三线合一练习题
(完整)数学北师大版八年级下册三线合一

专题训练(六)__“三线合一”好解题►类型之一证明线段相等1.已知:如图6-ZT-1所示,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.图6-ZT-1[解析] 欲证BD=DE,只需证∠DBE=∠E.根据等腰三角形的“三线合一”和等边三角形的性质可得∠DBE=1∠ABC=30°.再根据三角形的外角性质和等边三角形的性质可得∠E2=30°.由此可得结论.证明:∵△ABC为等边三角形,BD是AC边上的中线,∴BD⊥AC,BD平分∠ABC,∠ABC=30°.(等腰三角形的“三线合一”)∴∠DBE=12∵CD=CE,∴∠CDE=∠E.∵∠ACB为△CDE的外角,∠ACB=60°,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°.又∵∠DBE=30°,∴BD=DE.(等角对等边)2.如图6-ZT-2所示,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.图6-ZT-2[解析] 本题可通过全等三角形来证线段相等.在△ABD和△ACE中,已知AB=AC,BD=EC且∠B=∠C,由此可证得两三角形全等,即可得出AD=AE的结论.也可根据等腰三角形三线合一来证明.证明:过点A作AF⊥BC于点F.图ZT-6-1∵AB=AC,AF⊥BC,∴BF=CF.(等腰三角形底边上的高是底边上的中线)又∵BD=CE,∴BF-BD=CF-CE,即DF=EF,∴AF是DE的垂直平分线,∴AD=AE.►类型之二证明两线垂直3.如图6-ZT-3所示,在△ABC中,AB=AC,∠ABD=∠ACD,求证:AD⊥BC.图6-ZT-3[解析] 首先证明∠DBC=∠DCB,可得DB=DC,再加上条件AB=AC,公共边AD =AD,可利用SSS证明△ABD≌△ACD,进而得到∠BAD=∠CAD,再根据等腰三角形顶角的平分线与底边上的高线重合可证出AD⊥BC.本题通过证明AD是BC的垂直平分线也可得证,如下面的证法.证明:延长AD交BC于点M,∵AB=AC,∴∠ABC=∠ACB.又∵∠ABD=∠ACD,∴∠ABC-∠ABD=∠ACB-∠ACD,即∠DBC=∠DCB,∴DB=DC.∵AB=AC,DB=DC,∴AD是线段BC的垂直平分线,∴AD⊥BC.图ZT -6-24.如图6-ZT -4,在△ABC 中,AB =AC ,D 为AC 上一点,∠DBC =12∠BAC.求证:AC ⊥BD.图6-ZT -4[解析] 首先过点A 作AE ⊥BC 交BC 于点E ,交BD 于点F.由AB =AC ,根据等腰三角形“三线合一”的性质,可得∠CAE =12∠BAC ,又由∠DBC =12∠BAC ,在△ADF 与△BEF中,易证得∠ADF =∠BEF =90°,即可得AC ⊥BD.证明:如图ZT -6-3,过点A 作AE ⊥BC 于点E ,交BD 于点F.图ZT -6-3∵AB =AC ,AE ⊥BC ,∴∠CAE =12∠BAC.(等腰三角形的“三线合一”)又∵∠DBC =12∠BAC ,∴∠CAE =∠DBC.∵∠1=∠2,∠ADF =180°-∠2-∠CAE ,∠BEF =180°-∠1-∠DBC , ∴∠ADF =∠BEF.∵AE ⊥BC ,∴∠BEF =90°. ∴∠ADF =90°.∴BD ⊥AC.► 类型之三 证明角的倍分关系5.已知:如图6-ZT -5所示,AF 平分∠BAC ,BC ⊥AF ,垂足为E ,AE =ED ,PB 分别与线段CF ,AF 相交于点P ,M ,∠F =∠MCD.求证:∠BAC =2∠MPC.图6-ZT -5[解析] 先由AF 平分∠BAC 证明∠BAE =12∠BAC ,再根据等腰三角形“三线合一”和线段垂直平分线的性质证明∠CDE =∠BAE.从而∠CDE =12∠BAC.然后在△MDC 和△MPF中证明∠MDC =∠MPF.进而得∠MPF =∠MDC ,∠MPC =∠CDE =12∠BAC 即可.证明:∵AF 平分∠BAC ,BC ⊥AF , ∴∠BAE =∠CAE =12∠BAC ,CE =BE.∵CE ⊥AE ,AE =ED , ∴AC =CD.∴∠CDE =∠CAE =12∠BAC.∵BC ⊥AF ,CE =BE , ∴CM =BM. ∴∠CMA =∠BMA. 又∵∠BMA =∠PMF , ∴∠CMD =∠PMF.又∵∠F =∠MCD ,∠MPF =180°-(∠F +∠PMF),∠MDC =180°-(∠MCD +∠CMD),∴∠MPF =∠MDC.∴∠MPC =∠CDE =∠CAE =12∠BAC.∴∠BAC =2∠MPC.► 类型之四 证明线段的倍分关系6.如图6-ZT -6,在△ABC 中,AB =AC ,点E 为BC 上一点,ED ⊥BC 于点E ,交CA的延长线于点F,求证:AD=AF.图6-ZT-6[解析] 方法一:由AB=AC,根据等边对等角的性质,可得∠B=∠C.又由DE⊥BC,根据等角的余角相等和对顶角相等,可得∠F=∠ADF,又由等角对等边,可证得AD=AF.图ZT-6-4方法二:过点A作AG⊥BC,由等腰三角形的“三线合一”可得∠BAG=∠CAG.再由平行线的性质证明∠F=∠CAG,∠ADF=∠BAG.进而可得结论.证明:(方法一)∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠C+∠F=90°,∠B+∠BDE=90°.∴∠F=∠BDE.∵∠ADF=∠BDE,∴∠F=∠ADF.∴AD=AF.(方法二)如图ZT-6-4,过点A作AG⊥BC于点G,∵AB=AC,∴∠BAG=∠CAG.(等腰三角形“三线合一”)∵AG⊥BC,ED⊥BC,∴AG∥EF.∴∠F =∠CAG ,∠ADF =∠BAG . ∴∠F =∠ADF. ∴AD =AF.7.[2013·五河期末改编] 如图6-ZT -7所示,过等边三角形ABC 的边AB 上一点P , 作PE ⊥AC 于点E.Q 为BC 延长线上一点,且PA =CQ ,连接PQ 交AC 边于点D. 求证:(1)PD =DQ ; (2)DE =12AC.图6-ZT -7[解析] (1)过点P 作BC 的平行线交AC 于点F ,通过证明△PDF 和△QDC 全等,可推出PD =DQ ;(2)由△APF 是等边三角形和PE ⊥AC ,可推出AE =EF =12AF.由△PDF 和△QDC 全等,可得出FD =CD =12FC ,进而可得DE 的长.证明:(1)过点P 作PF ∥BC ,交AC 于点F.图ZT -6-5∵△ABC 是等边三角形,∴∠B =∠ACB =60°. 又∵PF ∥BC ,∴∠APF =∠AFP =∠B =∠ACB =60°. ∴△APF 是等边三角形.∴PA =AF =PF. 又∵PA =CQ ,∴PF =CQ. ∵PF ∥BC ,∴∠FPD =∠Q. 在△PFD 和△QCD 中, ∵⎩⎪⎨⎪⎧∠FPD =∠Q ,∠PDF =∠QDC ,PF =QC ,∴△PDF ≌△QDC.(AAS) ∴PD =QD.(2)由(1)知PA =AF ,又∵PE ⊥AC ,∴AE =EF =12AF.(等腰三角形的三线合一)由(1)知△PDF ≌△QDC ,∴FD =CD =12FC.∴DE =EF +FD =12AF +12FC =12(AF +FC)=12AC.。
等腰三角形性质三线合一”专题

等腰三角形性质:三线合一”专题等腰三角形有一个重要的性质:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
这就是 著名的等腰三角形“三线台一”性质。
“三线合一”性质常用来证明两线垂直、两线段相等和两角相等。
反之, 如果三角形一边上的中线、这边上的高、这边所对角的角平分线中有两条重合, 那么这个三角形就是等腰三角形。
【例题讲解】例二:如图△ ABC 中,AB = AC, / A = 36°, BD 平分/ ABQ DE 丄 AB 于 E ,若 CD= 4,且△ BDC 周长为 24,求 AE 的长度。
变式练习1-2 已知,如图所示, 求证:AD 垂直平分EF 。
AD >△ ABC ,DE DF 分另U >△ ABDA ACD 的高。
求证:AD 垂直平分BG例三•等腰三角形顶角为 ,一腰上的高与底边所夹的角是 ,则 与 的关系式为图2分析:欲证/ ACE=/ B,由于AC=AB 因此只需构造一个与 Rt △ ACE 全等的三角形,即做底边 BC 上的高即可。
证明:作ADL BC 于D, •/ AB=AC1••• BD BC2 1又••• CE BC ,2• - BD=CE在 Rt △ ABD 和 Rt △ ACE 中,AB = AC, BD=CE• Rt △ ABD^ Rt △ ACE( HL )。
• / ACE 玄 B例五•已知:如图3,等边三角形 ABC 中,D 为AC 边的中点,E 为BC 延长线一点,CE=CD DM L BC 于M,求证: M 是BE 的中点。
分析:如图1,AB=ACEAC 90° / C ,/BD 丄AC 于D,作底边BC 上的高 AE, E 为垂足,则可知/ EAC=/ EAB - 又/2 ,90° / C ,所以例四•已知:如图2, △ ABC 中,AB=AC CE!AE 于E , CE1— 。
21 BC , E 在厶 ABC 外,求证:/ ACE / B 。
20北师大八年级下册三线合一的习题(提高)

三线合一的习题(提高)第1关1.如图,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,连接EF ,EF 与AD 交于点G .求证:AD 垂直平分EF .请填空。
证明;∵AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴( ),∠AED =∠AFD =90°,在Rt △AED 和Rt △AFD 中,{( )DE =DF , ∴Rt △AED ≌Rt △AFD (HL ),∴( ),又∵AG 是∠BAC 的角平分线,∴AG ⊥EF ,( ),∴AD 垂直平分EF .①AD=AD ②AE =AF ③GE= GF ④ DE =DFA 、②①③④B 、②①④③C 、④①②③D 、④①③②1、 选C解析:根据角平分线的性质、全等三角形和等腰三角形三线合一即可证明结论. 证明:∵AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠AED =∠AFD =90°,在Rt △AED 和Rt △AFD 中,{AD =AD DE =DF, ∴Rt △AED ≌Rt △AFD (HL )∴AE=AF,又∵AG是∠BAC的角平分线,AG⊥EF,GE= GF,∴AD垂直平分EF.第2关2如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.求证:AE=BE+2CM。
证明:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴()在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴(),∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵CD=CE,CM⊥DE,∠DCE=90°,∠DCE =45°∴DM=ME,∠DCM=∠ECM =12∴()∴()∴AE=AD+DE=BE+2CM.①AD=BE②DM=ME=CM③∠ACD=∠BCE④∠CDE=∠CED=∠DCM=∠ECMA、③①④②B、③②④①C、④①③②D、④②③①2、选A解析:证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM即可证得结论.证明:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵CD=CE,CM⊥DE,∠DCE=90°,∠DCE =45°∴DM=ME,∠DCM=∠ECM=12∴∠CDE=∠CED=∠DCM=∠ECM∴DM=ME=CM.∴AE=AD+DE=BE+2CM.。
等腰三角形及三线合一经典试题-难题

等腰三角形及三线合一经典试题 难题1.等腰三角形的对称轴是( )2. 1、等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) 2.2、等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 3.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40°C .40°D .80°4.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( ) A .80° B .90° C .100° D .108°5.等腰三角形的一个内角为80,则另两个内角的度数为6.等腰三角形底边长为10,则腰长的取值范围为7.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________.8. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°,求∠AFD 的度数9.如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AECC B ADEP ECAH FGEDCABHF10. 已知如图: △ABC 和△ADE 都是等腰三角形且顶角∠BAC =∠DAE, 则BD =CE ( )11. 已知:如图:CA=CB, DA=DB 求证:(1)∠1=∠2.(2)CD ⊥AB .12.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H , ①求证:△BCE ≌△ACD ; ②求证:CF=CH ;③判断△CFH 的形状并说明理由.13.如图,中, ,试说明:.14.如图3,在∆ABC 中,∠=A 90ο,AB AC =,D 是BC 的中点,P 为BC 上任一点,作PE AB ⊥,PF AC ⊥,垂足分别为E 、F求证:(1)DE =DF ;(2)DE DF ⊥C图315.已知,如图1,AD是∆ABC的角平分线,DE、DF分别是∆ABD和∆ACD的高。
等腰三角形性质:三线合一”专题

1 / 4分析:如图1, AB 二AC, BD 丄AC 于D,作底边BC E 为垂足,则可知ZEAC=ZEAB=-a ,又Z2E4C = 90° - ZC, Zp = 90° - ZC,所以 ZEAC = p, P = *cc 。
例四.已知:如图 2, A ABC 中,AB 二 AC, CE 丄 AE 于 E, CE = - BC , E 在△/(:外,求证:ZACE 二 ZB 。
2分析:欲证ZACE=ZB,由于AC 二AB,因此只需构造一个与RtAACE 全等的三角形,即做底边BC 上的高即可。
等腰三角形性质:三线合一”专题等腰三角形有一个重要的性质:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
这就是 著爼的等腰三角形“三线台一”性质。
"三线合一”性质常用来证明两线垂直、两线段相等和两角相等。
反之, 如果三角形一边上的中线、这边上的高、这边所对角的角平分线中有两条重合,那么这个三角形就是等腰三角形。
【例题讲解】 例1・ 如图所示,在等腰AABC 中,AD 是BC 边上的中线,点E 在AD 上。
求证:BE=CEo 变式练习1-1如鮒 在Z\ABC 中,AB 二AC D 是形外一点 且BD 二CD 变式练习1-2已知,如图所示,AD 是△ABC, DE 、DF 分别 求证:AD 垂直平分EF 。
求证:AD 垂直平分BC 。
是Z\ABD 和ZXACD 的髙。
例二:如图ZkABC 中,AB=AG ZA=36° , BD 平分ZABC, 4,且ABDC 周长为24,求AE 的长度。
例三.等腰三角形顶角为ou —腰上的高与底边所夹的角 DE 丄AB 于E,若CD=系式为P二 是(3,则p 与a 的关上的高AE,/?2 / 4证明:作AD 丄BC 于D, VAB=AC, ••• BD = -BC2又-CE = -BC. •••BD=CE°在 RtAABD 和 RtZkACE 中,AB=AC> BD 二CE, /.RtAABD^RtAACE (HL)。
等腰梯形三线合一专项综合练习

等腰梯形三线合一专项综合练习等腰梯形是指具有两边长度相等的梯形,三线合一是指将等腰梯形的面积、周长和内切圆半径联系在一起进行综合练的题目。
下面介绍一些常见的练内容。
一、求等腰梯形的面积等腰梯形的面积可以通过底边长度和高来计算。
假设底边长度为$a$,高为$h$,则等腰梯形的面积$S$可以计算为:$S = \frac{(a + b)h}{2}$二、求等腰梯形的周长等腰梯形的周长可以通过各边长度来计算。
假设底边长度为$a$,上底边长度为$b$,两个斜边的长度分别为$c$,则等腰梯形的周长$C$可以计算为:$C = a + b + 2c$三、求等腰梯形的内切圆半径等腰梯形的内切圆半径可以通过底边长度和高来计算。
假设底边长度为$a$,高为$h$,则等腰梯形的内切圆半径$r$可以计算为:$r = \frac{h}{2}$四、综合练题示例以下是一个综合练题示例:已知一个等腰梯形的底边长度$a = 8$ cm,上底边长度$b =6$ cm,高$h = 5$ cm,请计算这个等腰梯形的面积、周长和内切圆半径。
解答:- 面积$S = \frac{(a + b)h}{2} = \frac{(8 + 6) \times 5}{2} =35$ 平方厘米- 周长$C = a + b + 2c = 8 + 6 + 2 \times c$- 内切圆半径$r = \frac{h}{2} = \frac{5}{2} = 2.5$ 厘米综上所述,该等腰梯形的面积为35平方厘米,周长为$a + b +2c$,内切圆半径为2.5厘米。
以上是等腰梯形三线合一专项综合练习的简要介绍和示例题目。
通过练习这些题目,可以更好地理解和应用相关的概念和计算方法。
“三线合一”证题【精】精心总结
等腰三角形巧用“三线合一”证题“三线合一”是等腰三角形的一条特殊性质,在一些几何题的证题过程中有着广泛的应用。
本文结合实例说明其应用,供参考。
一. 直接应用“三线合一”例1. 已知,如图1,AD是的角平分线,DE、DF分别是和的高。
求证:AD垂直平分EF分析:从本题的条件和图形特征看,欲证AD垂直平分EF,因为有,所以只要证为等腰三角形即可证明:又AD垂直平分EF例2. 如图2,中,AB=AC,AD为BC边上的高,AD的中点为M,CM的延长线交AB于点K,求证:分析:可考虑作DE//CK交AB于E,因为M是AD的中点,所以K是AE的中点,只要证E是BK的中点,问题可得到解决。
由于有,,所以就想到用“三线合一”。
证明:过点D作DE//CK交BK于点E二. 先连线,再用“三线合一”例3. 如图3,在中,,,D是BC的中点,P为BC上任一点,作,,垂足分别为E、F求证:(1)DE=DF;(2)分析:(1)欲证二线段相等,容易想到利用全等三角形。
观察DE为或的一边,DF为或的边,但它们都没有全等的可能。
由于D为等腰直角三角形的底边BC上的中点,于是我们想到连结AD一试,这时容易发现或问题得证。
(2)欲证,只要证,即可但由(1)已证出又,故问题解决证明:连结AD。
D是BC的中点,DA平分,四边形PEAF是矩形又又(2)又即三. 先构造等腰三角形,再用“三线合一”例4. 如图4,已知四边形ABCD中,,M、N分别为AB、CD的中点,求证:分析:由于MN与CD同在中,又N为CD的中点,于是就想到证为等腰三角形,由于MD、MC为、斜边AB上的中线,因此,所以,问题容易解决。
证明:连结DM、CM,M是AB的中点是等腰三角形又N是CD的中点,例5. 如图5,中,BC、CF分别平分和,于E,于F,求证:EF//BC分析:由BE 平分、容易想到:延长AE 交BC 于M ,可得等腰,E 为AM 的中点;同理可得等腰,F 是AN 的中点,故EF 为的中位线,命题就能得证。
初中几何等腰三角形三线合一经典题型及变式题汇总
初中几何等腰三角形三线合一经典题型及变式题汇总三线合一,是等腰三角形里最重要的性质定理之一。
所谓三线,就是等腰三角形中,顶角的角平分线,底边的中线,底边的高线。
必然三线合一。
今天主要举例说明一下等腰三角形三线合一,求解的问题。
并出几个变形题目,供大家练习,在从其他方面来解答等腰等腰三角形问题。
题:如图1,等腰△ABC中,AB=AC,P是BC上的点。
求证:PA^2=AB^2-PBPC。
证明:作高AD。
则由勾股定理,得AB^2-PA^2=BD^2+AD^2-( PD^2+AD^2)= BD^2-PD^2=(BD-PD)(BD+PD)=PB(BD+PD),因为AB=AC,AD⊥BC,所以BD=DC,所以BD+PD=DC+PD=PC,所以AB^2-PA^2=PBPC,所以PA^2=AB^2-PBPC。
变式一:如图2,D是等腰△ABC底边BC延长线上的点,AB=AC=CD=2BC,则AD:BC=______。
(答案:√10)变式二:已知等腰△ABC中,AB=AC,P是底边BC延长线上的点。
求证:PA^2=AB^2+PBPC。
(提示:作△ABC的高AD)变式三:已知等腰Rt△ABC中,AB=AC=2√2,∠BAC=90°,P 是BC上的点,Q是BC延长线上的点,且∠PAQ=90°,如果PQ=5,则PB=______.(答案:1)初中英语下册期末复习第11单元重点知识汇总Unit11 How was your school trip?【重点单词】milk v.挤奶cow n.奶牛milk a cow 给奶牛挤奶horse n.马ride a horse 骑马feed v.喂养;饲养feed chickens 喂鸡farmer n.农民;农场主quite adv.相当;安全quite a lot(of…) 许多anything pron.(常用于否定句或疑问句)任何东西;任何事物grow v.种植;生长;发育farm n.农场;务农;种田pick v.采;摘excellent adj.极好的;优秀的countryside n.乡村;农村in the countryside 在乡下;在农村yesterday n.昨天flower n.花worry v.担心;担忧luckily adv.幸运地;好运地sun n.太阳museum n.博物馆fire n.火灾fire station 消防站painting n.油画;绘画exciting adj.使人兴奋的;令人激动的lovely adj.可爱的expensive adj.昂贵的cheap adj.廉价的;便宜的slow adj.缓慢的;迟缓的fast adv&adj快地(的)robot n.机器人guide n.导游;向导gift n.礼物;赠品all in all 总的说来everything pron.一切;所有事物interested adj.感兴趣的be interested in 对……感兴趣dark adj.黑暗的;昏暗的hear(heard)v.听到;听见【重点短语】1. school trip 学校旅行2. go for a walk 去散步3. milk a cow 挤牛奶4. ride a horse 骑马5. feed chickens 喂鸡6. talk with a farmer 与农民交谈7. take some photos 照相8. ask some questions 问一些问题9. grow apples 种苹果10. show sb. around splace. 带某人逛某地11. learn a lot 学到许多12. pick some strawberries 摘草莓13. last week 上周14.In the countryside 在乡村15. visit my grandparents 拜访我的祖父母16. go fishing 去钓鱼17. sound good 听起来很好18. climb the mountains 去爬山19. play some games 玩一些游戏20. visit a museum 参观博物馆21. visit a fire station 参观消防站22.draw pictures 画画23. go on a school trip 去旅行24 visit the science museum 参观科技博物馆25. how to make a model robot 如何制作机器人模型26. gift shop 礼品店27. buy sth for sb. 为某人买某物28. all in all 总得来说29. be interested in... 对…感兴趣30. be expensive 昂贵的31. not...at all 一点儿也不【重点句型】1.—Did you see any cows?你见到奶牛了吗一Yes, I did. I saw quite a lot.我见到了而且见到了很多很多2.—Did Carol take any photos?罗尔拍照片了吗?—Yes, she did.是的,她拍了。
“三线合一”证题
等腰三角形巧用“三线合一”证题“三线合一”是等腰三角形的一条特殊性质,在一些几何题的证题过程中有着广泛的应用。
本文结合实例说明其应用,供参考。
一. 直接应用“三线合一” 例1. 已知,如图1,AD 是∆ABC 的角平分线,DE 、DF 分别是∆ABD 和∆ACD 的高。
求证:AD 垂直平分EFA1 2EFB D C图1分析:从本题的条件和图形特征看,欲证AD 垂直平分EF ,因为有∠=∠12,所以只要证∆AEF 为等腰三角形即可 证明: DE AB DF AC ⊥⊥, ∠=∠=12,AD AD∴≅∴=Rt AED Rt AFDAE AF ∆∆又∠=∠12∴AD 垂直平分EF例2. 如图2,∆ABC 中,AB =AC ,AD 为BC 边上的高,AD 的中点为M ,CM 的延长线交AB 于点K ,求证:AB AK =3图2分析:可考虑作DE//CK 交AB 于E ,因为M 是AD 的中点,所以K 是AE 的中点,只要证E 是BK 的中点,问题可得到解决。
由于有AB AC =,AD BC ⊥,所以就想到用“三线合一”。
证明:过点D 作DE//CK 交BK 于点EAB AC AD BC =⊥, ∴=∴=BD DC BE EK , AM MD AK KE =∴=, ∴==AK KE EB ∴=AB AK 3二. 先连线,再用“三线合一”例3. 如图3,在∆ABC 中,∠=A 90,AB AC =,D 是BC 的中点,P 为BC 上任一点,作PE AB ⊥,PF AC ⊥,垂足分别为E 、F 求证:(1)DE =DF ;(2)DE DF ⊥C图3分析:(1)欲证二线段相等,容易想到利用全等三角形。
观察DE 为∆BDE 或∆PDE的一边,DF 为∆DFP 或∆DFC 的边,但它们都没有全等的可能。
由于D 为等腰直角三角形的底边BC 上的中点,于是我们想到连结AD 一试,这时容易发现∆∆AED CFD ≅或∆∆BDF ADF ≅问题得证。
三线合一解题
这节课你有那些收获?
?
三线合一的简单应用 (1)如图,已知AB=BC,D是AC的中点,
∠A=34°,则∠DBC= 56 度.
(2)△ABC中,AB=AC,AD是BC上的高 DE⊥AB,DF⊥AC,垂足分别是E、F.指出 图中各对相等的线段,且说明理由.
(3)如图,∠A=∠D=90°,AB=CD,AC与 BD相交于点F,E是BC的中点. 求证:∠BFE=∠CFE.
∵ △ABC中,AB=AC,-∠---B--A---D--=---∠--C---A--D-
A
∴
AD⊥BC
BD=CD
------------- ----------------
2.等腰三角形底边上的中线也是的顶角平分线、 底边
上的高线.
∵ △ABC中,AB=AC,-----B--D---=---C--D-------
在△ABC中 ①AB=AC或(∠B=∠ C)
A
② ∠BAD=∠CAD
③ AD⊥BC
④ BD=CD
已知:
B
D
C
求证:
例:如图,在等腰△ABC中,∠C=90°,
如果点B到∠A的平分线AD的距离为5cm, 求AD的长。
B
E 10cm D
A
F C
练习:已知:如图,在△ABC中,AD平分 ∠BAC,CD⊥AD,D为垂足,AB>AC。
只要证DB=DE即可
练习:如图3,△ABC中,AB=AC,BD⊥AC
交AC于D.1来自A求证:∠DBC= 2 ∠BAC.
D
B
C
在△ABC中 ①AB=AC或(∠B=∠ C)
A
② ∠BAD=∠CAD
③ AD⊥BC
④ BD=CD