专题02 函数概念与基本初等函数B辑(解析版)

合集下载

2022衡水名师原创数学专题卷:专题02 函数概念及其基本性质(含答案)

2022衡水名师原创数学专题卷:专题02 函数概念及其基本性质(含答案)

2022衡水名师原创数学专题卷 专题二《函数概念及其基本性质》考点04:函数及其表示(1—3题,13,14题,17,18题)考点05:函数的单调性(4—6题,9—12题,15题,19—22题) 考点06:函数的奇偶性与周期性(7—8题,9—12题,16题,19—22题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列函数中,定义域与值域相同的有( )①()f x x = ②()e ln x f x x =+; ③1()lg(2)lg(2)f x x x =-+-;④3()f x x x =-. A.1个B.2个C.3个D.4个2.已知函数4log ,0()2,0xx x f x x >⎧=⎨≤⎩,则((1))f f -的值为( )A. 12-B.12C.D. 2-3.函数2()lg(31)f x x =+的定义域是( )A. 1(,)3-+∞B. 1(,1)3-C.11(,)33-D.1(,)3-∞-4.已知函数()ln4xf x x=-,则( ) A. ()y f x =的图象关于点()2,0对称 , B. ()y f x =的图象关于直线2x =对称, C. ()f x 在()0,4上单调递减 ,D. ()f x 在()0,2上单调递减,在()2,4上单调递增.5.已知函数25,(1)()(1)x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .2a ≤-C .0a <D .32a -≤≤-6.若奇函数()f x 在区间[]1,3上为增函数,且有最小值0,则它在区间[]3,1--上( ) A.是减函数,有最小值0 B. 是增函数,有最小值0 C.是减函数,有最大值0D. 是增函数,有最大值07.若定义在R 的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -≥的x 的取值范围是( ) A.[1,1][3,)-+∞B.[3,1][0,1]--C.[1,0][1,)-+∞D.[1,0][1,3]-8.设函数()ln |21|ln |21|f x x x =+--,则()f x ( ) A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减二、选择题(本题共4小题,每小题5分,共20分。

专题二 第1讲 函数、基本初等函数的图象与性质

专题二 第1讲 函数、基本初等函数的图象与性质

函数,
所以由15<(15)b<(15)a<1 得 0<a<b<1,
所以0<
a b
<1.
所以y=ax,y=bx,y=( a )x在(-∞,+∞)上都是
b
递减函数,
从而ab<aa,( a)a<1得ba>aa, b
故ab<aa<ba,
答案选B.
答案 B
(2)已知函数 f(x)=2x-21x,函数 g(x)=ffx-,xx,≥x0<,0,
变式训练1
(1)(2013·重庆)已知函数f(x)=ax3+bsin x+4(a,b∈R),
f(lg(log210))=5,则f(lg(lg 2))等于( C )
A.-5
B.-1 C.3 D.4
解析
lg(log210)=lg
1 lg 2
=-lg(lg
2),
由f(lg(log210))=5,
得a[lg(lg 2)]3+bsin(lg(lg 2))=4-5=-1,
2
则实数a的取值范围是( )
A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)
思维启迪 可利用函数图象或分
类讨论确定a的范围;
解析 方法一 由题意作出y=f(x)的图象如图. 显然当a>1或-1<a<0时,满足f(a)>f(-a).故选C.
方法二 对a分类讨论:
当a>0时,log2a>log 1 a,即log2a>0,∴a>1. 2
当a<0时,log 1 (-a)>log2(-a),即log2(-a)<0,

五年天津专题02函数概念与基本初等函数

五年天津专题02函数概念与基本初等函数

考频统计考点题数/五年考纲要求星级知识点01函数的奇偶性1熟悉★★★知识点02分段函数1熟悉★★★知识点03函数图像的识别4熟悉★★★知识点04指数与对数运算2了解★知识点05比较大小问题5熟悉★★★1.下列函数是偶函数的是( )A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x xx y +=【2020年天津第9题】2.已知函数3,0,(),0.x x f x x xì=í-<î…若函数2()()2()g x f xkx xk =--ÎR 恰有4个零点,则k的取值范围是( )A.1,)2æö-¥-+¥ç÷èøU B .1,(0,2æö-¥-ç÷èøU C .(,0)(0,-¥U D .(,0))-¥+¥U【2023年天津第4题】3.已知函数()f x 的部分图象如下图所示,则()f x 的解析式可能为( )A .25e 5e 2x xx --+B .25sin 1x x +C .25e 5e 2x xx -++D .25cos 1x x +【2022年天津第3题】4.函数()21x f x x-=的图像为( )A .B .C .D .【2021年天津第3题】5.函数2ln ||2x y x =+的图像大致为( )A .B .C .D .【2020年天津第3题】6.函数241xy x =+的图象大致为( )A .B .C .D .【2022年天津第6题】7.化简()()48392log 3log 3log 2log 2++的值为( )A .1B .2C .4D .6【2021年天津第7题】8.若2510a b ==,则11a b +=( )A .1-B .lg 7C .1D .7log 10【2024年天津第5题】9.若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A .a b c>>B .b a c>>C .c a b>>D .b c a>>【2023年天津第3题】10.设0.50.60.51.01, 1.01,0.6a b c ===,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a<<D .c a b<<【2022年天津第5题】11.已知0.72a =,0.713b æö=ç÷èø,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b>>【2021年天津第5题】12.设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c<a<bC .b<c<aD .a c b<<【2020年天津第6题】13.设0.80.70.713,,log 0.83a b c -æö===ç÷èø,则,,a b c 的大小关系为( )A .a b c <<B .b a c<<C .b<c<aD .c<a<b参考答案:1.B【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -¹,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ¹-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4ex x x x j +=,函数定义域为R ,因为()sin141e j +=,()sin141e j ---=,则()()11j j ¹-,则()x j 不是偶函数,故D 错误.故选:B.2.D【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ì>==í<î,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意;当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0D =得280k -=,解得k =,所以k >综上,k 的取值范围为(,0))-¥+¥U .故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.3.D【分析】由图知函数为偶函数,应用排除,先判断B 中函数的奇偶性,再判断A 、C 中函数在(0,)+¥上的函数符号排除选项,即得答案.【详解】由图知:函数图象关于y 轴对称,其为偶函数,且(2)(2)0f f -=<,由225sin()5sin ()11x xx x -=--++且定义域为R ,即B 中函数为奇函数,排除;当0x >时25(e e )02x x x -->+、25(e e )02x x x -+>+,即A 、C 中(0,)+¥上函数值为正,排除;故选:D4.D【分析】分析函数()f x 的定义域、奇偶性、单调性及其在(),0¥-上的函数值符号,结合排除法可得出合适的选项.【详解】函数()21x f x x-=的定义域为{}0x x ¹,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x-=£,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.5.B【分析】由函数为偶函数可排除AC ,再由当()0,1Îx 时,()0f x <,排除D ,即可得解.【详解】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ¹,关于原点对称,又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1Îx 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.6.A【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.7.B【分析】根据对数的性质可求代数式的值.【详解】原式2233111(2log 3log 3)(log 2log 2)232=´++2343log 3log 2232=´=,故选:B 8.C【分析】由已知表示出,a b ,再由换底公式可求.【详解】Q 2510a b ==,25log 10,log 10a b \==,251111lg 2lg 5lg101log 10log 10a b \+=+=+==.故选:C.9.B【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+¥上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B 10.D【分析】根据对应幂、指数函数的单调性判断大小关系即可.【详解】由 1.01x y =在R 上递增,则0.50.61.01 1.01a b =<=,由0.5y x =在[0,)+¥上递增,则0.50.51.010.6a c =>=.所以b a c >>.故选:D11.C【分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系.【详解】因为0.70.7221120log 1log 33æö>>=>ç÷èø,故a b c >>.故答案为:C.12.D【分析】根据指数函数和对数函数的性质求出,,a b c 的范围即可求解.【详解】22log 0.3log 10<=Q ,<0a \,122225log 0.4log 0.4log log 212=-=>=Q ,1b \>,0.3000.40.41<<=Q ,01c \<<,a c b \<<.故选:D.13.D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -æö==>=ç÷èø,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.。

专题02 函数的概念与基本初等函数Ⅰ-2019年高考真题和模拟题分项汇编数学(文)(解析版)

专题02 函数的概念与基本初等函数Ⅰ-2019年高考真题和模拟题分项汇编数学(文)(解析版)
( π )2
=
4
+ 2π π2
1,
f
(π)
=
π −1+
π2
0 ,可知应为 D 选项中的图象.
2
7.【2019 年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗
星的星等与亮度满足
m2

m1
=
5 2
lg
E1 E2
,其中星等为 mk
的星的亮度为
Ek (k=1,2).已
知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为
=

1 2
,1
x
2
,其中 k>0.若在区间(0,9]上,关于 x 的方程 f (x) = g(x) 有
8 个不同的实数根,则 k 的取值范围是 ▲ .
【答案】
1 3
,
2 4
【解析】作出函数 f (x) , g(x) 的图象,如图:
由图可知,函数 f (x) = 1− (x −1)2 的图象与 g(x) = − 1 (1 x 2,3 x 4,5 x 6, 7 x 8) 的图象仅有 2 个交点,即在区间
专题 02 函数的概念与基本初等函数 I
1.【2019 年高考全国Ⅰ卷文数】已知 a = log2 0.2,b = 20.2, c = 0.20.3 ,则( )
A. a b c
B. a c b
C. c a b
D. b c a
【答案】B
【解析】 a = log2 0.2 log2 1 = 0, b = 20.2 20 = 1, 0 c = 0.20.3 0.20 = 1, 即 0 c 1, 则 a c b .故选 B.

五年北京专题02函数概念与基本初等函数

五年北京专题02函数概念与基本初等函数
考频统计
考点
题数/五年 考纲要求 星级
知识点 01 函数的定义域与值域
2
了解

知识点 02 函数的单调性与周期性
1
★★
熟悉

知识点 03 分段函数
★★
1
熟悉

知识点 04 指数与对数运算
3
了解

知识点 05 函数的零点与不等式问 1

★★
熟悉

知识点 06 函数模型及其应用
2
了解

1.函数 f (x) = 1 + 1 - x 的定义域是 x
【详解】对于 A,因为 y = ln x 在 0, +¥ 上单调递增, y = -x 在 0, +¥ 上单调递减,
所以 f x = - ln x 在 0, +¥ 上单调递减,故 A 错误;
对于 B,因为 y = 2x 在 0, +¥ 上单调递增, y = 1 在 0, +¥ 上单调递减,
故函数的定义域为 -¥, 0 È 0,1;
故答案为: -¥, 0 È 0,1
2. (0, +¥) 【分析】根据分母不为零、真数大于零列不等式组,解得结果.
ì x>0 【详解】由题意得 íîx +1 ¹ 0 , x > 0 故答案为: (0, +¥) 【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题. 3.C 【分析】利用基本初等函数的单调性,结合复合函数的单调性判断 ABC,举反例排除 D 即 可.
【2020 年北京第 11 题】
2.函数
f
(x)
=
1 x +1
+
ln

高考数学知识点总结 第二章函数概念与基本初等函数

高考数学知识点总结 第二章函数概念与基本初等函数

第二章函数概念与基本初等函数知识点与方法1.函数解析式的求法主要有换元法和待定系数法等:利用函数的解析式研究问题时要特别注意分析自变量x与函数值y的关系,尤其要注意分段函数各段的自变量所对ƒ的解析式.已知函数解析式,计算有限个函数值的和.fl类问题一般都具有明显的规律,或者函数具有周期性,或者函数具有对称性(自变量具有某种关系,其函数值和fi定值).如£(x)=,求+的值(这$£(x)+£(1—x)=).².确定函数定义域的基本原则.(1)分式函数y=中,满足分母g(x)≠0.(²)偶次式y=(n∈N*)中,满足被开方式£(x)≥0.(3)对数函数y=log£(x)g(x)中,满足且£(x)≠1.(4)幂函数y=[£(x)]0中,满足£(x)≠0.(±)fl切函数y=tanx中,满足x≠kπ+(k∈Z).(6)在实际问题中考虑自变量的实际意义.3.函数值域(最值)的求法.(1)二次型函数——配方法.(²)©曲函数——均值н等式.(3)利用换元法转化fi二次型函数或©曲函数.(4)函数单调性法.(±)导数法.对于н等式恒成立、fl在性问题h要通过求函数最值的方法解决.4.判断函数单调性的方法.(1)定义法:一般地,设函数y=£(x)的定义域fiA,区间W⊆A,∀x1,x²∈W,(x1—x²)[£(x1)—£(x²)]>0⇔>0⇔£(x)在区间W L是增函数.若£(x)在区间W L fi增函数,x1, x²∈W,则有x1<x²⇔£(x1)<£(x²),减函数有类似结论.(注意:在涉þ到н等式的求解、证明等有关问题时可以考虑构造函数,利用函数单调性求解).(²)用已知函数单调性判断(下列函数都在¿共单调区间L): ķ增函数+增函数=增函数:ĸ减函数+减函数=减函数:③复合函数单调性:④奇(偶)函数在对称区间L的单调性相¼(相反).(3)借助图像判断函数单调性.(4)导数法:对可导函数£(x),x∈(a,b ),£′(x)≥0⇔£(x)在(a,b)L是增函数:£′(x)≤0⇔£(x)在(a,b)L 是减函数(其中导致导数fi0的点是孤立的).±.函数的奇偶性.(1)判定函数奇偶性的方法.函数具有奇偶性的必要条fl是定义域fi 关于原点对称的区间.判断函数奇偶性首先确定函数定义域.ķ定义法:∀x∈D£,£(x)±£(—x)=0: ĸ用已知函数奇偶性判定:(i)奇±奇=奇:偶±偶=偶:奇±偶=非奇非偶(非零函数): 奇×偶=奇:奇×奇=偶:偶×偶=偶.(ii)复合函数奇偶性,内偶则偶,两奇fi奇.③借助图像确定奇偶性.(²)奇偶函数的性质.ķ定义域含0的奇函数图像必过原点: ĸ奇函数若fl在最大(小)值,则它们的和fi0:③£(x)是偶函数,则有£(—x)=£(x)=£(|x|):④既奇又偶的函数的解析式必fi£(x)=0:⑤对于奇(偶)函数,已知y轴一侧的图像、解析式、单调性,能够确定y轴另一侧的图像、解析式、单调性.题目中出现x与—x的函数值问题,需考虑函数的奇偶性.(3)奇偶函数性质推广(对称性问题).已知函数£(x),x∈D.ķ满足£(a+x)=£(b—x)⇔£(x)关于直线x=对称, 特别地,£(—x)=£(x)⇔£(x)关于y轴(x=0)对称: ĸ满足£(a+x)=—£(b—x)⇔£(x)关于点,0 对称, 特别地,£(—x)=—£(x)⇔£(x)关于原点(0,0)中心对称:③函数y=£(x)与y=£(—x)的图像关于y轴对称:④函数y=£(x)与y=—£(x)的图像关于x轴对称:⑤函数y=£(a+x)与y=£(b—x)的图像关于x=对称. 6.函数的周期性.(1)定义:已知函数y=£(x),x∈D,若对任意x∈D,fl在非零fl 常数T,满足:ķ£(x+T)=£(x),周期fiT:ĸ£(x+T)=—£(x),周期fi²T:£(x+T)+£(x)=G,周期fi²T:③£(x+T)=±,周期fi²T:£(x+T)·£(x)=G(G≠0),周期FI²T:④£(x+T)=—£(x—T),周期fi4T:⑤£(x+T)+£(x—T)=£(x),周期fi6T.(²)对称性与周期性关系:若函数£(x)具有两个对称性(中心、轴)þ周期性三个性质中的两个,则必定具有第三个性质.例如:ķ若£(x)的图像关于直线x=a和x=b对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.ĸ若£(x)的图像关于点(a,0)和(b,0)对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.③若£(x)的图像关于直线x=aþ点(b,0)对称(a≠b),则£(x)是周期fi4|a—b|的周期函数.7.三个二次(一元二次方程、二次н等式、二次函数)间的问题可相互转化.如二次函数零点是相ƒ二次方程的,二次н等式的求解依赖于二次方程与二次函数的图像等.(1)一元二次方程.ķ判别式,求¿式, 与系数关系:ĸ的分布问题,要由判别式、对称轴、端点值三者确定.例如:(i)二次方程ax²+BX+G=0(A>0)两都大于k⇔(ii)一大于k,一小于k⇔£(k)<0.(²)二次函数的三种表现形式. y=ax²+bx+G=a(x—m)²+n=a (x—x1)(x—x²)(a≠0),其中(m,n)是顶点,x1,x²fi零点.对于限定区间L的二次函数最值要注意对称轴与区间的ƒ置关系.(3)一元二次н等式解法依赖于相ƒ方程与二次函数图像.(4)对于二次函数£(x)=ax²+bx+G,若£(x1 )=£(x²), x1≠x²,则x1+x²=—.8.关于幂、指数、对数函数问题.(1)幂函数£(x)=xα在第一象限的图像如图1—3所示,单调性fi:当α>0时,函数£(x)在(0,+∞)Lfi增函数:当α<0时,函数£(x)在(0,+∞)Lfi减函数.图1-3(²)指数与对数.a b=N⇔b=log a N(a>0,a≠1),a log a N=N,log a a b=b,=,log a m b n=log a b.(3)指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0, a≠1).ķ互fi反函数: ĸ定义域、值域之间的关系fl好相反:③单调性:在各自定义域L,当0<a<1时,均fi减函数:当a>1 时,均fi增函数.(4)以各自的䘀算规则fi模型的抽象函数的表示法.ķ幂函数:£(xy)=£(x)£(y),£=(y≠0,£(y)≠0),£(1)=1:ĸ指数函数:£(x+y)=£(x)·£(y),£(x—y)=,£(0)=1:③对数函数:£(x y)=£(x)+£(y),£=£(x)—£(y),£(1)=0.(±)会画y=a|x|,y=log a|x|,y=|log a x|(a>0,a≠1)的图像.9.图像问题.(1)注意以下两个函数图像.ķ形如y=的函数能变fi形如y=n±的函数,其图像是关于点(m,n)对称的反比例函数图像:ĸ形如y=ax+ 的“©曲函数”,若ab>0,则fi“对勾函数”: 若ab<0,则fi单调函数.(²)图像变换.ķᒣ移变换:ĸ伸缩变换:③对称变换:函数y=£(—x)的图像与函数y=£(x)的图像关于y轴对称.函数y=—£(x)的图像与函数y=£(x)的图像关于x轴对称.函数y=—£(—x)的图像与函数y=£(x)的图像关于原点对称.④翻折变换:y=£(|x|)与y=£(x)之间的关系,y=£(x)与y=£(x)之间的关系.(3)研究问题方法.会由图像特征研究函数性质,能用性质描函数图像,养成用图像、性质分析思考问题,即数形结合思想解题的习惯.查漏补缺1. 函数是数集到数集的特殊映射,其对应法则必须满足自变量在定义域内的任意性,函数值的唯一性例8 已知集合A=(1,²,3,…,²3),求证:нfl在这fi的函数£:A→(1,²,3),使得对任意的整数x1,x²∈A,若|x1—x²|∈(1,²,3),则£(x1)≠£(x²).变式1 函数y=£(x)的图像与直线x=a(a∈R)的交点个数fi ().A.0B.1 C.0或 1 D.可多于12. 结合函数图像研究函数性质如图1—4所示,以函数fi核心,其核心内容包括函数的图像与性质,函数的图像包括基本初等函数的图像的作法þ图像变换,函数的性质主要包括函数的定义域、解析式、值域、奇偶性、单调性、周期性, 对称性þ特殊点.函数知识的外延主要体现在函数与方程(函数零点)þ函数与н等式的结合.而函数与方程(函数零点)þ函数与н等式问题可通过转化思想,利用函数图像与性质求解.图1-4例9 关于x的方程(x—a)(x—b)=²(a<b)的两实fiα, β,且α<β,试比较α,β,a,b的大小.变式1 已知函数£(x)=,若£(²—a²)>£(a),则实数a的ᒣ值范围是().(—1,²)A.(—∞,—1)∪(²,+∞) B.C.(—²,1)D.(—∞,—²)∪(1,+∞)3. 已知函数的解析式研究函数的性质给出函数的解析式,常常需要¼学们能够有意识地通过函数的解析式来研究函数的性质,如函数的奇偶性、单调性、周期性þ函数值的分布等,进而解决函数的有关问题.已知函数£(x)=x²—GOSX,对于L的任意x1 ,x²,有如下条fl:ķx1>x²:ĸ>:③|x1|>x²,其中能使£(x1 )>£(x²)恒成立的条fl序号是.4. 构造函数的解析式研究函数的性质看似与函数无关的问题,如果我们能够分析其本质特点,引入变量并根据其模型构造函数,利用函数性质求解.这才是函数的真正魅力例10 若α,β∈,且αsinα—βsinβ>0,则下列结论fl确的是().A.α>βB.α+β>0C.α<βD.α²>β²变式1 比较, ,ln 这三个实数的大小,并说明理由.变式2 比较, , 的大小.。

专题02 函数的概念与基本初等函数(解析版)

专题02函数的概念与基本初等函数1.【2019年天津理科06】已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:由题意,可知:a=log52<1,b=log0.50.2log25>log24=2.c=0.50.2<1,∴b最大,a、c都小于1.∵a=log52,c=0.50.2.而log25>log24=2,∴.∴a<c,∴a<c<b.故选:A.2.【2019年天津理科08】已知a∈R.设函数f(x)若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1] B.[0,2] C.[0,e] D.[1,e]【解答】解:当x=1时,f(1)=1﹣2a+2a=1>0恒成立;当x<1时,f(x)=x2﹣2ax+2a≥0⇔2a恒成立,令g(x)(1﹣x2)≤﹣(22)=0,∴2a≥g(x)max=0,∴a>0.当x>1时,f(x)=x﹣alnx≥0⇔a恒成立,令h(x),则h′(x),当x>e时,h′(x)>0,h(x)递增,当1<x<e时,h′′(x)<0,h(x)递减,∴x=e时,h(x)取得最小值h(e)=e,∴a≤h(x)e,综上a的取值范围是[0,e].故选:C.3.【2019年新课标3理科11】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)【解答】解:∵f(x)是定义域为R的偶函数∴,∵log34>log33=1,,∴0f(x)在(0,+∞)上单调递减,∴,故选:C.4.【2019年全国新课标2理科12】设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x﹣1).若对任意x∈(﹣∞,m],都有f(x),则m的取值范围是()A.(﹣∞,] B.(﹣∞,] C.(﹣∞,] D.(﹣∞,]【解答】解:因为f(x+1)=2f(x),∴f(x)=2f(x﹣1),∵x∈(0,1]时,f(x)=x(x﹣1)∈[,0],∴x∈(1,2]时,x﹣1∈(0,1],f(x)=2f(x﹣1)=2(x﹣1)(x﹣2)∈[,0];∴x∈(2,3]时,x﹣1∈(1,2],f(x)=2f(x﹣1)=4(x﹣2)(x﹣3)∈[﹣1,0],当x∈(2,3]时,由4(x﹣2)(x﹣3)解得m或m,若对任意x∈(﹣∞,m],都有f(x),则m.故选:B.5.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.6.【2019年浙江06】在同一直角坐标系中,函数y,y=1og a(x)(a>0且a≠1)的图象可能是()A.B.C.D.【解答】解:由函数y,y=1og a(x),当a>1时,可得y是递减函数,图象恒过(0,1)点,函数y=1og a(x),是递增函数,图象恒过(,0);当1>a>0时,可得y是递增函数,图象恒过(0,1)点,函数y=1og a(x),是递减函数,图象恒过(,0);∴满足要求的图象为:D故选:D.7.【2019年浙江09】设a,b∈R,函数f(x)若函数y=f(x)﹣ax﹣b 恰有3个零点,则()A.a<﹣1,b<0 B.a<﹣1,b>0 C.a>﹣1,b<0 D.a>﹣1,b>0【解答】解:当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x;y=f(x)﹣ax﹣b最多一个零点;当x≥0时,y=f(x)﹣ax﹣b x3(a+1)x2+ax﹣ax﹣b x3(a+1)x2﹣b,y′=x2﹣(a+1)x,当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上递增,y=f(x)﹣ax﹣b最多一个零点.不合题意;当a+1>0,即a<﹣1时,令y′>0得x∈[a+1,+∞),函数递增,令y′<0得x∈[0,a+1),函数递减;函数最多有2个零点;根据题意函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如右图:∴0且,解得b<0,1﹣a>0,b(a+1)3.故选:C.8.【2018年新课标1理科09】已知函数f(x),g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.9.【2018年新课标2理科11】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.10.【2018年新课标3理科12】设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3,b=log20.3,∴,,∵,,∴ab<a+b<0.故选:B.11.【2018年上海16】设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1),,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.12.【2018年北京理科04】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.13.【2018年天津理科05】已知a=log2e,b=ln2,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log2e>1,0<b=ln2<1,c log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.14.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.15.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴3y,2x,5z.∵,.∴lg0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴1,可得2x>3y,1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.16.【2017年浙江05】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x为对称轴的抛物线,①当1或0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(),故M﹣m的值与a有关,与b无关③当0,即﹣1<a≤0时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f()=1+a,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.17.【2017年北京理科05】已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.18.【2017年北京理科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.19.【2017年天津理科06】已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b =g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选:C.20.【2017年天津理科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A.[,2] B.[,] C.[﹣2,2] D.[﹣2,]【解答】解:当x≤1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣x2+x﹣3a≤x2﹣x+3,即有﹣x2x﹣3≤a≤x2x+3,由y=﹣x2x﹣3的对称轴为x1,可得x处取得最大值;由y=x2x+3的对称轴为x1,可得x处取得最小值,则a①当x>1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣(x)a≤x,即有﹣(x)≤a,由y=﹣(x)≤﹣22(当且仅当x1)取得最大值﹣2;由y x22(当且仅当x=2>1)取得最小值2.则﹣2a≤2②由①②可得,a≤2.另解:作出f(x)的图象和折线y=|a|当x≤1时,y=x2﹣x+3的导数为y′=2x﹣1,由2x﹣1,可得x,切点为(,)代入y a,解得a;当x>1时,y=x的导数为y′=1,由1,可得x=2(﹣2舍去),切点为(2,3),代入y a,解得a=2.由图象平移可得,a≤2.故选:A.21.【2019年全国新课标2理科14】已知f(x)是奇函数,且当x<0时,f(x)=﹣e ax.若f(ln2)=8,则a=.【解答】解:∵f(x)是奇函数,∴f(﹣ln2)=﹣8,又∵当x<0时,f(x)=﹣e ax,∴f(﹣ln2)=﹣e﹣aln2=﹣8,∴﹣aln2=ln8,∴a=﹣3.故答案为:﹣322.【2019年江苏04】函数y的定义域是.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y的定义域是[﹣1,7].故答案为:[﹣1,7].23.【2019年江苏14】设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x),g(x)其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x),x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k(k>0),∵两点(﹣2,0),(1,1)连线的斜率k,∴k.即k的取值范围为[,).故答案为:[,).24.【2018年江苏05】函数f(x)的定义域为.【解答】解:由题意得:log2x≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).25.【2018年江苏09】函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x),则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1|,f()=cos()=cos,即f(f(15)),故答案为:26.【2018年浙江11】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=,y=.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.27.【2018年浙江15】已知λ∈R,函数f(x),当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.【解答】解:当λ=2时函数f(x),显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).28.【2018年上海04】设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.29.【2018年上海07】已知α∈{﹣2,﹣1,,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.30.【2018年上海11】已知常数a>0,函数f(x)的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.【解答】解:函数f(x)的图象经过点P(p,),Q(q,).则:,整理得:1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:631.【2018年北京理科13】能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.【解答】解:例如f(x)=sin x,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sin x.32.【2018年天津理科14】已知a>0,函数f(x).若关于x的方程f(x)=ax 恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a,设g(x),则g′(x),由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a设h(x),则h′(x),由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)33.【2017年江苏14】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x),其中集合D={x|x,n∈N*},则方程f(x)﹣lgx=0的解的个数是.【解答】解:∵在区间[0,1)上,f(x),第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x),此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点,且除了(1,0),其他交点横坐标均为无理数;即方程f(x)﹣lgx=0的解的个数是8,故答案为:834.【2017年新课标3理科15】设函数f(x),则满足f(x)+f(x)>1的x的取值范围是.【解答】解:若x≤0,则x,则f(x)+f(x)>1等价为x+1+x1>1,即2x,则x,此时x≤0,当x>0时,f(x)=2x>1,x,当x0即x时,满足f(x)+f(x)>1恒成立,当0≥x,即x>0时,f(x)=x1=x,此时f(x)+f(x)>1恒成立,综上x,故答案为:(,+∞).35.【2017年浙江17】已知a∈R,函数f(x)=|x a|+a在区间[1,4]上的最大值是5,则a的取值范围是.【解答】解:由题可知|x a|+a≤5,即|x a|≤5﹣a,所以a≤5,又因为|x a|≤5﹣a,所以a﹣5≤x a≤5﹣a,所以2a﹣5≤x5,又因为1≤x≤4,4≤x5,所以2a﹣5≤4,解得a,故答案为:(﹣∞,].36.【2017年上海08】定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)为奇函数,则f﹣1(x)=2的解为.【解答】解:若g(x)为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2,可得f﹣1(x)=2的解为x.故答案为:.37.【2017年上海09】已知四个函数:①y=﹣x,②y,③y=x3,④y,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【解答】解:给出四个函数:①y=﹣x,②y,③y=x3,④y,从四个函数中任选2个,基本事件总数n,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A).故答案为:.38.【2019年江苏18】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB (AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA,规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•1,解得x1=﹣17,所以P(﹣17,0),PB15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•1,解得x2,Q(,0),由﹣17<﹣8,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.39.【2018年上海19】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f (x )=2x90>40,即x 2﹣65x +900>0,解得x <20或x >45,∴x ∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当0<x ≤30时,g (x )=30•x %+40(1﹣x %)=40;当30<x <100时,g (x )=(2x 90)•x %+40(1﹣x %)x +58;∴g (x );当0<x <32.5时,g (x )单调递减; 当32.5<x <100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的; 有大于32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为32.5%时,人均通勤时间最少.1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2 B .4C .2±D .4±【答案】C 【解析】依题意,函数()f x 为偶函数.由于()sin m x x =为奇函数,故(()ln g x ax =也为奇函数.而(()ln g x ax -=-+,故((()()ln ln 0g x g x ax ax -+=-+++=,即()222ln 140x a x +-=,解得2a =±.故选:C.2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( ) A .()10-,B .()12-,C .()02,D .()2,+∞ 【答案】B 【解析】根据题意,因为f (x )是定义在R 上的偶函数,且在区间(一∞,0]为增函数, 所以函数f (x )在[0,+∞)上为减函数,由f (3)=0,则不等式f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3, 解可得:﹣1<x <2,即不等式的解集为(﹣1,2). 故选:B .3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( )A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<【答案】C 【解析】∵f (x )为偶函数∴()()22f log 3?f log 3-= ∵320log 21,log 31,< f (x )在[0,+∞)内单调递减,∴()()()23f log 3f log 2f 0<<,即()()()23f log 3f log 2f 0-<<故选:C4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln 3c =,则( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】A【解析】1.21222a =>=5552log 2log 4log 51b ==<=且55log 4log 10b =>=1ln ln3ln 13c e ==-<-=-即1012c b a <-<<<<<a b c ∴>>本题正确选项:A5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -【答案】B 【解析】因为()()()()22222213log log log 42222x xf x f x x x -++-=+==--- 故函数()f x 关于点(2,1)对称,则()4f a -=2b - 故选:B6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称【答案】D 【解析】由题意知:()()()()()()222222122111x x x x x x xf x x x x ----'===---当()0,1x ∈时,()0f x '<,则()f x 在()0,1上单调递减,A 错误; 当10x -<时,()0f x <,可知()f x 最小值为4不正确,B 错误;()()()22221x f x f x x --=≠--,则()f x 不关于1x =对称,C 错误; ()()()()2211114x x f x f x xx+-++-=+=-,则()f x 关于()1,2对称,D 正确.本题正确选项:D7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ( )A .2019B .0C .1D .-1【答案】B 【解析】由()()()42f x f x f x +=-+=得:()f x 的周期为4 又()f x 为奇函数()11f ∴=,()()200f f =-=,()()()3111f f f =-=-=-,()()400f f ==即:()()()()12340f f f f +++=()()()()()()()()()1232019505123440f f f f f f f f f ∴+++⋅⋅⋅=⨯+++-=⎡⎤⎣⎦本题正确选项:B8.【天津市红桥区2019届高三一模】若方程2121x kx x -=--有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞- B .()1,0-C .()0,4D .()()0,11,4【答案】D 【解析】 解:y 211111111x x x x x x x -+-⎧==⎨----⎩,>或<,<<, 画出函数y =kx ﹣2,y 211x x -=-的图象,由图象可以看出,y =kx ﹣2图象恒过A (0,﹣2),B (1,2),AB 的斜率为4,①当0<k <1时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;②当k =1时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点,即方程211x x -=-kx ﹣2有1个不同的实数根;③当1<k <4时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;④当k 0≤时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点.因此实数k 的取值范围是0<k <1或1<k <4. 故选:D .9.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】()12xf x ⎛⎫= ⎪⎝⎭在R 上递减,∴若011,0,122m nm n m n -⎛⎫⎛⎫<-<>= ⎪ ⎪⎝⎭⎝⎭充分性成立, 若112m n-⎛⎫> ⎪⎝⎭,则01122m n-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭, 0,m n m n -<<必要性成立,即“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的充要条件,故选C.10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

函数的概念与基本初等函数多选题(讲义及答案)附解析

函数的概念与基本初等函数多选题(讲义及答案)附解析一、函数的概念与基本初等函数多选题 1.已知53a =,85b =,则( )A .a b <B .112a b+> C .11a b a b+<+ D .b a a a b b +<+【答案】ABD 【分析】根据条件求得,a b 表达式,根据对数性质结合放缩法得A 正确,根据不等式性质得B 正确,通过作差法判断C 错,结合指数函数单调性与放缩法可得D 正确. 【详解】解:∵53a =,85b =, ∴35log a =,58log b =,因为3344435533535log 3log 54<⇒<⇒<=, 又由3344438835858log 5log 84>⇒>⇒>=,所以a b <,选项A 正确; 35lo 01g a <=<,580log 1b <=<,则11a >,11b >,所以112a b +>,选项B 正确;因为a b <,01a b <<<,则0b a ->,11ab>,此时111()()10b a a b a b b a a b ab ab -⎛⎫⎛⎫+-+=-+=--> ⎪ ⎪⎝⎭⎝⎭, 所以11a b a b+>+,故选项C 不正确; 由1324a <<和314b <<知()x f x a =与()x g x b =均递减, 再由a ,b 的大小关系知b b a b a b a a b b a b a a b b <<⇒<⇒+<+,故选项D 正确. 故选:ABD 【点睛】本题考查了数值大小比较,关键运用了指对数运算性质,作差法和放缩法.2.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”; 对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.3.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1D【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.4.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.5.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD 【分析】通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈, 则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦;若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥, 故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.6.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .1122⎡-⎢⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞0<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=,由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得12b +=,12b =.所以此时完美区间为10,2⎡⎢⎣⎦,则“复区间长度”为()221b a -==+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得112x =,212x =,所以12a b ⎧=⎪⎪⎨+⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误;故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.7.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;8.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( )A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m m f n n n n ⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m m f n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010mn ⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”;D :()()10f x x x =≠,函数在()()0+-0∞∞,,, 单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.二、导数及其应用多选题9.下列不等式正确的有( ) A2ln 3< B.ln π<C.15< D.3ln 2e <【答案】CD 【分析】 构造函数()ln xf x x=,利用导数分析其单调性,然后由()2f f >、ff >、(4)f f >、()f f e <得出每个选项的正误.【详解】 令()ln x f x x =,则()21ln xf x x-'=,令()0f x '=得x e = 易得()f x 在()0,e 上单调递增,在(),e +∞上单调递减 所以①()2f f>,即ln 22>22ln ln 3>=,故A 错误;②ff >>,所以可得ln π>B 错误;③(4)f f >ln 4ln 242>=,即ln152ln 2=>所以ln15ln >15<,故C 正确;④()f f e <ln e e <3ln 21e<,即3ln 22e <所以3eln 2<,故D 正确;故选:CD【点睛】关键点点睛:本题考查的是构造函数,利用导数判断函数的单调性,解题的关键是函数的构造和自变量的选择.10.设函数3()(,)f x x ax b a b R =++∈,下列条件中,使得()y f x =有且仅有一个零点的是( )A .1,2a b ==B .3,3a b =-=-C .0,2a b ><D .0,0a b <>【答案】ABC【分析】求导2()3f x x a '=+,分0a ≥和0a <进行讨论,当0a ≥时,可知函数单调递增,有且只有一个零点;当0a <时,讨论函数的单调性,要使函数有一个零点,则需比较函数的极大值与极小值与0的关系,再验证选项即可得解.【详解】3()f x x ax b =++,求导得2()3f x x a '=+当0a ≥时,()0f x '≥,()f x ∴单调递增,当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;由零点存在性定理知,函数()f x 有且只有一个零点,故A ,C 满足题意;当0a <时,令()0f x '=,即230x a +=,解得1x =2x =当x 变化时,()'f x ,()f x 的变化情况如下表:f b b ⎛== ⎝,当3a x -=,函数()f x 取得极小值2333333a a a a a a f a b b ⎛⎫-----=++=+ ⎪ ⎪⎝⎭又当x →-∞时,()f x →-∞;当x →+∞时,()f x →+∞;要使函数()f x 有且只有一个零点,作草图 或则需0303a f a f⎧⎛--<⎪ ⎪⎝⎨-⎪<⎪⎩,即20332033a a b a a b ⎧-<⎪⎪⎨-⎪<⎪⎩,即2033a a b -<<, B 选项,3,3a b =-=-,满足上式,故B 符合题意;则需0303a f a f⎧⎛-->⎪ ⎪⎝⎨-⎪>⎪⎩,即20332033a a b a a b ⎧->⎪⎪⎨-⎪>⎪⎩,即2033a a b ->>, D 选项,0,0a b <>,不一定满足,故D 不符合题意;故选:ABC【点睛】思路点睛:本题考查函数的零点问题,如果函数()y f x =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根,考查学生的逻辑推理与运算能力,属于较难题.。

专题02 函数概念与基本初等函数(新定义,高数观点,选填压轴题)(学生版)-2024年高考压轴专题复

专题02 函数概念与基本初等函数
(新定义,高数观点,选填压轴题)
目录
一、函数及其表示 (1)
二、函数的基本性质 (2)
三、分段函数 (4)
四、函数的图象 (5)
五、二次函数 (7)
六、指对幂函数 (7)
七、函数与方程 (8)
八、新定义题 (9)
一、函数及其表示
二、函数的基本性质
三、分段函数
四、函数的图象..
..
2023春·广东韶关·高二统考期末)
e3
cosπ
e2
x
x
x

-⎛⎫
⋅+
⎪ ⎪
+⎝⎭

部分图象大致是(
..
. .
2023春·云南楚雄·高二统考期末)函数)32e e 1
x
x x =-的部分图象大致为( )
2023春·湖北武汉·高一华中师大一附中校考期末)下列四个函数中的某个函数在区间致图象如图所示,则该函数是(
A .322x
x
x x
y --=+B .cos222x
x
x x
y -=+5.(2023春·河北沧州·高二统考期中)函数. .
. .
2023·内蒙古赤峰·统考二模)函数2
1
sin x x -
在()π,0-
A.B.
C.D.
五、二次函数
六、指对幂函数
七、函数与方程
八、新定义题A.2
=-B.
4
y x x。

专题02 函数的概念与基本初等函数I (解析版)

专题02 函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=,10.200.50.50.5c <=<,即112c <<, 所以a c b <<. 故选A.【名师点睛】本题考查比较大小问题,关键是选择中间量和利用函数的单调性进行比较. 3.【2019年高考全国Ⅱ卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ;由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确. 故选C .【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.5.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .2sin cos ++x xx xC .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.6.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .【名师点睛】本题通过判断函数的奇偶性,排除错误选项,通过计算特殊函数值,作出选择.本题注重基础知识、基本计算能力的考查.7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )ay x =+(a >0,且a ≠1)的图象可能是【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1xy a =的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD【答案】D 【解析】由rRα=,得r R α=, 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得α=所以.r R α== 故选D.【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形易出错.9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.10.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-, 如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.【名师点睛】本题考查了函数与方程,二次函数.解题的关键是能够得到(2,3]x ∈时函数的解析式,并求出函数值为89-时对应的自变量的值.11.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b 1−a,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解. 12.【2019年高考江苏】函数y =的定义域是 ▲ .【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.13.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =, 所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.14.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.15.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤,即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤, 可得()2222364233a t t -≤++-≤, 即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解. 16.【2019年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________. 【答案】①130;②15【解析】①10x =时,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,当120y <元时,李明得到的金额为80%y ⨯,符合要求; 当120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立, 即()87,8y y x y x -≥≤, 因为min158y ⎛⎫= ⎪⎝⎭,所以x 的最大值为15.综上,①130;②15.【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.17.【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .【答案】1,34⎡⎪⎢⎪⎣⎭【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数()f x =的图象与1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则()(0,2]f x x =∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为11=,解得0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴134k ≤<, 综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k的取值范围为13⎡⎢⎣⎭. 【名师点睛】本题考查分段函数,函数的图象,函数的性质,函数与方程,点到直线的距离,直线的斜率等,考查知识点较多,难度较大.正确作出函数()f x ,()g x 的图象,数形结合求解是解题的关键因素.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数()23xf x x =+的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)【答案】B【解析】易知函数()23xf x x =+在定义域上单调递增且连续, 且2(2)260f --=-<,1(1)230f --=-<,f (0)=1>0,所以由零点存在性定理得,零点所在的区间是(-1,0). 故选B.【名师点睛】本题考查函数的单调性和零点存在性定理,属于基础题.19.【云南省玉溪市第一中学2019届高三第二次调研考试数学】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x = C .||2x y =D .cos y x =【答案】B 【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B.【名师点睛】本题考查函数的奇偶性和单调性,属于基础题. 20.【山东省德州市2019届高三第二次练习数学】设函数()()2log 1,04,0xx x f x x ⎧-<=⎨≥⎩,则()3f -+()2log 3f =A .9B .11C .13D .15【答案】B【解析】∵函数()()2log 1,04,0xx x f x x ⎧-<=⎨≥⎩,∴()2l 23og 2(3)log 3log 44f f -+=+=2+9=11.故选B .【名师点睛】本题考查分段函数、函数值的求法,考查对数函数的运算性质,是基础题.21.【山东省济宁市2019届高三二模数学】已知f(x)是定义在R 上的周期为4的奇函数,当x ∈(0,2)时,f(x)=x 2+lnx ,则f(2019)= A .−1 B .0 C .1D .2【答案】A【解析】由题意可得:f(2019)=f(505×4−1)=f(−1)=−f(1)=−(12+ln1)=−1. 故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.22.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学】函数22()log (34)f x x x =--的单调减区间为 A .(,1)-∞- B .3(,)2-∞- C .3(,)2+∞D .(4,)+∞【答案】A【解析】函数()()22log 34f x x x =--,则2340(4)(1)04x x x x x -->⇒-+>⇒>或1x <-, 故函数()f x 的定义域为4x >或1x <-,由2log y x =是单调递增函数,可知函数()f x 的单调减区间即234y x x =--的单调减区间, 当3(,)2x ∈-∞时,函数234y x x =--单调递减,结合()f x 的定义域,可得函数()()22log 34f x x x =--的单调减区间为(),1-∞-.故选A.【名师点睛】本题考查了复合函数的单调性,要注意的是必须在定义域的前提下,去找单调区间. 23.【山东省烟台市2019届高三3月诊断性测试(一模)数学】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =, 且0x <时,2()log ()f x x m =-+, ∴211log 2144f m m ⎛⎫-=+=-+=- ⎪⎝⎭, ∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.24.【北京市房山区2019届高三第一次模拟测试数学】关于函数f(x)=x −sinx ,下列说法错误的是A .f (x )是奇函数B .f (x )在(−∞,+∞)上单调递增C .x =0是f (x )的唯一零点D .f (x )是周期函数【答案】D【解析】f (−x )=−x −sin (−x )=−x +sinx =−f (x ),则f (x )为奇函数,故A 正确; 由于f ′(x )=1−cosx ≥0,故f (x )在(−∞,+∞)上单调递增,故B 正确;根据f (x )在(−∞,+∞)上单调递增,f (0)=0,可得x =0是f (x )的唯一零点,故C 正确; 根据f (x )在(−∞,+∞)上单调递增,可知它一定不是周期函数,故D 错误. 故选D.【名师点睛】本题考查函数性质的综合应用,关键是能够利用定义判断奇偶性、利用导数判断单调性、利用单调性判断零点.25.【河南省郑州市2019届高三第三次质量检测数学】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数()441x x f x =-的图象大致是A .B .C .D .【答案】D【解析】因为函数()441x x f x =-,44()()()4141xx x x f x f x ----==≠--, 所以函数()f x 不是偶函数,图象不关于y 轴对称,故排除A 、B 选项; 又因为9256(3),(4),7255f f ==所以(3)(4)f f >, 而选项C 在0x >时是递增的,故排除C. 故选D.【名师点睛】本题考查了函数的图象和性质,利用函数的奇偶性和取特值判断函数的图象是解题的关键,属于基础题.26.【四川省百校2019届高三模拟冲刺卷】若函数()y f x =的大致图象如图所示,则()f x 的解析式可以是A .()e ex xxf x -=+ B .()e ex xxf x -=- C .()e e x xf x x-+=D .()e e x xf x x--=【答案】C【解析】当x →0时,f (x )→±∞,而A 中的f (x )→0,排除A ; 当x <0时,f (x )<0,而选项B 中x <0时,()e ex xxf x -=->0, 选项D 中,()e e x xf x x--=>0,排除B ,D , 故选C .【名师点睛】本题考查了函数的单调性、函数值的符号,考查数形结合思想,利用函数值的取值范围可快速解决这类问题.27.【天津市北辰区2019届高考模拟考试数学】已知函数f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,则三个数a =f (−log 313),b =f (log 1218),c =f (20.6)的大小关系为A .a >b >cB .a >c >bC .b >a >cD .c >a >b【答案】C【解析】∵2=log 39<log 313<log 327=3,log 1218=log 28=3,0<20.6<21=2,∴0<20.6<log 313<log 1218,∵f (x )为偶函数,∴a =f (−log 313)=f (log 313), 又f (x )在[0,+∞)上单调递增,∴f (log 1218)>f (log 313)>f (20.6),即b >a >c .故选C.【名师点睛】本题考查利用函数的单调性比较大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系.28.【宁夏银川一中2018届高三第二次模拟考试数学】已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是 A .[1,+∞) B .[−1,4) C .[−1,+∞)D .[−1,6]【答案】C【解析】不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥y x−2(y x )2对于x ∈[1,2],y ∈[2,3]恒成立,令t =yx ,则1≤t ≤3,∴a ≥t −2t 2在[1,3]上恒成立,∵y =−2t 2+t =−2(t −14)2+18,∴t =1时,y max =−1,∴a ≥−1,故a 的取值范围是[−1,+∞). 故选C .【名师点晴】本题主要考查二次函数的性质以及不等式恒成立问题,不等式恒成立问题的常见解法:①分离参数,a ≥f (x )恒成立,即a ≥f (x )max ,或a ≤f (x )恒成立,即a ≤f (x )min ; ②数形结合,f (x )>g (x ),则y =f (x )的图象在y =g (x )图象的上方; ③讨论最值,f (x )min ≥0或f (x )max ≤0恒成立.29.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知函数2,(),x x af x x x a⎧≥=⎨-<⎩,若函数()f x 存在零点,则实数a 的取值范围是 A .(),0-∞ B .(),1-∞ C .()1,+∞D .()0,+∞【答案】D【解析】函数2,(),x x af x x x a ⎧≥=⎨-<⎩的图象如图:若函数()f x 存在零点,则实数a 的取值范围是(0,+∞). 故选D .【名师点睛】本题考查分段函数,函数的零点,考查数形结合思想以及计算能力.30.【山东省烟台市2019届高三5月适应性练习(二)数学】已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为A .1,82⎛⎫⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫+∞ ⎪⎝⎭D .(,1)(8,)-∞+∞【答案】A【解析】因为对121x x ∀<≤,满足()()01212<--x x x f x f ,所以()y f x =当1≤x 时,是单调递减函数,又因为)1(+x f 为偶函数,所以()y f x =关于直线1x =对称,所以函数()y f x =当1>x 时,是单调递增函数,又因为(3)1f =,所以有1)1(=-f , 当2log 1x ≤,即当02x <≤时,()()222log 1log (11lo 1g ,22)12f x f x x x f x <⇒<-⇒>-⇒>∴<≤;当2log 1x >,即当2x >时,()()222log 1log (3)log 38,28x x f x f x x f <<⇒⇒<∴<⇒<<,综上所述:不等式()2log 1f x <的解集为1,82⎛⎫ ⎪⎝⎭. 故选A .【名师点睛】本题考查了抽象函数的单调性、对称性、分类讨论思想. 对于()y f x =来说,设定义域为I ,D I ⊆,1212,,x x D x x ∀∈≠, 若21212121()()(()())()0(0)f x f x f x f x x x x x --⋅->>-,则()y f x =是D 上的增函数;若21212121()()(()())()0(0)f x f x f x f x x x x x --⋅-<<-,则()y f x =是D 上的减函数.31.【重庆西南大学附属中学校2019届高三第十次月考数学】已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是 A .2()(2)3-∞+∞,, B .2(2)3, C .22()33-, D .22()()33-∞-+∞,, 【答案】D【解析】因为(2)f x +是偶函数,所以()f x 的图象关于直线2x =对称, 因此,由(0)0f =得(4)0f =,又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增,所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->, 解得23x <-; 当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<,解得23x >, 因此,(23)0f x ->的解集是22()()33-∞-+∞,,. 故选D.【名师点睛】本题考查函数的奇偶性和单调性,不等式的求解,先根据函数的奇偶性得到函数在定义域上的单调性,从而分类讨论求解不等式.32.【山东省德州市2019届高三第二次练习数学】已知定义在R 上的函数()f x 在区间)[0+∞,上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()()2log 2f a f <,则a 的取值范围是 A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞⎪⎝⎭C .1,44⎛⎫⎪⎝⎭D .()4,+∞【答案】C【解析】根据题意,()1y f x =-的图象关于直线1x =对称,则函数()f x 的图象关于y 轴对称,即函数()f x 为偶函数,又由函数()f x 在区间)[0+∞,上单调递增, 可得()()2log 2||f a f <,则2log |2|a <, 即22log 2a -<<,解得144a <<, 即a 的取值范围为1,44⎛⎫ ⎪⎝⎭. 故选C .【名师点睛】本题考查函数的单调性与奇偶性的应用,考查对数不等式的解法.33.【陕西省西安市2019届高三第三次质量检测数学】若定义在R 上的函数f (x )满足f(x +2)=f(x)且x ∈[−1,1]时,f (x )=|x |,则方程f (x )=log 3|x |的根的个数是 A .4 B .5 C .6D .7【答案】A【解析】因为函数f (x )满足f (x +2)=f (x ),所以函数f (x )是周期为2的周期函数. 又x ∈[−1,1]时,f (x )=|x|,所以函数f (x )的图象如图所示.再作出y =log 3|x |的图象,如图, 易得两函数的图象有4个交点, 所以方程f(x)=log 3|x|有4个根. 故选A .【名师点睛】本题考查函数与方程,函数的零点、方程的根、函数图象与x 轴交点的横坐标之间是可以等价转化的.34.【广东省汕头市2019届高三第二次模拟考试(B 卷)数学】已知函数()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩,()22g x x x =--,设b 为实数,若存在实数a ,使得()()2g b f a +=成立,则b 的取值范围为A .[]1,2-B .37,22⎡⎫-⎪⎢⎣⎭ C .37,22⎡⎤-⎢⎥⎣⎦D .3,42⎛⎤-⎥⎝⎦【答案】A【解析】因为()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩, 所以当0x ≥时,()12x f x +=单调递增,故()122x f x +=≥;当0x <时,()()21112x f x x x x x x ⎡⎤+⎛⎫⎛⎫=-=-+=-+-≥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当且仅当1x x-=-,即1x =-时,取等号, 综上可得,f(x)∈[2,+∞).又因为存在实数a ,使得g(b)+f(a)=2成立,所以只需g(b)≤2−f(a)min ,即g(b)=b 2−b −2≤0, 解得−1≤b ≤2. 故选A.【名师点睛】本题主要考查分段函数的值域,将存在实数a ,使得g(b)+f(a)=2成立,转化为g(b)≤2−f(a)min 是解题的关键,属于常考题型.35.【云南省玉溪市第一中学2019届高三第二次调研考试数学】若()f x =,则()f x 的定义域为____________. 【答案】1(,0)2-【解析】要使函数有意义,需12210log (21)0x x +>⎧⎪⎨+>⎪⎩,解得102x -<<.则()f x 的定义域为1(,0)2-. 【名师点睛】本题考查函数的定义域,属于基础题.36.【山东省滨州市2019届高三第二次模拟(5月)考试数学】若函数f(x)=x 2−(a −2)x +1(x ∈R)为偶函数,则log a 27+log 1a87=__________.【答案】-2【解析】函数f(x)为偶函数,则f(x)=f(−x), 即:x 2−(a −2)x +1=x 2+(a −2)x +1恒成立, ∴a −2=0,a =2.则log a 27+log 1a87= log 227+log 278=log 2(27×78)=log 214=−2.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.37.【湖南省长沙市第一中学2019届高三下学期高考模拟卷(一)数学】若函数()f x 称为“准奇函数”,则必存在常数a ,b ,使得对定义域的任意x 值,均有()(2)2f x f a x b +-=,已知1)(-=x xx f 为准奇函数”,则a +b =_________. 【答案】2【解析】由()(2)2f x f a x b +-=知“准奇函数”()f x 关于点),(b a 对称. 因为1)(-=x x x f =111x +-关于(1,1)对称,所以1a =,1b =,则2a b +=. 故答案为2.【名师点睛】本题考查新定义的理解和应用,考查了函数图象的对称性,属于基础题. 38.【广东省深圳市深圳外国语学校2019届高三第二学期第一次热身考试数学】函数()211log 1axf x x x+=+-为奇函数,则实数a =__________. 【答案】1 【解析】函数()211log 1axf x x x+=+-为奇函数,()()f x f x ∴-=-, 即()()0f x f x -+=, 则221111log log 011ax ax x x x x -+-+++=+-,即211log 011ax ax x x +-⎛⎫⋅= ⎪-+⎝⎭,2221111111ax ax a x x x x +--∴⋅==-+-,则22211a x x -=-, 21a ∴=,则1a =±.当1a =-时,()211log 1xf x x x-=+-, 则()f x 的定义域为:{0x x ≠且}1x ≠,此时定义域不关于原点对称,为非奇非偶函数,不满足题意; 当1a =时,()211log 1x f x x x+=+-,满足题意, 1a .【名师点睛】本题主要考查利用函数的奇偶性求解函数解析式,根据条件建立方程关系是解决本题的关键,易错点是忽略定义域关于原点对称的前提,造成求解错误.39.【东北三省三校(辽宁省实验中学、东北师大附中、哈师大附中)2019届高三第三次模拟考试数学】若函数f (x )={2x +1mx +m −1 ,x ≥0,x <0在(−∞,+∞)上单调递增,则m 的取值范围是__________.【答案】(0,3]【解析】∵函数f (x )={2x +1mx +m −1 ,x ≥0,x <0在(−∞,+∞)上单调递增,∴函数y =mx +m −1在区间(−∞,0)上为增函数, ∴{m >0m −1≤20+1=2 ,解得0<m ≤3, ∴实数m 的取值范围是(0,3]. 故答案为(0,3].【名师点睛】解答此类问题时要注意两点:一是根据函数f (x )在(−∞,+∞)上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题.40.【河南省濮阳市2019届高三5月模拟考试数学】已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31i i i x y =+=∑__________.【答案】3【解析】由题意,函数3y x x =-是奇函数,则函数3y x x =-的图象关于原点对称,所以函数31y x x =-+的函数图象关于点(0,1)对称,因为直线l 与曲线31y x x =-+有三个不同的交点()()()112233,,,,,A x y B x y C x y ,且||||AB AC =,所以点A 为函数的对称点,即(0,1)A ,且,B C 两点关于点(0,1)A 对称, 所以1231230,3x x x y y y ++=++=,于是()313iii x y =+=∑.【名师点睛】本题主要考查了函数对称性的判定及应用,其中解答中根据函数的基本性质,得到函数图象的对称中心,进而得到点A 为函数的对称点,且,B C 两点关于点(0,1)对称是解答的关键,着重考查了推理与运算能力,属于中档试题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高考数学压轴必刷题(第一辑)专题02函数概念与基本初等函数B 辑1.【2019年江苏14】设f (x ),g (x )是定义在R 上的两个周期函数,f (x )的周期为4,g (x )的周期为2,且f (x )是奇函数.当x ∈(0,2]时,f (x )=2,g (x )={k(x +2),0<x ≤1,−12,1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程f (x )=g (x )有8个不同的实数根,则k 的取值范围是 . 【答案】解:作出函数f (x )与g (x )的图象如图,由图可知,函数f (x )与g (x )=−12(1<x ≤2,3<x ≤4,5<x ≤6,7<x ≤8)仅有2个实数根; 要使关于x 的方程f (x )=g (x )有8个不同的实数根,则f (x )=√1−(x −1)2,x ∈(0,2]与g (x )=k (x +2),x ∈(0,1]的图象有2个不同交点, 由(1,0)到直线kx ﹣y +2k =0的距离为1,得√k 2=1,解得k =√24(k >0),∵两点(﹣2,0),(1,1)连线的斜率k =13, ∴13≤k <√24.即k 的取值范围为[13,√24). 故答案为:[13,√24). 2.【2018年新课标3文科16】已知函数f (x )=ln (√1+x 2−x )+1,f (a )=4,则f (﹣a )= . 【答案】解:函数g (x )=ln (2−x )满足g (﹣x )=ln (√1+x 2+x )=√1+x −x=−ln (√1+x 2−x )=﹣g (x ),所以g (x )是奇函数.函数f (x )=ln (√1+x 2−x )+1,f (a )=4,可得f (a )=4=ln (√1+a 2−a )+1,可得ln (√1+a 2−a )=3, 则f (﹣a )=﹣ln (√1+a 2−a )+1=﹣3+1=﹣2. 故答案为:﹣2.3.【2018年浙江15】已知λ∈R ,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 . 【答案】解:当λ=2时函数f (x )={x −4,x ≥2x 2−4x +3,x <2,显然x ≥2时,不等式x ﹣4<0的解集:{x |2≤x<4};x <2时,不等式f (x )<0化为:x 2﹣4x +3<0,解得1<x <2,综上,不等式的解集为:{x |1<x <4}.函数f (x )恰有2个零点,函数f (x )={x −4,x ≥λx 2−4x +3,x <λ的草图如图:函数f (x )恰有2个零点,则1<λ≤3或λ>4. 故答案为:{x |1<x <4};(1,3]∪(4,+∞).4.【2018年上海11】已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P (p ,65),Q (q ,−15).若2p +q=36pq ,则a = .【答案】解:函数f (x )=2x 2x +ax 的图象经过点P (p ,65),Q (q ,−15).则:2p2p+ap +2q2q+aq=65−15=1,整理得:2p+q+2p aq+2q ap+2p+q2+2aq+2ap+a pq=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:65.【2018年天津理科14】已知a>0,函数f(x)={x2+2ax+a,x≤0−x2+2ax−2a,x>0.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是.【答案】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a=−x2x+1,设g(x)=−x2x+1,则g′(x)=−2x(x+1)−x2(x+1)2=−x2+2x(x+1)2,由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a=x2 x−2设h(x)=x2x−2,则h′(x)=2x(x−2)−x2(x−2)2=x2−4x(x−2)2,由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)6.【2018年天津文科14】已知a ∈R ,函数f (x )={x 2+2x +a −2,x ≤0−x 2+2x −2a ,x >0.若对任意x ∈[﹣3,+∞),f(x )≤|x |恒成立,则a 的取值范围是 .【答案】解:当x ≤0时,函数f (x )=x 2+2x +a ﹣2的对称轴为x =﹣1,抛物线开口向上, 要使x ≤0时,对任意x ∈[﹣3,+∞),f (x )≤|x |恒成立, 则只需要f (﹣3)≤|﹣3|=3, 即9﹣6+a ﹣2≤3,得a ≤2,当x >0时,要使f (x )≤|x |恒成立,即f (x )=﹣x 2+2x ﹣2a ,在射线y =x 的下方或在y =x 上, 由﹣x 2+2x ﹣2a ≤x ,即x 2﹣x +2a ≥0,由判别式△=1﹣8a ≤0, 得a ≥18, 综上18≤a ≤2,故答案为:[18,2].7.【2017年江苏14】设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )={x 2,x ∈Dx ,x ∉D ,其中集合D ={x |x =n−1n ,n ∈N *},则方程f (x )﹣lgx =0的解的个数是 . 【答案】解:∵在区间[0,1)上,f (x )={x 2,x ∈D x ,x ∉D,第一段函数上的点的横纵坐标均为有理数, 又f (x )是定义在R 上且周期为1的函数, ∴在区间[1,2)上,f (x )={(x −1)2,x ∈D x −1,x ∉D,此时f (x )的图象与y =lgx 有且只有一个交点; 同理:区间[2,3)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[3,4)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[4,5)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[5,6)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[6,7)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[7,8)上,f (x )的图象与y =lgx 有且只有一个交点; 区间[8,9)上,f (x )的图象与y =lgx 有且只有一个交点; 在区间[9,+∞)上,f (x )的图象与y =lgx 无交点;故f (x )的图象与y =lgx 有8个交点,且除了(1,0),其他交点横坐标均为无理数; 即方程f (x )﹣lgx =0的解的个数是8, 故答案为:88.【2017年新课标3理科15】设函数f(x)={x+1,x≤02x,x>0,则满足f(x)+f(x−12)>1的x的取值范围是.【答案】解:若x≤0,则x−12≤−12,则f(x)+f(x−12)>1等价为x+1+x−12+1>1,即2x>−12,则x>−14,此时−14<x≤0,当x>0时,f(x)=2x>1,x−12>−12,当x−12>0即x>12时,满足f(x)+f(x−12)>1恒成立,当0≥x−12>−12,即12≥x>0时,f(x−12)=x−12+1=x+12>12,此时f(x)+f(x−12)>1恒成立,综上x>−1 4,故答案为:(−14,+∞).9.【2017年新课标3文科16】设函数f(x)={x+1,x≤02x,x>0,则满足f(x)+f(x−12)>1的x的取值范围是.【答案】解:若x≤0,则x−12≤−12,则f(x)+f(x−12)>1等价为x+1+x−12+1>1,即2x>−12,则x>−14,此时−14<x≤0,当x>0时,f(x)=2x>1,x−12>−12,当x−12>0即x>12时,满足f(x)+f(x−12)>1恒成立,当0≥x−12>−12,即12≥x>0时,f(x−12)=x−12+1=x+12>12,此时f(x)+f(x−12)>1恒成立,综上x>−1 4,故答案为:(−14,+∞).10.【2017年浙江17】已知a ∈R ,函数f (x )=|x +4x−a |+a 在区间[1,4]上的最大值是5,则a 的取值范围是 .【答案】解:由题可知|x +4x−a |+a ≤5,即|x +4x−a |≤5﹣a ,所以a ≤5, 又因为|x +4x −a |≤5﹣a , 所以a ﹣5≤x +4x −a ≤5﹣a , 所以2a ﹣5≤x +4x ≤5, 又因为1≤x ≤4,4≤x +4x≤5, 所以2a ﹣5≤4,解得a ≤92, 故答案为:(﹣∞,92].11.【2016年江苏11】设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1)上,f (x )={x +a ,−1≤x <0|25−x|,0≤x <1,其中a ∈R ,若f (−52)=f (92),则f (5a )的值是 .【答案】解:f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1)上,f (x )={x +a ,−1≤x <0|25−x|,0≤x <1,∴f (−52)=f (−12)=−12+a , f (92)=f (12)=|25−12|=110,∴a =35,∴f (5a )=f (3)=f (﹣1)=﹣1+35=−25, 故答案为:−2512.【2016年浙江理科12】已知a >b >1,若log a b +log b a =52,a b =b a ,则a = ,b = . 【答案】解:设t =log b a ,由a >b >1知t >1, 代入log a b +log b a =52得t +1t =52,即2t 2﹣5t +2=0,解得t =2或t =12(舍去), 所以log b a =2,即a =b 2,因为a b =b a ,所以b 2b =b a ,则a =2b =b 2, 解得b =2,a =4, 故答案为:4;2.13.【2016年北京文科14】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有 种; ②这三天售出的商品最少有 种.【答案】解:①设第一天售出商品的种类集为A ,第二天售出商品的种类集为B ,第三天售出商品的种类集为C , 如图,则第一天售出但第二天未售出的商品有19﹣3=16种;②由①知,前两天售出的商品种类为19+13﹣3=29种,第三天售出但第二天未售出的商品有18﹣4=14种,当这14种商品第一天售出但第二天未售出的16种商品中时,即第三天没有售出前两天的商品时,这三天售出的商品种类最少为29种. 故答案为:①16;②29.14.【2016年天津文科14】已知函数f (x )={x 2+(4a −3)x +3a ,x <0log a (x +1)+1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2−x3恰有两个不相等的实数解,则a 的取值范围是 . 【答案】解:∵f (x )是R 上的单调递减函数,∴y =x 2+(4a ﹣3)x +3a 在(﹣∞.,0)上单调递减,y =log a (x +1)+1在(0,+∞)上单调递减, 且f (x )在(﹣∞,0)上的最小值大于或等于f (0).∴{3−4a2≥00<a <13a ≥1,解得13≤a ≤34. 作出y =|f (x )|和y =2−x3的函数草图如图所示: 由图象可知|f (x )|=2−x 3在[0,+∞)上有且只有一解,∵|f (x )|=2−x 3恰有两个不相等的实数解,∴x 2+(4a ﹣3)x +3a =2−x 3在(﹣∞,0)上只有1解, 即x 2+(4a −83)x +3a ﹣2=0在(﹣∞,0)上只有1解, ∴{(4a −83)2−4(3a −2)=0−4a−832<0或{(4a −83)2−4(3a −2)>03a −2<0, 解得a =5136或a <23, 又13≤a ≤34,∴13≤a <23.故答案为[13,23).15.【2015年江苏13】已知函数f (x )=|lnx |,g (x )={0,0<x ≤1|x 2−4|−2,x >1,则方程|f (x )+g (x )|=1实根的个数为 .【答案】解:由|f (x )+g (x )|=1可得g (x )=﹣f (x )±1. g (x )与h (x )=﹣f (x )+1的图象如图所示,图象有2个交点g (x )与φ(x )=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g (x )|=1实根的个数为4. 故答案为:4.16.【2015年北京理科14】设函数f (x )={2x −a ,x <14(x −a)(x −2a),x ≥1,①若a =1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 . 【答案】解:①当a =1时,f (x )={2x −1,x <14(x −1)(x −2),x ≥1,当x <1时,f (x )=2x ﹣1为增函数,f (x )>﹣1,当x >1时,f (x )=4(x ﹣1)(x ﹣2)=4(x 2﹣3x +2)=4(x −32)2﹣1, 当1<x <32时,函数单调递减,当x >32时,函数单调递增, 故当x =32时,f (x )min =f (32)=﹣1,②设h (x )=2x ﹣a ,g (x )=4(x ﹣a )(x ﹣2a ) 若在x <1时,h (x )=与x 轴有一个交点,所以a >0,并且当x =1时,h (1)=2﹣a >0,所以0<a <2, 而函数g (x )=4(x ﹣a )(x ﹣2a )有一个交点,所以2a ≥1,且a <1, 所以12≤a <1,若函数h (x )=2x ﹣a 在x <1时,与x 轴没有交点, 则函数g (x )=4(x ﹣a )(x ﹣2a )有两个交点,当a ≤0时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),当h (1)=2﹣a ≤0时,即a ≥2时,g (x )的两个交点满足x 1=a ,x 2=2a ,都是满足题意的,综上所述a 的取值范围是12≤a <1,或a ≥2. 17.【2014年江苏13】已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2﹣2x +12|,若函数y =f (x )﹣a 在区间[﹣3,4]上有10个零点(互不相同),则实数a 的取值范围是 .【答案】解:f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2﹣2x +12|,若函数y =f (x )﹣a 在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f (x )与y =a 的图象如图:由图象可知a ∈(0,12).故答案为:(0,12).18.【2014年北京文科14】顾客请一位工艺师把A ,B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序时间原料粗加工 精加工原料A9 15 原料B 6 21 则最短交货期为 个工作日.【答案】解:由题意,徒弟利用6天完成原料B 的加工,由师傅利用21天完成精加工,与此同时,徒弟利用9天完成原料A 的加工,最后由师傅利用15天完成精加工,故最短交货期为6+21+15=42 个工作日. 故答案为:42.19.【2014年天津理科14】已知函数f (x )=|x 2+3x |,x ∈R ,若方程f (x )﹣a |x ﹣1|=0恰有4个互异的实数根,则实数a的取值范围为.【答案】解:由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=g(x)=a|x﹣1|的图象,当a≤0,两个函数的图象不可能有4个交点,不满足条件,则a>0,此时g(x)=a|x﹣1|={a(x−1)x≥1−a(x−1)x<1,当﹣3<x<0时,f(x)=﹣x2﹣3x,g(x)=﹣a(x﹣1),当直线和抛物线相切时,有三个零点,此时﹣x2﹣3x=﹣a(x﹣1),即x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a=0,即a2﹣10a+9=0,解得a=1或a=9,当a=9时,g(x)=﹣9(x﹣1),g(0)=9,此时不成立,∴此时a=1,要使两个函数有四个零点,则此时0<a<1,若a>1,此时g(x)=﹣a(x﹣1)与f(x),有两个交点,此时只需要当x>1时,f(x)=g(x)有两个不同的零点即可,即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,综上a的取值范围是(0,1)∪(9,+∞),方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,若x=1,则4=0不成立,故x≠1,则方程等价为a=f(x)|x−1|=|x2+3x||x−1|=|(x−1)2+5(x−1)+4x−1|=|x﹣1+4x−1+5|,设g(x)=x﹣1+4x−1+5,当x>1时,g(x)=x﹣1+4x−1+5≥2√(x−1)4x−1+5=4+5=9,当且仅当x﹣1=4x−1,即x=3时取等号,当x<1时,g(x)=x﹣1+4x−1+5≤5−2√[−(x−1)]⋅−4x−1=5﹣4=1,当且仅当﹣(x﹣1)=−4x−1,即x=﹣1时取等号,则|g(x)|的图象如图:若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则满足a >9或0<a <1,故答案为:(0,1)∪(9,+∞)20.【2014年天津文科14】已知函数f (x )={|x 2+5x +4|,x ≤02|x −2|,x >0,若函数y =f (x )﹣a |x |恰有4个零点,则实数a 的取值范围为 .【答案】解:由y=f(x)﹣a|x|=0得f(x)=a|x|,作出函数y=f(x),y=a|x|的图象,当a≤0,不满足条件,∴a>0,当a≥2时,此时y=a|x|与f(x)有三个交点,当a=1时,当x<0时,f(x)=﹣x2﹣5x﹣4,由f(x)=﹣x2﹣5x﹣4=﹣x得x2+4x+4=0,则判别式△=16﹣4×4=0,即此时直线y=﹣x与f(x)相切,此时y=a|x|与f(x)有五个交点,∴要使函数y=f(x)﹣a|x|恰有4个零点,则1<a<2,故答案为:(1,2)21.【2013年上海理科12】设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=9x+a2x+7.若f(x)≥a+1对一切x≥0成立,则a的取值范围为.【答案】解:因为y=f(x)是定义在R上的奇函数,所以当x=0时,f(x)=0;当x>0时,则﹣x<0,所以f(﹣x)=﹣9x−a2x+7因为y =f (x )是定义在R 上的奇函数,所以f (x )=9x +a 2x−7; 因为f (x )≥a +1对一切x ≥0成立,所以当x =0时,0≥a +1成立,所以a ≤﹣1;当x >0时,9x +a 2x−7≥a +1成立, 只需要9x +a 2x −7的最小值≥a +1,因为9x +a 2x −7≥2√9x ⋅a 2x −7=6|a |﹣7, 所以6|a |﹣7≥a +1,解得a ≥85或a ≤−87,所以a ≤−87.故答案为:a ≤−87.22.【2013年上海理科14】对区间I 上有定义的函数g (x ),记g (I )={y |y =g (x ),x ∈I }.已知定义域为[0,3]的函数y =f (x )有反函数y =f ﹣1(x ),且f ﹣1([0,1))=[1,2),f ﹣1((2,4])=[0,1).若方程f (x )﹣x =0有解x 0,则x 0= .【答案】解:因为g (I )={y |y =g (x ),x ∈I },f ﹣1([0,1))=[1,2),f ﹣1(2,4])=[0,1), 所以对于函数f (x ),当x ∈[0,1)时,f (x )∈(2,4],所以方程f (x )﹣x =0即f (x )=x 无解;当x ∈[1,2)时,f (x )∈[0,1),所以方程f (x )﹣x =0即f (x )=x 无解;所以当x ∈[0,2)时方程f (x )﹣x =0即f (x )=x 无解,又因为方程f (x )﹣x =0有解x 0,且定义域为[0,3],故当x ∈[2,3]时,f (x )的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞),故若f (x 0)=x 0,只有x 0=2,故答案为:2.23.【2012年江苏10】设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )={ax +1,−1≤x <0bx+2x+1,0≤x ≤1其中a ,b ∈R .若f(12)=f(32),则a +3b 的值为 .【答案】解:∵f (x )是定义在R 上且周期为2的函数,f (x )={ax +1,−1≤x <0bx+2x+1,0≤x ≤1,∴f (32)=f (−12)=1−12a ,f (12)=b+43;又f(12)=f(32), ∴1−12a =b+43① 又f (﹣1)=f (1),∴2a +b =0,②由①②解得a =2,b =﹣4;∴a +3b =﹣10.故答案为:﹣10.24.【2012年江苏13】已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为 .【答案】解:∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即△=a 2﹣4b =0,则4b =a 2不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax +b <c 解集为(m ,m +6),则x 2+ax +b ﹣c =0的两个根x 1,x 2分别为m ,m +6∴两根之差为|x 1﹣x 2|=|m +6﹣m |=6根据韦达定理可知:x 1+x 2=−a 1=−ax 1x 2=b−c 1=b ﹣c ∵|x 1﹣x 2|=6∴√(x 1+x 2)2−4x 1x 2=6∴√(−a)2−4(b −c)=6∴√4b −4b +4c =6解得c =9故答案为:925.【2012年新课标1文科16】设函数f (x )=(x+1)2+sinx x 2+1的最大值为M ,最小值为m ,则M +m = .【答案】解:函数可化为f (x )=(x+1)2+sinx x 2+1=1+2x+sinx x 2+1, 令g(x)=2x+sinx x 2+1,则g(x)=2x+sinx x 2+1为奇函数, ∴g(x)=2x+sinx x 2+1的最大值与最小值的和为0. ∴函数f (x )=(x+1)2+sinx x 2+1的最大值与最小值的和为1+1+0=2. 即M +m =2.故答案为:2.26.【2012年北京理科14】已知f (x )=m (x ﹣2m )(x +m +3),g (x )=2x ﹣2,若同时满足条件: ①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(﹣∞,﹣4),f (x )g (x )<0.则m 的取值范围是 .【答案】解:对于①∵g (x )=2x ﹣2,当x <1时,g (x )<0,又∵①∀x ∈R ,f (x )<0或g (x )<0∴f (x )=m (x ﹣2m )(x +m +3)<0在x ≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左面则{m <0−m −3<12m <1∴﹣4<m <0即①成立的范围为﹣4<m <0又∵②x ∈(﹣∞,﹣4),f (x )g (x )<0∴此时g (x )=2x ﹣2<0恒成立∴f (x )=m (x ﹣2m )(x +m +3)>0在x ∈(﹣∞,﹣4)有成立的可能,则只要﹣4比x 1,x 2中的较小的根大即可,(i )当﹣1<m <0时,较小的根为﹣m ﹣3,﹣m ﹣3<﹣4不成立,(ii )当m =﹣1时,两个根同为﹣2>﹣4,不成立,(iii )当﹣4<m <﹣1时,较小的根为2m ,2m <﹣4即m <﹣2成立.综上可得①②成立时﹣4<m <﹣2.故答案为:(﹣4,﹣2).27.【2012年北京文科14】已知f (x )=m (x ﹣2m )(x +m +3),g (x )=2x ﹣2.若∀x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是 .【答案】解:∵g (x )=2x ﹣2,当x ≥1时,g (x )≥0,又∵∀x ∈R ,f (x )<0或g (x )<0∴此时f (x )=m (x ﹣2m )(x +m +3)<0在x ≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左面则{m <0−m −3<12m <1∴﹣4<m <0故答案为:(﹣4,0)28.【2012年天津理科14】已知函数y =|x 2−1|x−1的图象与函数y =kx ﹣2的图象恰有两个交点,则实数k 的取值范围是 .【答案】解:y =|x 2−1|x−1={x +1,x ≤−1或x >1−x −1,−1<x <1, 作出函数y =|x 2−1|x−1与y =kx ﹣2的图象如图所示: ∵函数y =|x 2−1|x−1的图象与函数y =kx ﹣2的图象恰有两个交点,∴0<k <1或1<k <4.故答案为:(0,1)∪(1,4).29.【2012年天津文科14】已知函数y =|x 2−1|x−1的图象与函数y =kx 的图象恰有两个交点,则实数k 的取值范围是 .【答案】解:函数y =|x 2−1|x−1=|x+1|⋅|x−1|x−1={x +1,x >1−(x +1),−1≤x <1x +1,x <−1, 如图所示:故当一次函数y =kx 的斜率k 满足0<k <1 或1<k <2时,直线y =kx 与函数y =|x 2−1|x−1的图象相交于两点,故答案为 (0,1)∪(1,2).30.【2011年江苏11】已知实数a ≠0,函数f (x )={2x +a ,x <1−x −2a ,x ≥1,若f (1﹣a )=f (1+a ),则a 的值为 .【答案】解:当a >0时,1﹣a <1,1+a >1∴2(1﹣a)+a=﹣1﹣a﹣2a解得a=−32舍去当a<0时,1﹣a>1,1+a<1∴﹣1+a﹣2a=2+2a+a解得a=−3 4故答案为−3 431.【2011年上海理科13】设g(x)是定义在R上,以1为周期的函数,若函数f(x)=x+g(x)在区间[3,4]上的值域为[﹣2,5],则f(x)在区间[﹣10,10]上的值域为.【答案】解:法一:∵g(x)为R上周期为1的函数,则g(x)=g(x+1)又∵函数f(x)=x+g(x)在[3,4]的值域是[﹣2,5]令x+6=t,当x∈[3,4]时,t=x+6∈[9,10]此时,f(t)=t+g(t)=(x+6)+g(x+6)=(x+6)+g(x)=[x+g(x)]+6所以,在t∈[9,10]时,f(t)∈[4,11] (1)同理,令x﹣13=t,在当x∈[3,4]时,t=x﹣13∈[﹣10,﹣9]此时,f(t)=t+g(t)=(x﹣13)+g(x﹣13)=(x﹣13)+g(x)=[x+g(x)]﹣13所以,当t∈[﹣10,﹣9]时,f(t)∈[﹣15,﹣8] (2)…由(1)(2)…得到,f(x)在[﹣10,10]上的值域为[﹣15,11]故答案为:[﹣15,11]法二:由题意f(x)﹣x=g(x)在R上成立故f(x+1)﹣(x+1)=g(x+1)所以f(x+1)﹣f(x)=1由此知自变量增大1,函数值也增大1故f(x)在[﹣10,10]上的值域为[﹣15,11]故答案为:[﹣15,11]32.【2011年北京文科14】设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=,N(t)的所有可能取值为.【答案】解:当t=0时,平行四边形ABCD内部的整点有(1,1);(1,2);(2,1);(2,2);(3,1);(3,2)共6个点,所以N(0)=6作出平行四边形ABCD将边OD ,BC 变动起来,结合图象得到N (t )的所有可能取值为6,7,8故答案为:6;6,7,833.【2010年江苏11】已知函数f(x)={x 2+1,x ≥01x <0,则满足不等式f (1﹣x 2)>f (2x )的x 的范围是 . 【答案】解:由题意,可得{1−x 2>2x 1−x 2>0⇒x ∈(−1,√2−1)故答案为:(−1,√2−1)34.【2010年北京文科14】(北京卷理14)如图放置的边长为1的正方形P ABC 沿x 轴滚动.设顶点P (x ,y )的轨迹方程是y =f (x ),则f (x )的最小正周期为 ;y =f (x )在其两个相邻零点间的图象与x 轴所围区域的面积为说明:“正方形P ABC 沿X 轴滚动”包括沿x 轴正方向和沿x 轴负方向滚动.沿x 轴正方向滚动指的是先以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续.类似地,正方形P ABC 可以沿x 轴负方向滚动.【答案】解:不难想象,从某一个顶点(比如A )落在x 轴上的时候开始计算,到下一次A 点落在x 轴上,这个过程中四个顶点依次落在了x 轴上,而每两个顶点间距离为正方形的边长1,因此该函数的周期为4.下面考察P 点的运动轨迹,不妨考察正方形向右滚动,P 点从x 轴上开始运动的时候,首先是围绕A 点运动14个圆,该圆半径为1,然后以B 点为中心,滚动到C 点落地,其间是以BP 为半径,旋转90°,然后以C 为圆心,再旋转90°,这时候以CP 为半径,因此最终构成图象如下:故其与x 轴所围成的图形面积为S =2×14×π×12+14×π×(√2)2+2×12×1×1=π+1.故答案为:4,π+1.35.【2010年天津理科16】设函数f (x )=x 2﹣1,对任意x ∈[32,+∞),f (x m )﹣4m 2f (x )≤f (x ﹣1)+4f (m )恒成立,则实数m 的取值范围是 .【答案】解:依据题意得x 2m 2−1﹣4m 2(x 2﹣1)≤(x ﹣1)2﹣1+4(m 2﹣1)在x ∈[32,+∞)上恒定成立, 即1m 2−4m 2≤−3x 2−2x +1在x ∈[32,+∞)上恒成立. 当x =32时,函数y =−3x 2−2x +1取得最小值−53, ∴1m 2−4m 2≤−53,即(3m 2+1)(4m 2﹣3)≥0,解得m ≤−√32或m ≥√32,故答案为:(−∞,−√32]∪[√32,+∞).36.【2010年天津文科16】设函数f (x )=x −1x ,对任意x ∈[1,+∞),f (mx )+mf (x )<0恒成立,则实数m 的取值范围是 .【答案】解:已知f (x )为增函数且m ≠0,当m >0,由复合函数的单调性可知f (mx )和mf (x )均为增函数,此时不符合题意.当m <0时,有mx −1mx +mx −m x <0⇒2mx −(m +1m )⋅1x <0⇒1+1m 2<2x 2 因为y =2x 2在x ∈[1,+∞)上的最小值为2,所以1+1m 2<2, 即m 2>1,解得m <﹣1或m >1(舍去).故答案为:m <﹣1.37.【2020年上海卷19】在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为v =q x,x 为道路密度,q 为车辆密度.v =f (x )={100−135⋅(13)x ,0<x <40−k(x −40)+85,40≤x ≤80. (1)若交通流量v >95,求道路密度x 的取值范围;(2)已知道路密度x =80,交通流量v =50,求车辆密度q 的最大值.【答案】解:(1)∵v =q x ,∴v 越大,x 越小,∴v =f (x )是单调递减函数,k >0,当40≤x ≤80时,v 最大为85,于是只需令100−135⋅(13)x >95,解得x >3,故道路密度x 的取值范围为(3,40).(2)把x =80,v =50代入v =f (x )=﹣k (x ﹣40)+85中,得50=﹣k •40+85,解得k =78.∴q =vx ={100x −135⋅(13)x ⋅x ,0<x <40−78(x −40)x +85x ,40≤x ≤80, 当0<x <40时,q 单调递增,q <100×40﹣135×(13)40×40≈4000;当40≤x ≤80时,q 是关于x 的二次函数,开口向下,对称轴为x =4807, 此时q 有最大值,为−78×(4807)2+120×4807=288007>4000. 故车辆密度q 的最大值为288007.。

相关文档
最新文档