利用三角函数测高题型

合集下载

九下第一章直角三角形的边角关系6利用三角函数测高作业新版北师大版

九下第一章直角三角形的边角关系6利用三角函数测高作业新版北师大版

解:在Rt△AOC中,∵∠AOC=90°,∠ACO=30°,AC=8 km,∴AO= AC= ×8=4(km).
10. 【2023·长沙】2023年5月30日9时31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O处发射,当飞船到达A点时,从位于地面C处的雷达站测得AC的距离是8 km,仰角为30°;10 s后飞 船到达B处,此时测得仰角为45°. (2)求飞船从A处到B处的平均速度.(结果精确到0.1 km/s,参考数据: ≈1.73)
课题
测量“永泰寺塔”
成员
组长:×××;组员:×××,×××,×××
工具
测倾器、皮尺等
设计方案
方案一
说明:线段AB表示“永泰寺塔”,线段CD表示测倾器,CD的高度为1.2 m,点E在AB上,点A,B,C,D,E在同一平面内,需要测量的数据有BC的长度,∠ADE的度数
设计方案
方案二
说明:线段AB表示“永泰寺塔”,线段CD,FG表示测倾器,CD,FG的高度为1.2 m,点E在AB上,点A,B,C,D,E,F,G在同一平面内,需要测量的数据有CF的长度,∠ADE,∠AGE的度数
10. 【2023·长沙】2023年5月30日9时31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O处发射,当飞船到达A点时,从位于地面C处的雷达站测得AC的距离是8 km,仰角为30°;10 s后飞 船到达B处,此时测得仰角为45°. (1)求点A离地面的高度AO;
实施方案
方案二 的测量 数据
∠ADE的平均值

2022-2023学年北师大版九年级数学下册《1-6利用三角函数测高》填空专项练习题(附答案)

2022-2023学年北师大版九年级数学下册《1-6利用三角函数测高》填空专项练习题(附答案)

2022-2023学年北师大版九年级数学下册《1.6利用三角函数测高》填空专项练习题(附答案)1.喜迎二十大,“龙舟故里”赛龙舟.丹丹在汨罗江国际龙舟竞渡中心广场点P处观看200米直道竞速赛.如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=200米,则点P到赛道AB的距离约为米(结果保留整数,参考数据:≈1.732).2.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,2小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是海里.(结果保留根号)3.如图,码头A在码头B的正东方向,它们之间的距离为10海里.一货船由码头A出发,沿北偏东45°方向航行到达小岛C处,此时测得码头B在南偏西60°方向,那么码头A 与小岛C的距离是海里(结果保留根号).4.如图,海中有一个小岛A,一艘轮船由西向东航行,在点B处测得小岛A在它的北偏东60°方向上,航行12海里到达点C处,测得小岛A在它的北偏东30°方向上,那么小岛A到航线BC的距离等于海里.5.如图,城中有一高层建筑物A,一辆汽车在一条东西方向的笔直公路上由西向东行驶,在点B处测得建筑物A位于它的东北方向,此时汽车与建筑物相距2公里,继续行驶至点D处,测得建筑物A在它的北偏西60°方向,此时汽车与建筑物距离AD为公里.6.如图,已知公路l上A,B两点之间的距离为20米,点B在C的南偏西30°的方向上,A在C的南偏西60°方向上,则点C到公路l的距离为米.7.如图,上午9时,一艘船从小岛A出发,以12海里/小时的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,则小岛B处到灯塔C的距离是海里.8.如图所示,海面上有一座小岛A,一艘船在B处观测A位于西南方向20km处,该船向正西方向行驶2小时至C处,此时观测A位于南偏东60°,则船行驶的路程约为.(结果保留整数,≈1.41,≈1.73,≈2.45)9.一艘轮船以15千米时的速度向正东方向航行,到达A点时测得小岛C在点A北偏东60°方向;继续航行一小时到达B点,这时测得小岛C在点B的东北方向;再继续航行小时,轮船刚好到达小岛C的正南方向.10.如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P 的距离为海里(结果保留根号).11.如图,海中有一个小岛A.一艘轮船由西向东航行,在B点测得小岛A在北偏东60°方向上;航行12nmile到达C点,这时测得小岛A在北偏东30°方向上.小岛A到航线BC的距离是nmile(≈1.73,结果用四舍五入法精确到0.1).12.如图,甲,乙两艘船同时从港口A出发,甲船沿北偏东45°的方向前进,乙船沿北偏东75°方向以每小时30海里的速度前进,两船航行两小时分别到达B,C处,此时测得甲船在乙船的正西方向,则甲船每小时行驶海里.13.如图,在一次夏令营活动中,小明从营地A出发,沿北偏东53°方向走了400m到达B 点,然后再沿北偏西37°方向走了300m到达目的地C.此时A,C两点之间的距离为m.14.如图,为测量一段笔直自西向东的河流的河面宽度,小雅同学在南岸B处测得对岸A 处一棵柳树位于北偏东60°方向,她沿着河岸向东步行60米后到达C处,此时测得柳树位于北偏东30°方向,则河面的宽度是米.15.一艘轮船在小岛A的北偏东60°方向距小岛60海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.16.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走70m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为m.(参考数据:tan37°≈,tan53°≈)17.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB的长)为km.18.如图,一个机器人从A地沿着西南方向先前进了4米到达B地,观察到原点O地在它的南偏东60°的方向上,则A、O两地的距离等于米.19.如图,一艘货轮以40海里/小时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B,货轮继续向北航行30分钟后到达C点,发现灯塔B在它北偏东75°方向,则此时货轮与灯塔B的距离为海里.(结果精确到0.1海里,参考数据:≈1.414,≈1.732)20.如图,某海监船以30海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为海里.21.如图,某天然气公司的主输气管道从A市的北偏东60°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市北偏东30°方向,测绘员沿主输气管道步行2000米到达C处,测得小区M位于C的北偏西60°方向.当在主输气管道AC上寻找支管道连接点N,使到该小区M铺设的管道最短时,AN的长为米.22.如图,为了测量河宽CD,先在A处测得对岸C点在其北偏东30°方向,然后沿河岸直行100米到点B,在B点测得对岸C点在其北偏西45°方向,则河宽CD是米.(结果保留根号)23.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,则B,C两地的距离千米.24.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A、C两港之间的距离为km.参考答案1.解:过点P作PC⊥AB,垂足为C,设PC=x米,在Rt△APC中,∠APC=30°,∴AC=PC•tan30°=x(米),在Rt△CBP中,∠CPB=60°,∴BC=CP•tan60°=x(米),∵AB=200米,∴AC+BC=200,∴x+x=200,∴x=50≈87,∴PC=87米,∴点P到赛道AB的距离约为87米,故答案为:87.2.解:作BD⊥AC于点D.∵∠CBA=25°+50°=75°,∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∴∠ABD=90°﹣∠DAB=30°,∴∠CBD=∠CBA﹣∠ABD=75°﹣30°=45°.在Rt△ABD中,∠CAB=60°,AB=2×20=40,BD=AB•sin∠CAB=40•sin60°=40×=20.在Rt△BCD中,∠CBD=45°,cos C=,∴∠C=90﹣∠CBD=45°,则BC=BD=20(海里).故答案为:20.3.解:过C作CD⊥BA于D,如图:则∠CDB=90°,由题意得:∠BCD=60°,∠CAD=90°﹣45°=45°,∴△ACD是等腰直角三角形,∴CD=AD,AC=CD,设CD=AD=x海里,则AC=x海里,在Rt△BCD中,tan∠BCD==tan60°=,∴BD=CD=x(海里),∵BD=AD+AB,∴x=x+10,解得:x=5+5,∴x=×(5+5)=5+5,即AC=(5+5)海里,故答案为:(5+5).4.解:过点A作AE⊥BC交BC的延长线于点E,由题意得:BC=12海里,∠ABC=90°﹣60°=30°,∠ACE=90°﹣30°=60°,∴∠BAC=∠ACE﹣∠ABC=30°,∴∠BAC=∠ABC,∴AC=BC=12海里,在Rt△ACE中,sin∠ACE=,∴AE=AC•sin∠ACE=12×=6(海里),即小岛A到航线BC的距离是6海里,故答案为:6.5.解:如图,过点A作AC⊥BD于点C,根据题意可知,∠BAC=∠ABC=45°,∠ADC=30°,AB=2公里,在Rt△ABC中,AC=BC=AB•sin45°=2×=(公里),在Rt△ACD中,∠ADC=30°,∴AD=2AC=2(公里),即此时汽车与建筑物距离AD为2公里.故答案为:2.6.解:如图,过点C作CD⊥公路l于点D,则∠ADC=90°,∠BCD=30°,∠ACD=60°,AB=20米,∴∠ACB=∠ACD﹣∠BCD=60°﹣30°=30°,∠CAD=90°﹣∠ACD=90°﹣60°=30°,∴∠ACB=∠CAD,∴BC=AB=20米,在Rt△BCD中,cos∠BCD=,∴CD=BC•cos∠BCD=20×=10(米),故答案为:10.7.解:连接AB幷延长,如图,由题意得:AB=12×=20(海里),∵从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,∴∠CAB=34°,∠ACB=68°﹣34°=34°,∴∠CAB=∠ACB,∴BC=AB=20海里,即小岛B处到灯塔C的距离是20海里,故答案为:20.8.解:作AD⊥BC于D,则∠ABD=90°﹣45°=45°,∠ACD=90°﹣60°=30°,∴BD=AD=AB=10,CD=AD=10,∴BC=BD+CD=10+10≈39(km);故答案为:39km.9.解:如图,由题意得,AB=15千米,∠EAC=60°,∠FBC=45°,过点C作CD⊥AB交AB的延长线于点D,∵∠EAC=60°,∠FBC=45°,∴∠CAD=90°﹣60°=30°,∠CBD=90°﹣45°=45°,设CD=x千米,则AD=(x+15)千米,在Rt△ACD中,∵∠CAD=30°,∴AD=CD,即15+x=x,解得x=(千米),即CD=BD=千米,需要的时间为:÷15=(时),答:再继续航行小时,轮船刚好到达小岛C的正南方向.10.解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.11.解:过点A作AE⊥BC交BC的延长线于点E,由题意得,∠BAE=60°,∠CAE=30°,∴∠ABC=30°,∠ACE=60°,∴∠BAC=∠ACE﹣∠ABC=30°,∴∠BAC=∠ABC,∴AC=BC=12nmile,在Rt△ACE中,sin∠ACE=,∴AE=AC•sin∠ACE=6≈10.4(nmile),故小岛A到航线BC的距离是10.4nmile,故答案为10.4.12.解:设甲船每小时行驶x海里,则AB=2x海里,如图,作BD⊥AC于点D,在AC上取点E,使BE=CE,根据题意可知:∠BAD=30°,∠C=15°,∴∠BED=30°,∴AD=DE=x,CE=BE=AB=2x,∴AD+DE+CE=60,即x+x+2x=60,解得x=15(﹣1)(海里).答:甲船每小时行驶15(﹣1)海里.故答案为:15(﹣1).13.解:如图,由题意得:AB=400m,BC=300m,∠CBD=37°,∠BAF=53°,AF∥DE,∴∠ABE=∠BAF=53°,∴∠ABC=180°﹣∠CBD﹣∠ABE=180°﹣37°﹣53°=90°,∴AC===500(m),即A,C两点之间的距离为500m,故答案为:500.14.解:如图,过A作AD⊥BC于D,由题意可知:BC=60米,∠ABD=30°,∠ACD=60°,∴∠BAC=∠ACD﹣∠ABC=30°,∴∠ABC=∠BAC,∴BC=AC=60(米).在Rt△ACD中,AD=AC•sin60°=60×=30(米).即这条河的宽度为30米,故答案为:30.15.解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=60海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=AB=30,BQ=AQ=30,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=30,∴BC=30+30=3x,解得:x=10+10(海里/时).即该船行驶的速度为(10+10)海里/时;故答案为:10+10.16.解:如图,过C作CE⊥BA于E.设EC=xm,BE=ym,在Rt△ECB中,tan53°=≈,即≈①,在Rt△AEC中,tan37°=≈,即≈②,由①②得:x=120,y=90,∴EC=120m,BE=90m,∴AE=70+90=160(m),∴AC===200(m),故答案为:200.17.解:如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OA sin∠AOD=4×sin30°=4×=2(km),OD=OA cos∠AOD=4×cos30°=4×=2(km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=2+2(km),故答案为:(2+2).18.解:如图,过点B作BC⊥OA于C,在Rt△ABC中,AB=4米,∠BAC=45°,∴AC=BC=AB=4(米).在Rt△OBC中,∠OBC=90°﹣60°=30°,∴OC=BC=(米),∴AO=AC+CO=(4+)米,故答案为:(4+).19.解:如图,过点C作CD⊥AB于点D,则∠CDA=∠CDB=90°,∵货轮以40海里/小时的速度在海面上航行,向北航行30分钟后到达C点,∴AC=40×=20(海里),∵∠A=45°,∠BCE=75°,∴∠B=∠BCE﹣∠A=30°,∵CD=AC sin45°=20×=10(海里),∴BC=2CD=20≈28.3(海里),即此时货轮与灯塔B的距离约为28.3海里,故答案为:28.3.20.解:在Rt△P AB中,∠APB=30°,∴PB=2AB,由题意得BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2P A,∵P A=AB•tan60°,AB=30×1=30(海里),∴PC=2×30×=60(海里),故答案为:60.21.解:如图,过C作东西方向线的平行线交过A的南北方向线AE于B,过M作MN⊥AC交于N点,则MN最短,∵∠EAC=60°,∠EAM=30°,∴∠CAM=30°,∴∠AMN=60°,又∵C处看M点为北偏西60°,∴∠FCM=60°,∴∠MCB=30°,∵∠EAC=60°,∴∠CAD=30°,∴∠BCA=30°,∴∠MCA=∠MCB+∠BCA=60°,∴∠AMC=90°,∠MAC=30°,∴MC=AC=1000,∠CMN=30°,∴NC=MC=500,∵AC=2000米,∴AN=AC﹣NC=2000﹣500=1500(米),即该小区M铺设的管道最短时,AN的长为1500米,故答案为:1500.22.解:设CD=x米,由题意得:CD⊥AB,∠ACD=30°,∠BCD=45°,∴∠ADC=∠BDC=90°,∴AD=CD=x米,BD=CD=x米,∵AD+BD=AB=100米,∴x+x=100,解得:x=150﹣50,即河宽CD是(150﹣50)米,故答案为:(150﹣50).23.解:过B作BD⊥AC于点D.在Rt△ABD中,∠BAD=60°,AB=4,sin∠BAD=,∴BD=AB•sin∠BAD=4×=2(千米),在Rt△BCD中,∠CBD=45°,∴∠C=90°﹣∠CBD=90°﹣45°=45°,∴∠CBD=∠C,∴CD=BD=2千米,∴BC2=BD2+CD2=(2)2+(2)2=24,∴BC=2(千米).答:B,C两地的距离是2千米,故答案为:2.24.解:如图,过B作BE⊥AC于E,过C作CF∥AD,则CF∥AD∥BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°﹣20°=45°,AB=30km,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30km,∴AE=BE=AB=15(km),在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===5(km),∴AC=AE+CE=(15+5)km,∴A,C两港之间的距离为(15+5)km,故答案为:(15+5).。

《利用三角函数测高》练习题

《利用三角函数测高》练习题

在 Rt△AFB 中, ∵ AB=2.7, ∴AF=2.7×cos 70°≈2.7×0.34=0.918, ∴AE= AF+ BC≈0.918 +0.15=1.068≈1.1(m).答:端点 A 到地面 CD 的距离约是 1.1 m
8.如图,王强同学在甲楼楼顶 A 处测得对面乙楼楼顶 D 处的仰角为 30 °,在甲楼楼底 B 处测得乙楼楼顶 D 处的仰角为 45°,已知甲楼高 26 米, 则乙楼的高度为 ( 3≈1.7)( A.61.0 米
(x+0.2)=30,∴ x≈11.0,即 AE=11.0,∴ MN≈11.0+1.7=12.7≈13,即旗 杆 MN 的高度约为 13 米.
12.(导学号: 37554016 )如图,在两建筑物之间有一旗杆 ,高 15 米 ,从 A 点经过 旗杆顶点恰好看到矮建筑物的墙角 C 点 ,且俯角 α 为 60°,又从 A 点测得 D 点的俯角 β 为 30°,若旗杆底部点 G 为 BC 的中点,则矮建筑物的高 CD 为(
B
ห้องสมุดไป่ตู้
)
5.如图,两建筑物的水平距离为a,在A点测得C点的俯角为β,测 得 D 点 的 俯 角 为 α , 则 较 低 建 筑 物 的 高 度 为 a(tan β-tan α) _____________________ .
6 .下面是活动报告的一部分 ,请完成表格并根据表中数据计 算旗杆AB的高.
如图,过点 A 作 AE⊥ MN,垂足为点 E, 过点 C 作 CF⊥ MN ,垂足为点 F. 设 ME= x,Rt △ AME 中 ,∠ MAE =45°,∴ AE= ME= x,Rt △ MCF 中 , MF= x+(1.7-1.5),CF = MF = 3(x+0.2).∵BD= AE+CF,∴ x+ 3 tan 30°

北师大版九年级数学下册利用三角函数测高测试题

北师大版九年级数学下册利用三角函数测高测试题

1.6 利用三角函数测高1.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC 的高度为A. 40 3mB. 803mC. 1203mD. 160 3m2.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,≈1.73).A.3.5m B.3.6m C.4.3m D.5.1m3.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).4.如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 米.第4题图第5题图第6题图5.如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为300,底部D 处的俯角为何450,则这个建筑物的高度CD= 米(结果可保留根号)6.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为600,在教学楼三楼D处测得旗杆顶部的仰角为300,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为米.7.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为300,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为600(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度.8.如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C 点观测F点的俯角为530,老鼠躲藏处M(点M在DE上)距D点3米.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米?M E N C A9.在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ;(2) 量出测点A 到旗杆底部N 的水平距离AN =m;(3) 量出测倾器的高度AC =h 。

利用三角函数测高

利用三角函数测高

3. 如图所示,某数学活动小组要测量山坡上的电线杆PQ 的高度.他们采取的方法是:先在地面上的点A处测 得电线杆顶端点P的仰角是45°,再向前走到B点,测 得电线杆顶端点P和电线杆底端点Q的仰角分别是60° 和30°,这时只需要测出AB的长度就能通过计算求出 电线杆PQ的高度.若测出AB的长度为1 m, 3+ 3 则电线杆PQ的高度是___6____m_.
解:若选择条件①,由题意得CCDE=BACB,∴11..28=A9B, 解得 AB=13.5 m,∴旗杆 AB 的高度为 13.5 m. 若选择条件②,如图,过点 D 作 DF⊥AB,垂足为 F, 则易得四边形 BCDF 是矩形,∴BF=CD=1.8 m,DF=BC=9 m, 在 Rt△ADF 中,∠ADF=52.46°, ∴AF=DF·tan 52.46°≈9×1.30=11.7(m), ∴AB=AF+BF≈11.7+1.8=13.5(m), ∴旗杆 AB 的高度约为 13.5 m.
(参考数据:sin 67.38°≈1123,cos 67.38°≈153,tABC 中,
∵∠ABC=90°,∠ACB=67.38°,∴BC=tan∠ABACB≈1x2=152x(米), 5
∴BD=BC+CD≈152x+11米.由题意得 AD∥EF, 则∠FED=∠ADB,∴tan∠FED=tan∠ADB,即DDEF=BADB, ∴21..48≈152x+x 11,解得 x≈12,经检验,符合题意.
变式3 [2024西安高新一中模拟]如图,小明想测量 城墙AB的高度,他在围栏点C处测量城墙顶 点A的仰角为67.38°,在阳光的照射下,他 发现城墙上点A的影子落在了他身后11米的 点D处,于是他站在D点发现他的影子落在 地上的点E处,测量得ED长为2.4米,小明身 高为1.8米,E,D,C,B在一条直线上,且 FD⊥ED,AB⊥BE,请你根据以上数据帮助 小明算出城墙AB的高.

京改版九年级数学上册 20.5.4《利用三角函数测高》 同步练习(含答案)

京改版九年级数学上册 20.5.4《利用三角函数测高》 同步练习(含答案)

北京课改版九年级数学上册20.5.4《利用三角函数测高》同步练习一.选择题(本大题共10小题,每小题3分,共30分)1. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1 m,则旗杆PA的高度为()A.11-sin αm B.11+sin αmC.11-cos αm D.11+cos αm2. 当测量底部可以到达的物体的高度时,如图.(1)在测点A安置测倾器,测得M的仰角∠MCE=α;(2)量出测点A到物体底部N的水平距离AN=L;(3)量出测倾器的高度AC=a,可求出MN的高度.MN =ME+EN=()A. L·tanα-aB. L·tanα+aC. L·tanα-2aD. L·tanα+2a3.某校九(1)班课外活动小组为了测得学校旗杆的高度,他们在离旗杆6米的A处,用高为1.5米的仪器测得旗杆顶部B处的仰角为60°,如图,则旗杆的高度为() (已知3≈1.732,结果精确到0.1米).A. 21.9米B. 17.9米C. 15.9米D. 11.9米4.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.95sin αm B.95cos αm 555. 如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为()A. 1200(2-1)米B. 1200(2+1)米C. 1200(3-1)米D. 1200(3+1)米6.如图,山顶有一座电视塔,在地面上一点A处测得塔顶B处的仰角α=60°,在塔底C处测得A 点俯角β=45°,已知塔高60米,则山高CD等于()A. 30(1+2)米B. 30(2-1)米C. 30(1+3)米D. 30(3-1)米7. 如图,要在宽为22 m的九州大道两边安装路灯,路灯的灯臂CD长2 m,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11-22)m B.(113-22) mC.(11-23) m D.(113-4) m8.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图1-BZ-6,在A处测得塔顶的仰角A. tanα·tanβtanβ+tanα·s米 B.tanα·tanβtanβ-tanα·s米C. tanα+tanβtanβ+tanα·s米 D.tanα+tanβtanβ-tanα·s米9.如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,点E离地面的高度EF是( ) (结果精确到1米,参考数据:2≈1.4,3≈1.7)A.98米B.99 米C.100米D.101米10.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为( )A.20米B.103米C.153米D.56米二.填空题(共8小题,3*8=24)11.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为_________.12.如图,为了测量学校操场上旗杆BC 的高度,在距旗杆24 m 的A 处用测倾器测得旗杆顶部的仰角为30°,则旗杆的高度为____________.13. 如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60 cm 长的绑绳EF ,tan α=52,则“人字梯”的顶端离地面的高度AD 是___________.14. 如图,王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60°,又知水平距离BD =10 m ,楼高AB =24 m ,则树高CD 为__________________.15.如图,在高为60 m 的小山上,测得山底一建筑物顶端与底部的俯角分别为30°,60°,则这个建筑物的高度为__________.16. 如图,数学实践活动小组要测量学校附近楼房CD 的高度,在水平地面A 处安置测倾器测得楼房CD 顶部点D 的仰角为45°,向前走20米到达A′处,测得点D 的仰角为67.5°,已知测倾器AB 的高度为1.6米,则楼房CD 的高度约为(结果精确到0.1米,≈1.414)_____________.17. 如图是某小区入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.则点M到地面的距离是_____________.18. 如图是某小区的一个健身器材示意图,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,则端点A到地面CD的距离是___________. (精确到0.1 m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)三.解答题(共7小题,46分)19.(6分)如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度.已知她与树之间的水平距离BE为5 m,AB为1.5 m(即小颖的眼睛距地面的距离),那么这棵树的高度为多少米?20.(6分)如图,两座建筑物AB与CD,其水平距离BD为30米,在从AB的顶点A处用高1.2米的测角仪AE测得CD的顶部C的仰角α=30°,测得其底部D的俯角β=45°,求两座建筑物AB与CD的高(精确到0.1米).21.(6分)某中学九年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在点C 处测得建筑物AB 的顶点A 的仰角为30°,然后向建筑物AB 前进20 m 到达点D 处,又测得点A 的仰角为60°,求建筑物AB 的高度是多少米.22.(6分)如图,两座建筑物的水平距离BC 为60 m ,从C 点测得A 点的仰角α为53°,从A 点测得D 点的俯角β为37°,求两座建筑物的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34, sin53°≈45,cos53°≈35,tan53°≈43)23.(6分)如图,小强想测量楼CD 的高度,楼在围墙内,小强只能在围墙外测量,他无法测得观测点到楼底的距离,于是小强在A 处仰望楼顶,测得仰角为37°,再往楼的方向前进30米至B 处,测得楼顶的仰角为53°(A ,B ,C 三点在一条直线上),求楼CD 的高度(结果精确到0.1米,小强的身高忽略不计).24.(8分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为45°,然后他沿着正对树PQ的方向前进10米到达点B处,此时测得树顶P和树底Q的仰角分别是60°和30°,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度.(结果精确到0.1 m,3≈1.73)25.(8分)天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿A-B-C路线对索道进行检修维护.如图,已知AB=500米,BC=800米,AB与水平线AA1的夹角是30°,BC与水平线BB1的夹角是60°,求本次检修中,检修人员上升的垂直高度CA1是多少米(结果精确到1米,参考数据:3≈1.732).参考答案:1-5ABDBC 6-10CDBCA11.6 3 米12.8 3 m13.180 cm14.(24-103) m15.40 m16.35.7米17.3.9 米18.1.1 m19. 解:∵AD =BE =5 m ,∠CAD =30°,∴CD =AD·tan30°=5×33=533(m). ∴CE =CD +DE =CD +AB =533+32(m). 即这棵树的高度是⎝⎛⎭⎫533+32m. 20. 解:过点E 作EF ⊥CD 于点F.在矩形EBDF 中,EF =BD =30 m ,BE =DF.在Rt △EFC 中,CF =EF·tanα=103(m).在Rt △EFD 中,DF =EF·tanβ=30(m). ∴CD =CF +FD =103+30≈47.3(m),AB =BE -AE =30-1.2=28.8(m).答:两座建筑物CD 与AB 的高分别为47.3米和28.8米.21. 解:设AB =x m.在Rt △ABC 中,∠C =30°,∴BC =AB tan30°=3x(m). 在Rt △ABD 中,∠ADB =60°,∴BD =AB tan60°=33x(m). 由题意知,3x -33x =20,解得x =10 3. 即建筑物AB 的高度是10 3 m.22. 解:过点D 作DE ⊥AB 于E ,则DE =BC =60 m , 在Rt △ABC 中,tan53°=AB ,∴AB =4,∴AB =80(m),在Rt △ADE 中,tan37°=AE DE ,∴34=AE 60,∴AE =45 m , ∴BE =CD =AB -AE =35(m),答:两座建筑物的高度分别为80 m 和35 m23. 解:设CD =x m ,在Rt △ACD 中,tanA =DC AC ,∴AC =x tan37°, 同法可得,BC =x tan53°, ∵AC -BC =AB ,∴x tan37°-x tan53°=30, 解得x =52.3,答:楼CD 的高度为52.3米24. 解:延长PQ 交直线AB 于点C.(1)∠BPQ =90°-60°=30°(2)设PC =x 米,在Rt △APC 中,∠PAC =45°,则AC =PC =x 米, ∵∠PBC =60°,∴∠BPC =30°,在Rt △BPC 中,BC =33PC =33x(米), ∵AB =AC -BC =10,∴x -33x =10, 解得:x =15+5 3. 则BC =(53+5)米.在Rt △BCQ 中,QC =33BC =33(53+5)=(5+533)米, ∴PQ =PC -QC =15+53-(5+533)=10+1033≈15.8(米). 答:树PQ 的高度约为15.8米25. 解:如图,过点B 作BH ⊥AA 1于点H.在Rt △ABH 中,AB =500,∠BAH =30°,∴BH =12AB =12×500=250.∴A 1B 1=BH =250. 在Rt △BB 1C 中,BC =800,∠CBB 1=60°,∴B 1C BC =sin ∠CBB 1=sin 60°=32. ∴B 1C =32BC =32×800=400 3. ∴检修人员上升的垂直高度CA 1=CB 1+A 1B 1=4003+250≈943(米). 答:检修人员上升的垂直高度CA 1约为943米.。

九年级数学北师大版下册习题课件第一章1.6 利用三角函数测高

九年级数学北师大版下册习题课件第一章1.6 利用三角函数测高

1.(5分)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°(tan 27°≈0.
2为._(_5_分_解_)_如__图:__,__过小_ 明m点.在楼A顶作上的A点EA处⊥测C得D楼前交一棵C树DC的D的延顶端长C的线俯角于为6点0°,E又,知水则平距A离EB=D=B10Cm,=楼高78AB=m24,m,则树高CD 8C.D∴之(15间分C的)E(距聊=离城A中AC考为E)3如·5 图tma,,n后小站莹∠在在CM数点A学处E综测合=得实7居践8民活t楼动anC中D,的5利8顶用°端所D≈的学7仰的8角数×为学14知5.°识6,对0=居某民小1楼区2A居4B民.的8楼(顶mA端B)B的,的高仰度D角进E为行=5测5°量A,,E已先·知测t居a得民n居楼民C楼DA的B高与
51解1.):,(5过此分点时)在A旗“解作杆测A:在E量⊥水∵旗C平杆D在地交的面C高DR上度的t的”△ 延影的长子C数线的E学于长D课点度题E中为,学2则,习4Am中∠E,,=则C某B旗CE学=杆习D7的8小=m高组,度5测∴8约得°C为太E(=,阳A光tEa线·)tna与n ∠水∠C平AC面EE=的D7夹8t角=an为5CD82°7DE°≈7(t8,a×n 21∴7. °D≈0E. =tanC5D8°
解:过点 A 作 AH⊥CD 于点 H,设 CH=x m,在 Rt△ACH 中,∵∠CAH=
30°,∴BD=AH=tanC3H0° = 3 x (m),∴在 Rt△ECD 中,tan ∠CED=ECDD

x+10 3x-6

3
,解得 x=5+3
3 ,∴CD=(15+3
3 )(m),∴CF=CD-DF
解答题(共60分) 7.(14分)如图,AB是某景区内高10 m的观景台,CD是与AB底部相平的 一座雕像(含底座),在观景台顶A处测得雕像顶C点的仰角为30°,从观景台 底部B处向雕像方向水平前进6 m到达点E,在E处测得雕像顶C点的仰角为 60°,已知雕像底座DF高8 m,求雕像CF的高.(结果保留根号)

北师大版数学九年级下册:1.6 《利用三角函数测高》 练习

北师大版数学九年级下册:1.6 《利用三角函数测高》  练习

1.6 利用三角函数测高基础题知识点1 测量底部可以到达的物体的高度1.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为(C)A.30tanα米 B.30sinα米C.30tanα米D.30cosα米2.如图,王师傅在楼顶上A点处测得楼前一棵树CD的顶端C的俯角为60°.若水平距离BD=10 m,楼高AB=24 m,则树CD高约为(C)A.5 mB.6 mC.7 mD.8 m3.如图,从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD 是(A)A.(6+63)米B.(6+33)米C.(6+23)米D.12米4.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12 m的F处,由E点观测到旗杆顶部A的仰角为52°,底部B的仰角为45°,小明的观测点与地面的距离EF为1.6 m,求旗杆AB的高度(结果精确到0.1 m,参考数据2≈1.41,sin52°≈0.79,tan52°≈1.28).解:过点E作EH⊥AC于点H,则EH=FC=12 m,在Rt△AEH中,AH=EH·tan∠AEH=12×1.28=15.36(m).∵∠BEH=45°,∴BH=EH=12 m.∴AB=AH-BH=3.36≈3.4 m.答:旗杆AB的高度约为3.4 m.知识点2 测量底部不可以到达的物体的高度5.如图,在高度是21 m的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD 6.如图所示,河对岸有古塔AB ,小敏在C 处测得塔顶A 的仰角为α,向塔走s 米到达D ,在D 处测得塔顶A 的仰角为β,则塔高是stanαtanβtanβ-tanα米.7.盐城电视塔是我市标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测电视塔的高度AB.小明在D 处用高1.5米的测角仪CD ,测得电视塔顶端A 的仰角为30°,然后向电视塔前进224米到达E 处,又测得电视塔顶端A 的仰角为60°.求电视塔的高度AB(3取1.73,结果精确到0.1米).解:设AG =x.在Rt△AFG 中,∵tan∠AFG=AGFG ,∴FG=x tan60°=x3.在Rt△ACG 中,∵tan∠ACG=AG CG ,∴CG=xtan30°=3x.∴3x -x3=224.解得x≈193.8. ∴AB=193.8+1.5=195.3(米). 答:电视塔的高度AB 约为195.3米. 中档题8.(2019·吉林)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度.数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平解:计算过程:∠ADE=α,DE =BC =a ,BE =CD =b. 在Rt△ADE 中,∠AED=90°. ∵tan∠ADE=AEDE ,∴AE=DE·tan∠ADE. ∴AE=atanα.∴AB=AE +BE =(b +atanα)米.9.如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7 m ,看旗杆顶部M 的仰角为45°;小红的眼睛与地面的距离(CD)是1.5 m ,看旗杆顶部M 的仰角为30°.两人相距30米且位于旗杆两侧(点B ,N ,D 在同一条直线上),求旗杆MN 的高度(参考数据:2≈1.4,3≈1.7,结果保留整数).解:过点A 作AE⊥MN,垂足为E ,过点C 作CF⊥MN,垂足为F. 设ME =x ,Rt△AME 中,∠MAE=45°, ∴AE=ME =x.Rt△MCF 中,MF =x +0.2, CF =MF tan30°=3(x +0.2),∵BD=AE +CF , ∴x+3(x +0.2)=30.∴x≈11,即AE =11. ∴MN=11+1.7≈13.答:旗杆MN 的高度约为13米. 综合题10.九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD 斜靠在护墙上,使得DB 与CB 的长度相等,如果测量得到∠CDB =38°,求护墙与地面的倾斜角α的度数;(2)如图2,第二小组用皮尺量得EF 为16米(E 为护墙上的端点),EF 的中点离地面FB 的高度为1.9米,请你求出E 点离地面FB 的高度;(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P 处测得旗杆顶端A 的仰角为45°,向前走4米到达Q 点,测得A 的仰角为60°,求旗杆AE 的高度(精确到0.1米,参考数据:tan60°≈1.732,tan30°≈0.577,3≈1.732,2≈1.414). 解:(1)∵BD=BC ,∴∠CDB=∠DCB. ∴α=2∠CDB=2×38°=76°.(2)设EF 的中点为M ,过点M 作MN⊥BF,垂足为N ,过点E 作EH⊥BF,垂足为H , ∴MN //12EH.又∵MN=1.9, ∴EH=2MN =3.8.答:E 点离地面FB 的高度是3.8米. (3)延长AE 交PB 于点K. 设AE =x ,则AK =x +3.8.∵∠APB=45°,∴PK=AK =x +3.8. ∵PQ=4,∴KQ=x +3.8-4=x -0.2. ∵tan∠AQK=AKQK =tan60°=3,∴x +3.8x -0.2= 3.解得x =3.8+1533-1≈5.7. 答:旗杆AE 的高度约为5.7米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用三角函数测高题型 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT利用直角三角形测高向阳校区一、地位近几年河北中考对于直角三角形的考察越来越趋于现实知识,将直角三角形求高的经常与三角函数应用联系,所以对于综合探究性题型起到敲门砖的重要作用,同时它是河北各市模拟考试的常见题型,每年都有体现,选择、填空及解答题都有涉及,对于学生有一定能力要求,所以学好这一模块有很大的现实意义。

二、基础知识:一、如何测量倾斜角测量倾斜角可以用测倾器。

----简单的侧倾器由度盘、铅锤和支杆组成二、使用测倾器测量倾斜角的步骤如下:1、把支架竖直插入地面,使支架的中心线、铅锤线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置。

2、转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的读数三、测量底部可以直接到达的物体的高度。

所谓“底部可以到达”---就是在地面上可以无障碍地直接测得测点与被测物体的底部之间的距离.四、测量底部不可以直接到达的物体的高度。

所谓“底部不可以到达”---就是在地面上不可以直接测得测点与被测物体之间的距离。

五、测高方法总结1、凡是求高(求线段的长)的问题往往可以借助解直角三角形来解决,如果没有直角三角形可以设法去构造。

2、对于一些教复杂的问题,如果解一个直角三角形还不能使问题得以解决,可考虑解两个直角三角形。

3、如果不能直接通过解直角三角形处理问题,可以去寻找已知与未知之间的等量关系,借助解直角三角形建立方程,从而使问题得以解决。

六、反思与评价1、充分体会将实际问题数学化的一种常用方式:即通过分析问题,建立数学模型,从而提出较为完整的测量方案和解决问题的方法。

实际问题 画图示意 已知未知 数学问题2、解决这类测量问题往往是寻找或构造直角三角形,通过解直角三角形使问题得于解决。

三、题型1.要测一电视塔的高度,在距电视塔80米处测得电视塔顶部的仰角为60°,则电视塔的高度为 米.2.如图1—87所示,两建筑物的水平距离为a ,在A 点测得C 点的俯角为β,测得D 点的俯角为a ,则较低建筑物的高度为 . 3.建筑物BC 上有一旗杆AB ,由距BC 40m 的D 处观察旗杆顶部A 的仰角为50观察底部B 的仰角为45,求旗杆的高度(精确到0.1m ). 4.如图1—88所示,在测量塔高AB 时,选择与塔底同一水平面的同一直线上的C ,D两处,用测角仪测得塔顶A 的仰角分别是30°和60°,已知测角仪的高CE =米CD =30米,求塔高AB .(3≈4550ABCD5.如图1—89所示,天空中有一个静止的广告气球C ,从地面A 点测得C 点的仰角为45°,从地面B 点测得C 点的仰角为60°.已知AB =20 m ,点C 和直线AB 在同一平面上,求气球离地面的高度.(结果保留整数,3≈6.如图l —90所示,一位同学用一个有30°角的直角三角板估测学校的旗杆AB 的高度.他将30°角的直角边水平放在米高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D ,B 的距离为15米.(1)求旗杆的高度;(精确到米,3≈(2)请你设计出一种更简便的估测方法.7.某商场门前的台阶截面如图1—9l 所示,已知每级台阶的宽度(如CD)均为 m ,高度(如BE)均为 m ,现将此台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角∠A 为9°,计算从斜坡的起点(A 点)到台阶前(B 点)的距离.(精确到 m ,参考数据:sin 9°≈,cos 9°≈,tan 9°≈8.如图1—92所示,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的仰角a 为30°,测得乙楼底部B 点的俯角B 为60°,求甲、乙两栋高楼各有多高.(计算过程和结果都不取近似值)7.如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB )是1.7m ,看旗杆顶部M 的仰角为45;小红的眼睛与地面的距离(CD )是1.5m ,看旗杆顶部M 的仰角为30.两人相距28m 且位于旗杆两侧(点B ,N ,D 在同一条直线上).请求出旗杆MN 的高度.(参考数据:2 1.4≈,3 1.7≈,结果保留整数)中考链接 1.(2015江西南昌,12,3分).如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B MN BA DC 30°45° E F到CD的距离为cm(参考数据:sin20°≈,com20°≈,sin40°≈,com40°≈.精确到,可用科学计算器).2.(2013四川成都14,4分)如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为_________米.3.(2012江苏南京,14,2分)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:定点O于尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在刻度尺上的读数恰为2cm.若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数为 cm.(结果精确到,参考数据:sin37°≈,cos37°≈,tan37°≈4.(2014湖北襄阳,15,3分)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为 m(结果保留根号)5.(2014云南,21,6分)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取3≈,结果保留整数)6.(2014年贵州黔东南,22,10分)黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)米,小军的身高(CD)米,求旗杆的高EF的长.(结果精确到,参考数据:2≈,3≈)7.(2014哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).8.如图,某水库堤坝横断面迎水坡AB的坡比是3:4,迎水坡面AB的长度是50m,则堤坝高BC的长度为()9.(2014山东济南一模,18)如图,两建筑物的水平距离BC为18m,从点测得点的俯角α为30,测得点的俯角β为60.则建筑物CD的高度为_________(结果不作近似计算).10.(2014江西临川初中,21)如图,小刚同学在綦江南州广场上观测新华书店楼房墙上的电子屏幕C D,点A是小刚的眼睛,测得屏幕下端D处的仰角为30°,然后他正对屏幕方向前进了6米到达B 处,又测得该屏幕上端C处的仰角为45°,延长AB与楼房垂直相交于点E,测得BE=21米,请你帮小刚求出该屏幕上端与下端之间的距离CD.(结果保留根号)11.(2014河南淮阳一模,22)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处观察羊羊们时,发现懒羊羊在大树底下睡懒觉,此时,测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D 处出发,几秒种后能抓到懒羊羊(结果精确到个位).12.(2013 甘肃兰州树人中学二模,27)如图所示中原福塔是世界上第一高钢塔,小明所在的课外活动小组在距地面268米的高的室外观光层的点D处,测得B角α为45度点D到AO的距离DG 为十米,从地面上的点B沿BO方向走50米到点C处测得塔尖A的仰角β为60°,请你根据以上数据计算塔高AO,并求出计算结果与实际塔高388米之间的误差,参考数据根号3≈根号2≈13(2013唐山开平二模,14)数学实践探究课中,老师布置同学们测量学校旗杆的高度。

小民所在的学习小组在距离旗杆底部米的地方,用测角仪测得旗杆顶端的仰角为,则旗杆的高度是_____米。

14(2014邢台二模。

21)某中学九年级学生在学习“直角三角形的边角关系”时,组织开展测量物体高度的实践活动.要测量学校一幢教学楼的高度(如图),他们先在点C测得教学楼AB的顶点A 的仰角为37°,然后向教学楼前进10米到达点D,又测得点A的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈,)15(石家庄辛集期末调研,15)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为,则这棵树的高度为( )(结果精确到).A、 B、 C、 D、16(2014邯郸二模,11)某市进行城区规划,工程师需测某楼AB的高度,工程师在D得用高2 m的测角仪CD,测得楼顶端A的仰角为30°,然后向楼前进30m到达E,又测得楼顶端A的仰角为60°,楼AB的高为()(A)(B)?(C)(D)17(2013石家庄新华一模,22).已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:的斜坡AP 攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈,cos76°≈,tan76°≈)。

相关文档
最新文档