹣[(a2+5ab﹣b2)﹣2(a2+3ab﹣b2),其中a=﹣1,b=2.【分析】原式合并得到最简结果,将各自的值代入计算即可求出值.【解答】解:4ab﹣[(a2+5ab﹣b2)﹣2(a2+3ab﹣b2),=4ab﹣a2﹣5ab+b2+2a2+6ab﹣b2=5ab+a2把a=﹣1,b=2代入5ab+a2=5×(﹣1)×2+(﹣1)2=﹣9.【点评】考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.注意整体思想的运用.36.先化简,再求值.已知|x﹣3|+(y+)2=0,先化简再求值:3x2y﹣[2xy2﹣3(xy﹣x2y)+xy]+5xy2【分析】利用非负数的性质求出x与y的值,原式合并得到最简结果,将各自的值代入计算即可求出值.【解答】解:根据题意,可得:x﹣3=0,y+=0,解得:x=3,y=﹣,3x2y﹣[2xy2﹣3(xy﹣x2y)+xy]+5xy2==把x=3,y=﹣代入==9【点评】考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.注意整体思想的运用.同时考查了非负数的性质.37.先化简,后求值.求2(a2b+ab2)﹣5(2ab2﹣1+a2b)﹣2的值,其中a=1,b=﹣2.【分析】原式去括号、合并同类项化简,再将a,b的值代入计算可得.【解答】解:原式=2a2b+2ab2﹣10ab2+5﹣5a2b﹣2=﹣3a2b﹣8ab2+3,当a=1,b=﹣2时,原式=﹣3×12×(﹣2)﹣8×1×(﹣2)2+3=6﹣32+3=﹣23【点评】本题主要考查整式的加减﹣化简求值,解题的关键是掌握去括号、合并同类项法则.38.①计算:3(2x2﹣xy)﹣2(3x2+xy﹣1)②先化简,再求值:2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b)其中:a=2,b=1.【分析】①先去括号,再合并同类项即可得;②原式去括号、合并同类项即可化简原式,再将a,b的值代入计算可得.【解答】解:①原式=6x2﹣3xy﹣6x2﹣2xy+2=﹣5xy+2;②原式=2ab2﹣4a2b﹣3ab2+3a2b+2ab2﹣2a2b=ab2﹣3a2b,当a=2,b=1时,原式=2×12﹣3×22×1=2﹣12=﹣10.【点评】本题主要考查整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.39.(1)先化简,再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣;(2)已知2x2﹣3x=7,求整式6x﹣4x2+5的值.【分析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式变形后,将已知等式代入计算即可求出值.【解答】解:(1)原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=3,y=﹣时,原式=﹣;(2)∵2x2﹣3x=7,∴3x﹣2x2=﹣7,则原式=2(3x﹣2x2)+5=﹣14+5=﹣9.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.40.化简:(1)3x2﹣3(x2﹣2x+1)+4;(2)先化简再求值:3x2y﹣[2xy2﹣2(xy﹣1.5x2y)+xy]+3xy2,其中x=﹣3,y=﹣2.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=3x2﹣3x2+6x﹣3+4=6x+1;(2)原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=﹣3,y=﹣2时,原式=﹣12+6=﹣6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.41.(1)计算:﹣3(2a2﹣2ab)+4(a2+ab﹣6)(2)化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【分析】(1)去括号、合并同类项即可得;(2)原式去括号、合并同类项化简后,把x,y的值代入计算可得.【解答】解:(1)原式﹣6a2+6ab+4a2+4ab﹣24=﹣2a2+10ab﹣24;(2)原式=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×52=﹣1+5=4.【点评】本题主要考查整式的加减﹣化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.42.先化简,再求值(﹣2x2+xy﹣y2)+2(x2﹣xy);其中x=2,y=﹣.【分析】原式去括号合并得到最简结果,把x,y的值代入计算即可求出值.【解答】解:原式=﹣2x2+xy﹣y2+2x2﹣xy=xy﹣y2,将x=2,y=﹣代入原式=×2×(﹣)﹣(﹣)2=﹣﹣=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.43.先化简,再求值:5x2y﹣[x2﹣3(xy2﹣2x2y)+3xy2],其中x=6,|y|=,且xy<0.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:∵x=6,|y|=,且xy<0,∴x=6,y=﹣,原式=5x2y﹣x2+3xy2﹣6x2y﹣3xy2=﹣x2y﹣x2,当x=6,y=﹣时,原式=18﹣36=﹣18.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.44.化简(1)求3a2﹣ab+1减4a2+6ab﹣7所得的差;(2)化简,求值4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=8.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)根据题意得:(3a2﹣ab+1)﹣(4a2+6ab﹣7)=3a2﹣ab+1﹣4a2﹣6ab+7=﹣a2﹣7ab+8;(2)原式=4x2y﹣6xy+6xy﹣4+x2y+1=5x2y﹣3,当x=﹣,y=8时,原式=10﹣3=7.【点评】此题考查了整式是加减,熟练掌握运算法则是解本题的关键.45.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=.【分析】先去括号、合并同类项化简原式,再将a、b的值代入计算可得.【解答】解:原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2,当a=﹣,b=时,原式=12×(﹣)2×﹣6×(﹣)×()2=1+=.【点评】本题主要考查整式的加减﹣化简求值,解题的关键是掌握整式的加减的本质即为去括号、合并同类项.46.化简求值:﹣3xy2﹣2(xy﹣x2y)﹣(3x2y﹣2xy2),其中x=﹣4,y=.【分析】先去括号、合并同类项化简原式,再将x,y的值代入计算可得.【解答】解:原式=﹣3xy2﹣2xy+3x2y﹣3x2y+2xy2=﹣xy2﹣2xy,当x=﹣4,y=时,原式=﹣(﹣4)×﹣2×(﹣4)×=1+4=5.【点评】本题主要考查整式的加减﹣化简求值,解题的关键是掌握整式的加减的本质即为去括号、合并同类项.47.化简后求值:3(x2y+xy2)﹣3(x2y﹣1)﹣4xy2﹣3,其中x、y满足|x﹣2|+(y+)2=0.【分析】先去括号、合并同类项化简原式,再根据非负数的性质得出x,y的值,继而将x,y的值代入计算可得.【解答】解:原式=3x2y+3xy2﹣3x2y+3﹣4xy2﹣3=﹣xy2,∵|x﹣2|+(y+)=0,∴x﹣2=0 y+=0,于是x=2,y=﹣,当x=2,y=﹣时,原式=﹣xy2=﹣2×(﹣)2=﹣.【点评】本题主要考查非负数的性质与整式的加减﹣化简求值,解题的关键是掌握整式的加减的本质即为去括号、合并同类项.48.先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab),其中,a=﹣2,b=3.【分析】先去括号,再合并同类项化简原式,再将a,b的值代入计算可得.【解答】解:原式=2a2﹣2ab﹣3a2+3ab=﹣a2+ab,当a=﹣2,b=3时,原式=﹣(﹣2)2+(﹣2)×3=﹣4﹣6=﹣10.【点评】本题主要考查整式的加减﹣化简求值,解题的关键是掌握整式的加减的本质即为去括号、合并同类项.49.先化简,再求值已知|x﹣2|+(y+1)2=0,求2x2﹣[5xy﹣3(x2﹣y2)]﹣5(﹣xy+y2)的值.【分析】先去括号、合并同类项化简原式,继而根据非负数的性质得出x,y的值,再将x,y的值代入计算可得.【解答】解:原式=2x2﹣5xy+3(x2﹣y2)﹣5(﹣xy+y2)=2x2﹣5xy+3x2﹣3y2+5xy﹣5y2=5x2﹣8y2,因为|x﹣2|+(y+1)2=0,所以x=2,y=﹣1,所以,原式=5×22﹣8×(﹣1)2=20﹣8=12.【点评】本题主要考查整式的加减﹣化简求值与非负数的性质,解题的关键是掌握整式的加减的本质即为去括号、合并同类项.50.先化简,再求值:2x﹣[3x﹣2(x﹣1)﹣3],其中x=﹣2.【分析】本题要先去括号再合并同类项,对原代数式进行化简,然后把x的值代入计算即可.【解答】解:原式=2x﹣(3x﹣2x+2﹣3)=2x﹣3x+2x﹣2+3=x+1,当x=﹣2时,原式=﹣2+1=﹣1.【点评】本题主要考查整式的加减﹣化简求值,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.。

3.4.4整式的加减


3、化简:
(1)x-3(1-2x+x2)+2(-2+3x-x2)
解:原式=x-3+6x-3x2-4+6x-2x2
=(-3x2-2x2)+(x+6x+6x)+(-3-4)
=-5x2+13x-7
(2)(3x2-5xy)+{-x2-[-3xy+2(x2-xy)+y2]}
解:原式=3x2-5xy+{-x2-[-3xy+2x2-2ห้องสมุดไป่ตู้y+y2]} =3x2-5xy+{-x2+3xy-2x2+2xy-y2} =3x2-5xy-x2+3xy-2x2+2xy-y2 =(3x2-x2-2x2)+(-5xy+3xy+2xy)-y2 =-y2
1. ab (2ab 3a2b)的计算结果是( C )
( A)3a2b 3ab (B) 3a2b ab (C)3a2b ab (D) 3a2b 3ab
2.若a2 2b 1 0 , 则多项式2a2 4b 2的值等于( B )
( A) 1 (B) 4 (C) 1 (D) 4 3.如果A 3m2 m 1 , B 7 m , 且A B C 0,则C _6_-3_m__2
习题3.4 7. 8
解:原式=(6-3)x-2y =3x-2y
原式=(4-2)x2y-2x2 =2x2y-2x2
原式=(3-3)a2-2a =-2a
能用去括号法则去括号,并能正确合并同类项。
1、内容:看下面例题。 2、时间:2分钟。 3、方法:独立自学
4、要求:自学后能独立完成下列自学检测练
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变式训练:一个多项式加上-5x2-4x-3得-x2-3x 求这个多项式.
思考:(小组交流)
1.整式的加减运算步骤是什么? (1)有括号去括号 (2)合并同类项.
2.整式的加减运算结果:
仍然是整式.
3.整式的加减运算结果书写有什么要求? 运算结果常将多项按某一个字母 (如x)的升幂(降幂)排列。
活动二:常见题型
笔记本x 元/本
小明
3x
小红
4x
钱(元) 7x 解法1:
圆珠笔y 元/支
2y
3y 5y 解法2:
钱(元)
3x+2y 4x+3y ??
通过本课时的学习, 我们掌握了-----
作业
A组课后练习 1题 、2题、3题 B组课后习题 1题 、2题、3题、4题
(1)求_第_2_一x__2、+_二_5_排x__2共__有人数为几人: (2)求_5_第_x_二2_-_排2_x比__2第__一排多几人:
(3)求第一排与第三排的人数和:
_2__x_2_+__(_x__2_-_7_x_ -2)
(4)求第三排和第四排的差为
(__x__2_-_7__x_-__2_)__-_(-2x2+4x-1)
B.-3(x-1)=-3x+1
C.-3(x-1)=-3x-3
D.-3(x-1)=-3x+3
3. 化简-2a+(2a-1)的结果是(C)
A.-4a-1 B.-4a+1 C.-1 D.1
活动三:能力提升 (谁最棒!!小组比赛)
题型3 : 一种笔记本的单价是x元,圆珠笔的单 价是y元.小红买这种笔记本3个,买圆珠笔2支; 小明买这种笔记本4个,买圆珠笔3支,买这些 笔记本和圆珠笔,小红和小明一共花费多少钱?
题型1:-2y3+(3xy2-x2y)-2(xy2-y3)
小明和小华在计算时得到以下两个不同的结果
解:原式=-2y3+3xy2-x2yபைடு நூலகம்2xy2-2y3
=-4y3+xy2-x2y3
小明
解:原式=-2y3+3xy2-x2y-2xy2+y3
=-y3+xy2-x2y
小华
请你判断小明和小华都算的对吗? 如果不对请给予纠正?
秦安县第五中学课间操表演《你笑起来真好看》
情境创设
如果我们重新排队,第一排站了n名同学,从第 二排起每一排都比前一排多一人,一共站了四 排,则该中学课间操一共有多少名学生参加?
第一排人数为:__n____ 第二排人数为:_n_+_1___ 第三排人数为:_n_+__2__ 第四排人数为:_n_+_3___
题型2: 化简求值:
2x2y-3xy2+4x2y-5xy2
其中x=1,y=-1.
知识反馈:(课堂练习) 1.计算(3a2+2a+1)-(2a2+3a-5)的结果是(D)
A.a2-5a+6 B.a2-5a-4 C.a2-a-4 D.a2-a+6
2. 下列运算正确的是( D )
A.-3(x-1)=-3x-1
总人数为:__n_+_(n_+_1_)_+(_n_+_2_)+_(_n_+_3)
3.4.4整式的加减
(第四课时)
1.知道整式的加减运算步骤。 2.熟练进行整式的加减运算。(重点) 3.灵活运用整式的加减运算解决生活中
的实际问题.(难点)
活动一:探究新知 (按要求列代数式并计算结果)
假设该中学课间操第一排有2x2名同学,第二排有5x2 名同学;第三排有(x2-7x-2)人,第四排有(-2x2+ 4x-1)人。
相关文档
最新文档