凝血过程和纤溶系统

合集下载

血液凝固的基本过程简答题

血液凝固的基本过程简答题

血液凝固的基本过程简答题
一、启动阶段
当机体受到损伤时,暴露出的组织或细胞表面的凝血因子会与受伤部位接触,引发凝血级联反应。

这一阶段的关键是释放出血小板因子,其与钙离子、磷脂共同作用,使血小板快速聚集并发挥作用。

二、凝块形成
在启动阶段后,凝血酶的生成加速,凝血酶作用于纤维蛋白原,使其转化为纤维蛋白多聚体。

这些多聚体进一步交联形成不溶于水的纤维蛋白多肽链,从而构成血凝块。

三、血块收缩
血块收缩是血液凝固过程中的一个重要环节。

纤维蛋白网中的血小板伸出伪足,向血块中心集结形成血块收缩环,使血块更为坚实。

同时,红细胞也被压缩至血块中心,形成凝血块。

四、纤维蛋白溶解
在完成血块收缩后,部分纤维蛋白多聚体被降解为纤维蛋白降解产物,这些产物逐渐被释放入血浆中。

这一过程有助于保持血液流通的通畅,防止血栓形成。

五、抗凝和纤溶的平衡
血液凝固过程中,抗凝系统和纤溶系统处于动态平衡状态。

抗凝物质如肝素、抗凝血酶等抑制纤维蛋白的形成和凝血酶的活性;而纤溶系统则通过降解纤维蛋白,防止血栓形成。

这种平衡保证了血液在正常状态下的流动性。

总之,血液凝固的基本过程包括启动阶段、凝块形成、血块收缩、纤维蛋白溶解以及抗凝和纤溶的平衡等环节。

这些环节相互协同,确保了血液的正常凝固和流动。

血液凝固、抗凝系统和纤维蛋白溶解之间的关系

血液凝固、抗凝系统和纤维蛋白溶解之间的关系

Q:试分析血液凝固、抗凝系统和纤维蛋白溶解之间的关系?答:血液自血管流出后,由流动的溶胶状态变为不流动的胶冻状态的过程称为血液凝固。

凝血的整个过程可分为三个阶段:1、凝血酶原激活物的形成,即因子X被激活成因子Xa;2、凝血酶原在Xa、Ca2+、V因子的作用下被激活成凝血酶;3、纤维蛋白原在凝血酶的作用下转变为纤维蛋白。

人体内的抗凝系统包括体液抗凝系统和细胞抗凝系统。

体液抗凝系统包括丝氨酸蛋白抑制物如抗凝血酶Ⅲ、组织因子途径抑制物即小血管内皮细胞释放的一种糖蛋白、蛋白质C系统以及肝素。

细胞抗凝系统即网状内皮系统对凝血因子、组织因子、凝血酶原复合物、可溶性纤维蛋白单体的吞噬。

除此之外,正常血管的光滑的内皮和不断流动的血液以及血液中的纤维溶解系统也辅助构成了抗凝系统。

血凝过程中生成的不溶性纤维蛋白,可在一系列水解酶的作用下,发生溶解,变成可溶性的纤维蛋白降解产物。

这种纤维蛋白被解液化的过程,称为纤维蛋白溶解,简称纤溶。

纤溶系统包括纤溶酶原、纤溶酶、纤溶酶原激活物和纤溶抑制物。

纤溶过程可分为两个阶段,即:1、纤溶酶原在其激活物的作用下,激活形成纤溶酶;2、纤维蛋白在纤溶酶的作用下发生降解。

血液凝固、抗凝系统、纤溶系统三者相互对立而统一,共同为机体维持一个相对稳定的平衡状态。

生理状态下,有少量纤维蛋白形成并覆盖于血管内膜上,参与维持血管的正常通透性,同时抗凝系统使其不易造成凝血和形成血栓,纤溶系统又将其水解,使凝血与纤溶处于动态平衡中,机体既不易出血,又无血栓形成。

当血管受损,一方面要求迅速凝血形成止血栓,以避免血液的流失;另一方面抗凝系统要使凝血反应局限在损伤部位,以保证全身血管内的液体状态。

当组织损伤所形成的止血栓在完成使命之后,将由纤溶系统逐步溶解,以恢复血管的畅通,也有利于受损组织的再生和修复。

若纤溶系统活动亢进,可因止血栓的提前溶解而有新的出血的倾向;如果纤溶系统活动低下,则不利于血管的再通,并可加重血栓。

血液凝固过程

血液凝固过程

血液凝固过程血液凝固是人体内一项重要的生理过程,主要起到止血和修复受伤组织的作用。

当血管受损时,血液凝固过程将被启动,以形成血栓来阻止血液的进一步流失。

本文将介绍血液凝固过程的主要步骤和相关因素,以及凝血过程在人体中的重要性。

一、血液凝固的主要步骤血液凝固过程是一个复杂的生物化学反应链,涉及多种细胞和蛋白质因子的相互作用。

下面是血液凝固过程的主要步骤:1. 血管收缩:当血管受损时,血管壁会迅速收缩,以减少出血量。

此过程由血管平滑肌的收缩引起。

2. 血小板聚集:损伤的血管内壁接触到血液后,血小板会迅速聚集到伤口处,形成血小板栓。

这一过程通过血小板表面的特殊受体与血管壁上的细胞因子相互作用而实现。

3. 凝血因子激活:损伤的血管壁会释放一系列的凝血因子,包括凝血酶原、纤维蛋白原等。

这些凝血因子与聚集的血小板相互作用,触发凝血酶的生成。

4. 凝血酶生成:在凝血因子的作用下,凝血酶原会被激活生成凝血酶。

凝血酶是血液凝固过程的核心物质,能够将溶解在血浆中的纤维蛋白原转化为纤维蛋白。

5. 纤维蛋白生成:凝血酶催化纤维蛋白原转化为纤维蛋白,形成一种纤维网状结构,即血栓。

血栓能够在伤口处形成一个稳定的堵塞物,阻止血液继续流失。

二、血液凝固过程的调控因素血液凝固过程需要一系列的调控因素,以确保在受伤组织修复完成后,血栓能够被及时溶解。

以下是影响血液凝固过程的主要调控因素:1. 抗凝系统:人体内有多种抗凝因子,如抗凝酶、组织因子通路抑制物等。

它们能够限制凝血过程的发展,以避免形成大块血栓。

2. 纤溶系统:血栓形成后,纤溶系统会被启动以溶解血栓。

纤溶酶原是纤溶系统的重要物质,它能够将纤维蛋白溶解为溶解蛋白。

3. 血管内皮细胞:血管内皮细胞的表面覆盖有特殊的抗凝分子,如组织因子路径抑制物、载脂蛋白等。

这些抗凝分子能够阻止血小板在无需凝固的情况下聚集。

三、凝血过程在人体中的重要性血液凝固过程在人体中具有重要的生理学意义。

以下是凝血过程在人体中的几个重要作用:1. 止血:当血管受损时,血液凝固过程能够迅速形成血栓,阻止血液的流失。

凝血机制与纤溶

凝血机制与纤溶

血小板在生理性止血中的过程:当血管损伤,血管内皮下胶原被暴露时,血小板迅速粘附于胶原上并被迅速激活。

血小板激活是指血小板在刺激物的作用下发生变形、粘附、聚集和释放反应。

血小板的激活立即引起血小板内一系列生化反应,同时也使血小板失去盘状外形,出现粘附变形。

粘附于内皮下组织的血小板通过释放一些物质以及磷脂代谢产物,引起血小板聚集,形成松软的血小板栓子,实现第一期止血。

第一期止血阶段形成的血小板栓子,及血管损伤暴露的组织因子可启动凝血过程,形成纤维蛋白网,完成第二期止血。

原发性纤溶:纤维蛋白原被降解,而纤维蛋白未被降解。

继发性纤溶:纤维蛋白被降解,而纤维蛋白原未被降解。

FDPs:血浆纤维蛋白(原)降解产物。

阳性或增高见于原发性纤溶及继发性纤溶。

D-二聚体:继发性纤溶(如DIC)为阳性或增高;而原发性纤溶症为阴性或不升高
伊文氏综合征(EvSyndromeans )是自身免疫性溶血性贫血(AIHA),同时伴有血小板减少并能引起紫癜等出血性倾向的一种综合性病症。

本病的特点是自身抗体的存在,导致红细胞以及血小板的破坏过多,而造成溶血性贫血以及血小板减少性紫癜。

本病可以是原发性或继发性,临床上除有血小板减少引起的出血症状外,尚有黄疸贫血等征象,Coombs 试验常阳性,ANA阳性率也相当高。

该病有人认为是特发性血小板减少性紫癜的一种,其不仅有前者的所有症状,而且伴有溶血。

凝血与纤溶的过程与机制

凝血与纤溶的过程与机制

凝血与纤溶的过程与机制一、引言凝血与纤溶是人体体内重要的生理过程,维持了正常的血液循环和止血机制。

它们之间相互作用,形成一个动态平衡,确保了血液在受伤时能够迅速凝固止血,同时也能够在伤口愈合后恢复血液流动。

本文将从凝血和纤溶的基本概念、过程和机制进行详细阐述。

二、凝血的过程与机制凝血是一种复杂的生理过程,是血液在受伤时形成血栓以止血的过程。

凝血主要通过两个过程完成:血小板聚集和血浆凝固。

1. 血小板聚集当血管受伤时,血小板会迅速聚集在受伤部位,形成血小板栓。

这一过程主要依靠血小板表面的受体与血管壁上的胶原纤维结合,同时释放出血小板活化因子,促使更多的血小板聚集。

血小板栓的形成能够暂时性地封闭伤口,减少出血。

2. 血浆凝固血浆凝固是凝血过程的主要部分,它包括两个主要的反应通路:内源凝血和外源凝血。

内源凝血是一种复杂的酶反应级联,主要通过活化血液中的凝血因子来形成血栓。

内源凝血是在凝血因子在血液中的激活下进行的,其中包括凝血酶、纤维蛋白原等一系列的酶和蛋白质。

这些凝血因子在正常情况下是处于非活化状态的,但是当血管受伤时,一系列酶反应会被触发,将其激活。

激活的凝血因子会相互作用,形成凝血酶,最终将溶血原转化为纤维蛋白,形成血栓。

外源凝血是一种由组织因子启动的凝血反应。

组织因子是一种存在于血管壁和其他组织中的膜蛋白,它在血管受伤时暴露出来,与血液中的凝血因子接触。

接触后,组织因子会激活凝血因子VII,进而启动凝血级联反应,最终形成凝血酶和血栓。

三、纤溶的过程与机制纤溶是一种分解血栓的过程,确保了在伤口愈合后恢复正常的血液流动。

纤溶主要通过激活纤溶酶来实现。

1. 纤溶酶的激活纤溶酶是一种能够分解纤维蛋白的酶,其激活是纤溶的关键步骤。

纤溶酶的激活有两种主要途径:内源途径和外源途径。

内源途径是指纤溶酶原在血液中的自发激活。

血液中存在一种叫做纤溶酶原的蛋白质,它在受损的血管壁或者血栓表面受到刺激时,会被激活成纤溶酶。

血液凝固与纤维蛋白溶解

血液凝固与纤维蛋白溶解
– 血液凝固过程是一个正反馈,一旦触发就会迅速进 行,直到完成为止。
– Ca2+(因子Ⅳ)在多个凝血环节上起促凝作用,临 床常通过减少血浆中Ca2+的量而起到抗凝的作用。
– 凝血过程本质上是一系列凝血因子相继激活和酶解 的过程,即一种酶促连锁反应,每个步骤都有着密 切的联系,一个环节受阻则整个凝血过程就会停止。
(三)抗凝血系统
• 生理状态下,体内存在着多种凝血因子,但是血液在血管 内不会发生凝血,即使血管损伤发生出血而引起的血液凝 固也仅发生在受损局部,而没有发生广泛的血管内凝血, 这意味着体内还存在着与凝血系统相对抗的抗凝系统。
• 在抗凝时体液抗凝系统发挥更重要的作用,以下是几种主 要的抗凝物质。
1.抗凝血酶Ⅲ 2.肝素 3.蛋白质C系统 4.组织因子途径抑制物(TFPI)
二、纤维蛋白溶解
• 纤维蛋白溶解是指在血液凝固中形成的纤维蛋白纤维蛋白 溶解酶的作用下降解液化的过程,简称纤溶 (fibrinolysis)。
• 纤溶系统主要包括纤维蛋白溶解酶原(纤溶酶原)、纤溶 酶、纤溶酶原激活物与纤溶抑制物。该系统的主要功能是 清除在血液凝固过程中产生的纤维蛋白凝块,阻止永久性 血栓形成。
• 纤溶的基本过程可分为两个阶段:即纤溶酶原的激活和纤 维蛋白的降解。
• 二、纤维蛋白溶解
第四节 血液凝固与纤维蛋白溶解
一、血液凝固 • 血液凝固(blood coagulation)是指血液由流动的
液体状态变为不能流动的凝胶状态的过程,简称 血凝。其实质就是血浆中的可溶性纤维蛋白原变 成不溶性的纤维蛋白。 • 血液凝固是机体的一种保护性生理过程,它的作 用是在血管破损后形成血凝块以起到止血的作用。 它是一系列复杂的蛋白质酶促反应的过程,需要 多种凝血因子的参与。

凝血与纤溶机制

凝血与纤溶机制

FDP : Fbn长链经PLn在特异位点水解,
的调节作用
2021/5/7
23
血管内皮细胞(VEC)的调节作用
※ VEC的抗凝作用:正常VEC主要表 现为具有强大的抗凝作用
※ VEC的促凝作用:正常VEC能分泌
释放vWF,其结构的多聚化程度直接影响
FVIII促凝活性,它又是血小板粘附于内皮
下以及血小板粘附延伸的主要粘附分子,
VEC膜表面的vWF可吸附FVIII。在受刺
应,产生凝血酶,进而使可溶性Fbg转变为
不溶性Fbn细丝,导致血液凝固的过程。
2021/5/7
4
机体凝血功能与止血功能的基本概念 2、止血功能的基本概念
当机体的小血管损伤发生出血时,可自动地使 血管伤口闭塞、出血停止,称为止血功能。 机体的止血功能包括:
(1)血管收缩:伤口变小;血管内血流量减少
(2)血小板在血管损伤处形成血小板血栓(初 期止血)
※ 生理情况下,少量TF主要激活FIX,而FIXa又对生 理性FVIIa水平的维持起主要作用。大量TF与FVIIa的复合 物激活FX是止、凝血过程所必需的。
※ 凝血时,形成的少量凝血酶可激活FXI、FVIII和
FV,反馈地大大加速凝血过程。故这一过程被称为凝血活
化20的21/5“/7 反馈模型”。
15
(3)血液凝固反应:形成大量Fbn,联系血小板
和其它血细胞,加固止血栓(二期止血)
2021/5/7
5
二、机体 的止、凝血功能
2021/5/7
6
(一)血管的止血功能
如果血管止血功能正常,即使有血小板减少或 凝血因子缺乏,也不一定会出血。
1、血管收缩作用
① 小血管受损伤后,经神经轴突反射收 缩,使伤口缩小或闭合

抗凝系统与纤溶系统检查

抗凝系统与纤溶系统检查
抗凝系统与纤溶系统检查
【试剂】 D-二聚体检测胶乳凝集试剂盒 【器材】 微量加样器、离心机等
抗凝系统与纤溶系统检查
【操作方法】 1、制备被检者枸橼酸那抗凝的新鲜血浆。 2、取胶乳试剂20μl,至于胶乳反应板的圆圈
内,加入被检者新鲜血浆20μl,迅速搅匀, 轻摇3-5min。 3、在较强的光线下观察结果,出现明显均匀 的凝集颗粒者为阳性(D-二聚体含量大于 0.5mg/L),无凝集颗粒者为阴性(D-二聚体 含量小于0.5mg/L)
加凝血酶溶液0.1ml,同时开动秒表,记录凝 固时间。重复2-3次,求平均值。
抗凝系统与纤溶系统检查
【质量控制】 血浆在室温下放置不能超过3h,EDTA盐和肝
素抗凝血不宜做本试验。TT终点以出现混浊 的初期凝固为准。
抗凝系统与纤溶系统检查
【临床意义】 正常为16-18s,超过正常对照3s为异常。TT
抗凝系统与纤溶系统检查
抗凝系统与纤溶系统检查
模块1 抗凝系统的检验
抗凝系统与纤溶系统检查
血液凝固的控制
1.血管内皮的抗凝作用; 2.纤维蛋白的吸附、血流的稀释及
单核巨噬细胞的吞噬作用 ; 3.生理性抗凝物质 (1)丝氨酸蛋白酶抑制物
抗凝血酶III :由肝细胞和血管内皮细胞分泌的 一种糖蛋白。
抗凝血酶III可以与FIXa、FXa、FXIa、FXIIa 和 凝血酶分子中的丝氨酸残基结合,使凝血因子和凝 血酶活性中心失活。肝素辅助因子。
抗凝系统与纤溶系统检查
(2)蛋白质C系统 (3)组织因子途径抑制物 (4)肝素:由肥大细胞和嗜碱性粒细胞产生
的一种粘多糖。 抗凝机制:
a.可与抗凝血酶III结合,增强抗凝血酶 III的抗凝作用。
b.还可刺激血管内皮细胞释放组织因子抑 制物和其他抗凝物质来抑制凝血过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小血管损伤后血液将从血管流出,但在正常人,数分钟后出血将自行停止,称为生理止血。

用一个小撞针或注射针刺破耳垂或指尖使血液流出,然后测定出血延续的时间,这一段时间称为出血时间(bl eeding time)。

出血时间的长短可以反映生理止血功能的状态。

正常出血时间为1-3分钟。

血小板减少,出血时间即相应延长,这说明血小板在生理止血过程中有重要作用;但是血浆中一些蛋白质因子所完成的血液凝固过程也十分重要。

凝血有缺陷时常可出血不止。

生理止血过程包括三部分功能活动。

首先是小血管于受伤后立即收缩,若破损不大即可使血管封闭;主要是由损伤刺激引起的局部缩血管反应,但持续时间很短。

其次,更重要的是血管内膜损伤,内膜下组织暴露,可以激活血小板和血浆中的凝血系统;由于血管收缩使血流暂停或减缓,有利于激活的血小板粘附于内膜下组织并聚集成团,成为一个松软的止血栓以填塞伤口。

接着,在局部又迅速出现血凝块,即血浆中可溶的纤维蛋白源转变成不溶的纤维蛋白分子多聚体,并形成了由血纤维与血小板一道构成的牢固的止血栓,有效地制止了出血。

与此同时,血浆中也出现了生理的抗凝血活动与纤维蛋白溶解活性,以防止血凝块不断增大和凝血过程漫延到这一局部以外。

显然,生理止血主要由血小板和某些血浆成分共同完成。

一、血凝、抗凝与纤维蛋白溶解血液离开血管数分钟后,血液就由流动的溶胶状态变成不能流动的胶冻状凝块,这一过程称为血液凝固(blood coagulation)或血凝。

在凝血过程中,血浆中的纤维蛋白源转变为不溶的血纤维。

血纤维交织成网,将很多血细胞网罗在内,形成血凝块。

血液凝固后1-2小时,血凝块又发生回缩,并释出淡黄色的液体,称为血清。

血清与血浆的区别,在于前者缺乏纤维蛋白原和少量参与血凝的其他血浆蛋白质,但又增添了少量血凝时由血小板释放出来的物质。

血浆内具备了发生凝血的各种物质,所以将血液抽出放置于玻璃管内即可凝血。

血浆内又有防止血液凝固的物质,称为抗凝物质(a nticoagulant)。

血液在血管内能保持流动,除其他原因外,抗凝物质起了重要的作用。

血管内又存在一些物质可使血纤维再分解,这些物质构成纤维蛋白溶解系统(简称纤溶系统)(fibrinloytic system)。

在生理止血中,血凝、抗凝与纤维蛋白溶解相互配合,既有效地防止了失血,又保持了血管内血流畅通。

(一)血液凝固凝血因子血浆与组织中直接参与凝血的物质,统称为凝血因子(b lood clotting factors),其中已按国际命名法用罗马数字编了号的有12种(表3-4)。

此外,还有前激肽释放酶、高分子激肽原以及来自血小板的磷脂等直接参与凝血过程。

除因子Ⅳ与磷脂外,其余已知的凝血因子都是蛋白质,而且因子Ⅱ、Ⅶ、Ⅸ、Ⅹ、Ⅺ、Ⅻ以及前激肽释放酶都是蛋白酶。

这些蛋白酶都属于内切酶,即每一种酶只能水解某两种氨基酸所形成的肽键。

因而不能将某一知肽链分解成很多氨基酸,而只能是对某一条肽链进行有限的水解。

通常在血液中,因Ⅱ、Ⅶ、Ⅸ、Ⅹ、Ⅺ、Ⅻ都是无活性的酶原,必须通过有限水解在其肽链上一定部位切断或切下一个片段,以暴露或形成活性中心,这些因子才成为有活性的酶,这个过程称为激活。

被激活的酶,称为这些因子的“活性型”,习惯上于该因子代号的右下角加一“a”字来表示。

如凝血酶原被激活为凝血酶,即由因子Ⅱ变成因子Ⅱa。

因子Ⅶ是以活性型存在于血液中的,但必须有因子Ⅲ(即组织凝血激酶)同时存在才能起作用,而在正常时因子Ⅲ只存在于血管外,所以通常因子Ⅶ在血流中也不起作用。

表3-4 按国际命名法编号的凝血因子因子Ⅺ血浆凝血激酶前质(plasma thromboplastin antecedent,PTA) 因子Ⅻ接触因子(contact factor)因子ⅩⅢ纤维蛋白稳定因子(fibrin-stabilizing factor)凝血过程凝血过程基本上是一系列蛋白质有限水解的过程,凝血过程一旦开始,各个凝血因子便一个激活另一个,形成一个“瀑布”样的反应链直至血液凝固。

凝血过程大体图3-4凝血过程的三个阶段简图上可分为三个阶段(图3-4):即因子χ激活成χa;因子Ⅱ(凝血酶原)激活成Ⅱa(凝血酶);因子Ⅰ(纤维蛋白原)转变成Ⅰa(纤维蛋白)。

因子χ的激活可以通过两种途径。

如果只是损伤血管内膜或抽出血液置于玻璃管内,完全依靠血浆内的凝血因子逐步使因子χ激活从而发生凝血的,称为径内源性激活途径(intrinsic route);如果是依靠血管外组织释放的因子Ⅲ来参与因子χ的激活的,称为外源性激活途径(extrinxic route),如创伤出血后发生凝血的情况。

医.学全.在.线网站.med126.1.内源性途径一般从因子Ⅻ的激活开始。

血管内膜下组织,特别是胶原纤维,与因子Ⅻ接触,可使因子Ⅻ激活成Ⅻa。

Ⅻa可激活前激肽释放酶使之成为激肽释放酶;后者反过来又能激活因子Ⅻ,这是一种正反馈,可使因子Ⅻa大量生成。

Ⅻa又激活因子Ⅺ成为Ⅺa。

由因子Ⅻ激活到Ⅺa形成为止的步骤,称为表面激活。

表面激活过程还需有高分子激肽原*参与,但其作用机制尚不清楚。

表面激活所形成的Ⅺa再激活因子Ⅸ生成Ⅸa,这一步需要有Ca2+(即因子Ⅳ)存在。

Ⅸa再与因子Ⅷ和血小板3因子(PF3)及Ca2+组成因子Ⅷ复合物,即可激活因子Χ生成Χa。

血小板3因子可能就是血小板膜上的磷脂,它的作用主要是提供一个磷脂的吸附表面。

因子Ⅸa和因子χ分别通过Ca2+而同时连接于这个磷脂表面,这样,因子Ⅸa即可使因子χ发生有限水解而激活成为χa。

但这一激活过程进行很缓慢,除非是有因子Ⅷ参与。

因子Ⅷ本身不是蛋白酶,不能激活因子х,但能使Ⅸa激活因子χ的作用加快几百倍。

所以因子Ⅷ虽是一种辅助因子,但是十分重要。

遗传性缺乏因子Ⅷ将发生甲型血友病(hemophilia A),这时凝血过程非常慢,甚至微小的创伤也出血不止。

先天性缺乏因子Ⅸ时,内源性途径激活因子χ的反应受阻,血液也就不易凝固,这种凝血缺陷称为B型血友病(hemophilia B)。

2.外源性途径由因子Ⅶ与因子Ⅲ组成复合物,在有Ca2+存在的情况下,激活因子χ生成χa。

因子Ⅲ,原名组织凝血激酶,广泛存在于血管外组织中,但在脑、肺和胎盘组织中特别丰富。

因子Ⅲ为磷脂蛋白质。

Ca2+的作用就是将因子Ⅶ与因子χ都结合于因子Ⅲ所提供的磷脂上,以便因子Ⅶ催化因子χ的有限水解,形成χa。

Χa又与因子Ⅴ、PE3和Ca2+形成凝血酶原酶复合物,激活凝血酶原(因子Ⅱ)生成凝血酶(Ⅱa)。

在凝血酶原酶复合物中的PF3也是提供磷脂表面,因子Χa和凝血酶原(因子Ⅱ)通过Ca2+而同时连接于磷脂表面,χa催化凝血酶原进行有限水解,成为凝血酶(Ⅱa)。

因子Ⅴ也是辅助因子,它本身不是蛋白酶,不能催化凝血酶原的有限水解,但可使χa的作用增快几十倍。

因子χ与凝血酶原的激活,都是在PF3提供的磷脂表面上进行的,可以将这两个步骤总称为磷脂表面阶段。

在这一阶段中,因子Ⅱ(凝血酶原)、因子Ⅶ、因子Ⅸ和因子χ,都必须通过Ca2+连接于磷脂表面。

因此,在这些因子的分子上必须有能与Ca2+结合的部位。

现已知,因子Ⅱ、Ⅶ、Ⅸ、х都是在肝中合成。

这些因子在肝细胞的核糖体处合成肽链后,还需依靠维生素K的参与,使肽链上某些谷氨酸残基于γ位羧化成为γ-羧谷氨酸残基,构成这些因子的Ca2+结合部位。

因此,缺陷维生素K,将出现出血倾向。

凝血酶(thrombin)有多方面的作用。

它可以加速因子Ⅶ复合物与凝血酶原酶复合物的形成并增加其作用,这也是正反馈;它又能激活因子ⅩⅢ生成ⅩⅢa;但它的主要作用是催化纤维蛋白原的分解,使每一分子纤维蛋白原从N-端脱下四段小肽,转变成为纤维蛋白单体(fibrin monomer),然后互相连接,特别是在ⅩⅢa作用下形成牢固的纤维蛋白多聚体(fibrin polymers),即不溶于水的血纤维。

上述凝血过程可见图3-5表示。

一般来说,通过外源性途径凝血较快,内源性途径较慢,但在实际情况中,单纯由一种途径引起凝血的情况不多。

图3-5血液凝固过程示意图S;血管内皮下组织PF3:血小板3因子PK:前激肽释放酶1:因子Ⅷ复合物K:激肽释放酶2:因子Ⅶ复合物HK:高分子激肽原3:凝血酶原酶复合物在凝血的某些阶段,内源性途径与外源性途径之间存在着功能的交叉,也就是说,这两条途径之间具有某些“变通”的途径。

例如,外源性的因子Ⅶa和Ⅲ可以形成复合物直接激活因子Ⅸ,从而部分代替了因子Ⅺ和Ⅻa的功能。

这一机制得以解释为什么在因子Ⅸ缺乏时的出血倾向,较因子Ⅺ和Ⅻ缺乏时更为严重。

另一方面,内源性因子Ⅻ的裂解产物和因子Ⅸa也能激活外源性的因子Ⅶ。

(二)抗凝系统的作用正常人1ml血浆含凝血酶原约300单位,在凝血时通常可以全部激活。

10ml血浆在凝血时生成的凝血酶就足以使全身血液凝固。

但在生理止血时,凝血只限于某一小段血管,而且1ml血浆中出现的凝血酶活性很少超出8-10单位,说明正常人血浆中有很强的抗凝血酶活性。

现在已经查明,血浆中最重要的抗凝物质是抗凝血酶Ⅲ(antithr ombinⅢ)和肝素,它们的作用约占血浆全部抗凝血酶活性的75%。

抗凝血酶Ⅲ是血浆中一种丝氨酸蛋白酶抑制物(serine protease inhib itor)。

因子Ⅱa、Ⅶ、Ⅸa、χa、Ⅻa的活性中心均含有丝氨酸残基,都属于丝氨酸蛋白酶(serine protease)。

抗凝血酶Ⅲ分子上的精氨酸残基,可以与这些酶活性中心的丝氨酸残基结合,这样就“封闭”了这些酶的活性中心而使之失活。

在血液中,每一分子抗凝血酶Ⅲ,可以与一分子凝血酶结合形成复合物,从而使凝血酶失活。

肝素是一种酸性粘多糖,主要由肥大细胞和嗜碱性粒细胞产生,存在于大多数组织中,在肝、肺、心和肌组织中更为丰富。

肝素在体内和体外都具有抗凝作用,肝素抗凝的主要机制在于它能结合血浆中的一些抗凝蛋白,如抗凝血酶Ⅲ和肝素辅助因子Ⅱ(h eparin cofactorⅡ)等,使这些抗凝蛋白的活性大为增强。

当肝素与抗凝血酶Ⅱ的某一个ε-氨基赖氨酸残基结合,则抗凝血酶Ⅲ与凝血酶的亲和力可增强100倍,使两者结合得更快,更稳定,使凝血酶立即失活。

当肝素与肝素辅助因子Ⅱ结合而激活后者时,被激活的肝素辅助因子Ⅱ特异性地与凝血酶结合成复合物,从而使凝血酶失活,在肝素的激活作用下,肝素辅助因子灭活凝血酶的速度可以加快约1000倍。

肝素还可以作用血管内皮细胞,使之释放凝血抑制物和纤溶酶原激活物,从而增强对凝血的抑制和纤维蛋白的溶解。

此外,肝素能激活血浆中的脂酶,加速血浆中乳糜微粒的清除,因而减轻脂蛋白对血管内皮的损伤,有助于防止与血脂有关的血栓形成。

天然肝素是一种分子量不均一的混合物,分子量为3000-57000不等。

相关文档
最新文档