实验2 Matlab绘图操作

合集下载

Matlab实验报告(三)-MATLAB绘图

Matlab实验报告(三)-MATLAB绘图

实验目的1.掌握MATLAB的基本绘图命令。

2.掌握运用MATLAB绘制一维、二维、三维图形的方法.3.给图形加以修饰。

一、预备知识1.基本绘图命令plotplot绘图命令一共有三种形式:⑴plot(y)是plot命令中最为简单的形式,当y为向量时,以y的元素为纵坐标,元素相应的序列号为横坐标,绘制出连线;若y为实矩阵,则按照列绘出每列元素和其序列号的对应关系,曲线数等于矩阵的列数;当y为复矩阵时,则按列以每列元素的实部为横坐标,以虚部为纵坐标,绘出曲线,曲线数等于列数。

⑵ plot(x,y,[linspec])其中linspec是可选的,用它来说明线型。

当x和y为同维向量时,以x为横坐标,y为纵坐标绘制曲线;当x是向量,y是每行元素数目和x维数相同的矩阵时,将绘出以x为横坐标,以y中每行元素为纵坐标的多条曲线,曲线数等于矩阵行数;当x为矩阵,y为相应向量时,使用该命令也能绘出相应图形。

⑶ plot(x1,y1,x2,y2,x3,y3……)能够绘制多条曲线,每条曲线分别以x和y为横纵坐标,各条曲线互不影响。

线型和颜色MATLAB可以对线型和颜色进行设定,线型和颜色种类如下:线:—实线:点线 -.虚点线——折线点:.圆点 +加号 *星号 x x型 o 空心小圆颜色:y 黄 r 红 g 绿 b 蓝 w 白 k 黑 m 紫 c 青特殊的二维图形函数表5 特殊2维绘图函数[1] 直方图在实际中,常会遇到离散数据,当需要比较数据、分析数据在总量中的比例时,直方图就是一种理想的选择,但要注意该方法适用于数据较少的情况。

直方图的绘图函数有以下两种基本形式。

·bar(x,y) 绘制m*n 矩阵的直方图.其中y 为m *n 矩阵或向量,x 必须单向递增。

·bar(y) 绘制y 向量的直方图,x 向量默认为x=1:m close all; %关闭所有的图形视窗。

x=1:10;y=rand (size(x )); bar(x,y ); %绘制直方图.123456789100.51Bar()函数还有barh ()和errorbar ()两种形式,barh()用来绘制水平方向的直方图,其参数与bar()相同,当知道资料的误差值时,可用errorbar ()绘制出误差范围,其一般语法形式为:errorbar (x,y,l,u)其中x,y 是其绘制曲线的坐标,l ,u 是曲线误差的最小值和最大值,制图时,l 向量在曲线下方,u 向量在曲线上方。

MATLAB实验答案(桂电)

MATLAB实验答案(桂电)

实验一 MATLAB入门(1)1.实验目的:(1)了解MATLAB的体系结构与特点,熟悉其集成开发环境。

(2)熟悉MATLAB界面窗口的功能和使用方法。

(3)熟悉MATLAB的帮助系统及使用方法。

(4)了解MATLAB的的数据类型、基本形式和数组的产生方法。

(5)掌握MATLAB基本的数学运算操作。

2.实验原理(1)MATLAB简介MATLAB是美国MathWorks公司开发的高性能的科学与工程计算软件。

它在数值计算、自动控制、信号处理、神经网络、优化计算、小波分析、图像处理等领域有着广泛的用途。

近年来, MATLAB在国内高等院校、科研院所的应用逐渐普及,成为广大科研、工程技术人员必备的工具之一。

MATLAB具有矩阵和数组运算方便、编程效率极高、易学易用、可扩充性强和移植性好等优点,俗称为“草稿纸式的科学计算语言”。

它把工程技术人员从繁琐的程序代码编写工作中解放出来,可以快速地验证自己的模型和算法。

经过几十年的扩充和完善,MATLAB已经发展成为集科学计算、可视化和编程于一体的高性能的科学计算语言和软件开发环境,整套软件由MATLAB开发环境、MATLAB语言、MATLAB数学函数库、MATLAB图形处理系统和MATLAB应用程序接口(API)等五大部分组成。

MATLAB的主要特点包括强大的计算能力(尤其是矩阵计算能力)、方便的绘图功能及仿真能力、极高的编程效率。

另外,MATLAB还附带了大量的专用工具箱,用于解决各种特定领域的问题。

通过学习软件的基本操作及其编程方法,体会和逐步掌握它在矩阵运算、信号处理等方面的功能及其具体应用。

通过本课程实验的学习,要求学生初步掌握MATLAB的使用方法,初步掌握M文件的编写和运行方法,初步将MATLAB运用于数字信号处理中。

循序渐进地培养学生运用所学知识分析和解决问题的能力。

(2)MATLAB的工作界面(Desktop)与操作MATLAB 安装成功后,第一次启动时,主界面如下图(不同版本可能有差异)所示:其中① 是命令窗口(Command Window ),是MATLAB 的主窗口,默认位于MATLAB界面的右侧,用于输入命令、运行命令并显示运行结果。

matlab实验 绘图

matlab实验  绘图

实验三 Matlab 绘图实验目的熟悉MTALAB 中几种常用的绘图命令,掌握几种常用图形的画法。

实验内容1.二维:用 matlab 二维绘图命令 plot 作出函数图形。

形式: plot(x,y) 2.空间三维作图:三维曲线:plot3(x,y,z,s);三维曲面:mesh(X,Y,Z) 网格生成函数:meshgridsurf(X,Y,Z):绘制由矩阵 X,Y,Z 所确定的曲面图,参数含义同 mesh sphere(n): 专用于绘制单位球面实验方法与步骤1.利用 plot 函数在一个坐标系下绘制以下函数的图形,要求采用不同的颜色、线型、点标记。

方程组: sin(),cos(),sin(2),02x t y t z t t π===<< 步骤:t=[0:0.05:2*pi] x=sin(t);y=cos(t);z=sin(2*t)plot(t,x,'r+:',t,y,'bd-.',t,z,'k*-') 2.plot3 绘制类似田螺线的一条三维螺线方程组:步骤:t=[0:0.1:10*pi]x=2.*(cos(t)+t.*sin(t)) y=2.*(cos(t)-t.*sin(t)) z=1.5*tplot3(x,y,z)3.墨西哥帽子方程:z=步骤:[x,y]=meshgrid(-8:.5:8); z=sqrt(x.^2+y.^2)+eps;Z=sin(z)./z;mesh(X,Y,Z)axis square4. 利用 surf 函数绘制马鞍面方程:2294x y z=-步骤:x=[-25:0.5:25];y=[-25:0.5:25] [X,Y]=meshgrid(x,y)Z=(X.^2/9)-(Y.^2/4)surf(X,Y,Z)5.双曲抛物面方程:22222 x yz a b-=步骤:x=[-25:0.5:25];y=[-25:0.5:25] ezsurfc('X.^2./16-Y.^2./12')实验结果1.2.100-100-1010104.-4040-4-224XX 2/16-Y 2/12Y总结与思考matlab 的常见错误分析Inner matrix dimensions must agree因为在matlab 的输入变量是矩阵,参与运算的矩阵维数必须对应,矩阵响应元素的运算必须全部加dot (点)。

实验二MATLAB绘制图形

实验二MATLAB绘制图形

grid on %在所画出的图形坐标中加入栅格
绘制图形如下
50
10
1
0.8
40
10
0.6
0.4
30
10
0.2
0
1020
-0.2
-0.4
1010
-0.6
-0.8
0
10
-1
-2
0
2
-2
0
2
10
10
10
10
10
10
如果在图中不加栅格
程序如下:
clear x=logspace(-1,2);%在10^(-1)到10^2之间产生50个 对数等分的行向量 subplot(121); loglog(x,10*exp(x),'-p') subplot(122); semilogx(x,cos(10.^x))
(2)plot(x,y): 基本格式,x和y可为向量或矩阵. 1. 如果x,y是同维向量,以x元素为横坐标,以y元素 为纵坐标绘图. 2. 如果x是向量,y是有一维与x元素数量相等的矩阵, 则以x为共同横坐标, y元素为纵坐标绘图,曲线数目 为y的另一维数. 3. 如果x,y是同维矩阵,则按列以x,y对应列元素为 横、纵坐标绘图,曲线数目等于矩阵列数.
y=2*exp(-0.5*x).*cos(4*pi*x);
2
plot(x,y)
1.5
1
0.5
0
-0.5
-1
-1.5
-2
0
1
2
3
4
5
6
7
例4 绘制曲线
t=(0:0.1:2*pi);
x=t.*sin(3*t);
y=t.*sin(t).*sin(t);

matlab实验心得总结

matlab实验心得总结

matlab实验心得总结在通过完成一系列的Matlab实验后,我对这个强大的数学计算软件有了更深入的认识。

通过这些实验,我不仅学到了如何使用Matlab进行数据处理和分析,还体会到了它在科学研究和工程应用中的广泛使用。

实验一:Matlab基础操作在第一次接触Matlab时,我首先学习了它的基本操作。

Matlab提供了友好的用户界面和丰富的命令工具,使得数据处理变得简单且高效。

在实验中,我学会了如何定义变量、进行基本的数学运算和使用矩阵操作等。

这些基础操作为后续的实验打下了坚实的基础。

实验二:数据可视化数据可视化在科学研究和工程领域中起着重要的作用。

在这个实验中,我学会了如何利用Matlab绘制各种图形,如折线图、散点图和柱状图等。

通过调整图形的样式和颜色,使得数据更加直观和易于理解。

同时,我还学会了如何添加标题、坐标轴标签和图例,使得图形具有更好的可读性。

实验三:模拟与仿真Matlab不仅可以进行数据处理和图形绘制,还可以进行模拟和仿真。

在这个实验中,我学会了如何使用Matlab进行数学模型的建立和仿真。

通过设定合适的参数和方程,我可以模拟出各种现实世界中的物理、生物和工程现象。

这对于科学研究和工程设计具有重要的意义。

实验四:信号处理信号处理是Matlab的一个重要应用领域。

在这个实验中,我学会了如何使用Matlab对信号进行分析和处理。

通过应用不同的滤波器,我可以去除信号中的噪声和干扰,提取出感兴趣的信息。

同时,我还学会了如何进行频域分析,通过傅里叶变换将信号转换到频率域,进一步分析信号的频谱特性。

实验五:数值计算Matlab还提供了强大的数值计算功能。

在这个实验中,我学会了如何使用Matlab进行数值计算和优化。

通过使用不同的数值求解方法,我可以解决复杂的数学方程和优化问题,得到精确的计算结果。

这对于科学研究和工程计算具有重要的价值。

总结起来,通过这些实验,我对Matlab的应用能力有了明显的提升。

matlab及应用实验指导书08.9

matlab及应用实验指导书08.9
7
data=[3 9 45 6; 7 16 -1 5] for n=data x=n(1)-n(2) end
(3)For 循环可按需要嵌套。
for n=1:5 for m=1:5 A(n,m)=n^2+m^2 end disp(n) end x=zeros(1,10); for n=1:10 x(n)=sin(n*pi/10); end
x=0:0.1:2*pi; y=sin(x); x1 =0:0.1:pi/2; y1= sin(x1); plot(x,y,'-r') hold on fill([x1,pi/2],[y1,0],'b')
将上面最后一句分别改为 fill(x1,y1,’b’),情况如何变化。
(二) 三维曲线图
格式 plot3(X,Y,Z,S)
x=linspace(0,2*pi,30); y=sin(x);plot(x,y)
(3)绘制 y=sin(x)图形
x=0:0.1:2*pi; y=sin(x); plot(x,y)
可以给图形加标记,格栅线
x =0:0.1:2*pi; y=sin(x); plot(x,y,'r-') title('正弦曲线') xlabel('自变量 x') ylabel('函数 y=sinx') text(5.5,0,' y=sinx') grid
1
实验一 熟悉 MATLAB 环境
一、实验目的 1、熟悉 MATLAB 主界面,并学会简单的菜单操作; 2、学会简单的矩阵输入与运算符; 3、掌握部分绘图函数。
二、实验原理 MATLAB 是以复杂矩阵作为基本编程单元的一种程序设计语言。它提供了各

MATLAB实验二

MATLAB实验二
x,y变化范围均为 [0 2π]。
3. 三维图形
• 三、视点
➢view(az,el)-------------设置观察点方向
az为方位角,el为仰角。 • 方位角为视点位置在XY平面上的投影与X轴形成的角度,
正值表示逆时针,负值表示顺时针。 • 仰角为XY平面的上仰或下俯角,正值表示视点在XY平
面上方,负值表示视点在XY平面下方。
figure grid gtext hold subplot text title xlabel ylabel
创建图形窗口 放置坐标网格线 用鼠标放置文本 保持当前图形窗口内容 创建子图 放置文本 放置图形标题 放置X轴坐标标记 放置Y轴坐标标记
3. 三维图形 • 一、 plot3函数
• 将二维函数plot的功能扩展到三维空间,绘制三维图形。 • 函数格式:plot3(x1,y1,z1,c1,x2,y2,z2,c2,…)
theta=[0:0.01:2*pi];
rho=sin(2*theta).*cos(2*theta);
polar(theta,rho); 绘制极坐标图命令
title('polar plot');
例9、程序:
theta=linspace(0, 2*pi);
r=cos(4*theta);
polar(theta, r);
所组成的画面。
4. 动画设计
• 【例14】 播放一个不断变化的眼球程序段。
• m=moviein(20); 建立一个20个列向量组成的矩阵
• for j=1:20

plot(fft(eye(j+10))) %绘制出每一幅眼球图并保存到m矩阵中
• m(:,j)=getframe;

第二讲 MATLAB 绘图

第二讲 MATLAB 绘图
2015-5-14 18
绘制y=1-exp(0.3*t).*cos(0.7*t)
t=6*pi*(0:100)/100; y=1-exp(-0.3*t).*cos(0.7*t); tt=t(find(abs(y-1)>0.05)); ts=max(tt); plot(t,y,'r-'); grid on; axis([0,6*pi,0.6,max(y)]); title('y=1-exp(-\alpha*t)*cos(\omega*t)'); hold on; plot(ts,0.95,'bo'); hold off; set(gca,'xtick',[2*pi,4*pi,6*pi],'ytick',[0.95,1,1.05,max(y)]); grid on;
绘制曲线
x t cos(3t ) , t 2 y t sin t
t = -pi:pi/100:pi; x = t.*cos(3*t); y = t.*sin(t).^2; plot(x,y)
2015-5-14 10
图形标识

图形标识包括:

图名(title) 坐标轴名(xlabel、ylabel) 图形文本注释(text) 图例(legend)
2015-5-14 22
双纵坐标:plotyy指令

plotyy指令调用格式:
plotyy(x1, y1, x2, y2)
x1-y1曲线y轴在左, x2-y2曲线y轴在右。
例3.7:
x = 0:0.01:20; y1 = 200*exp(-0.05*x).*sin(x); y2 = 0.8*exp(-0.5*x).*sin(10*x); plotyy(x,y1,x,y2);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2 Matlab 绘图操作
实验目的:
1、 掌握绘制二维图形的常用函数;
2、 掌握绘制三维图形的常用函数;
3、 掌握绘制图形的辅助操作。

实验容:
1. 设sin .cos x y x x ⎡⎤
=+⎢⎥+⎣⎦
23051,在x=0~2π区间取101点,绘制函数的曲线。

2. 已知: y x =2
1,cos()y x =22,y y y =⨯312,完成下列操作:
(1) 在同一坐标系下用不同的颜色和线性绘制三条曲线; (2) 以子图形式绘制三条曲线;
(3) 分别用条形图、阶梯图、杆图和填充图绘制三条曲线。

3.
已知:ln(x x e y x x ⎧+≤⎪⎪=⎨⎪+>⎪⎩2
0102
,在x -≤≤55区间绘制函数曲线。

4. 绘制极坐标曲线sin()a b n ρθ=+,并分析参数a 、b 、n 对曲线形状的影响。

5.在xy 平面选择区域[][],,-⨯-8888
,绘制函数z =
6. 用plot 函数绘制下面分段函数的曲线。

,(),,x x f x x x x ⎧++>⎪
==⎨⎪+<⎩23
50
00
50
7. 某工厂2005年度各季度产值(单位:万元)分别为:450.6、395.9、410.2、450.9,试绘制柱形图和饼图,并说明图形的实际意义。

8. 在同一坐标轴中绘制下列两条曲线并标注两曲线交叉点。

(1).y x =-205
(2)sin()cos ,sin()sin x t t
t y t t
π=⎧≤≤⎨
=⎩303
详细实验容:
1.设sin .cos x y x x ⎡⎤
=+⎢⎥+⎣
⎦23051,在x=0~2π区间取101点,绘制函数的曲线。

>> x=(0:2*pi/100:2*pi);
>> y=(0.5+3*sin(x)/(1+x.^2))*cos(x); >> plot(x,y)
2.已知: y x =2
1,cos()y x =22,y y y =⨯312,完成下列操作: (1)在同一坐标系下用不同的颜色和线性绘制三条曲线; >> x= linspace(0, 2*pi, 101);
>> y1=x.*x; >> y2=cos(2x); >> y3=y1.*y2;
plot(x,y1,'r:',x,y2,'b',x,y3, 'ko')
(2)以子图形式绘制三条曲线;
>> subplot(2,2,1),plot(x,y1)
subplot(2,2,2),plot(x,y2)
subplot(2,2,3),plot(x,y3)
(3)分别用条形图、阶梯图、杆图和填充图绘制三条曲线。

subplot(2,2,1),bar(x,y1,'r');
subplot(2,2,2),stairs(x,y1,'b');
subplot(2,2,3),stem(x,y1,'y');
subplot(2,2,4),fill(x,y1,'k');
subplot(2,2,1),bar(x,y2,'r');
subplot(2,2,2),stairs(x,y2,'b');
subplot(2,2,3),stem(x,y2,'y'); subplot(2,2,4),fill(x,y2,'k'); subplot(2,2,1),bar(x,y3,'r'); subplot(2,2,2),stairs(x,y3,'b'); subplot(2,2,3),stem(x,y3,'y'); subplot(2,2,4),fill(x,y3,'k');
3. 已知:
,
ln(,
x
x
e
y
x x x
π
⎧+

⎪⎪
=⎨
⎪++>
⎪⎩
2
2
1
10
2
,在x
-≤≤
55区间绘制函数曲线。

>> x=-5:0.1:5;
>> y=(x+sqrt(pi))/exp(2).*(x>=-5&x<=0)+(1/2)*log(x+sqrt(1+x.^2)).*(x>0&x<=5); >> plot(x,y)
4. 绘制极坐标曲线sin()
a b n
ρθ
=+,并分析参数a、b、n对曲线形状的影响。

>> theta=0:0.01:2*pi;
>> rho=2*sin(2*theta+1);
>> polar(theta,rho,'k')
>> theta=0:0.01:2*pi;
>> rho=1*sin(1*theta);
>> polar(theta,rho,'k')
5.在xy平面选择区域[][]
,,
-⨯-
8888,绘制函数
sin x y
z
x y
+
=
+
22
22 >> x=-8:8;
>> y=x;
>> [x,y]=meshgrid(x,y);
>> z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2);
>> subplot(2,2,1),plot3(x,y,z);hold on
>> subplot(2,2,2),mesh(x,y,z);hold on
>> subplot(2,2,3),surf(x,y,z);hold off
10
10
-1
1
10
6. 用plot函数绘制下面分段函数的曲线。

,
(),
,
x x x
f x x
x x x
⎧+++>

==


+--<

24
3
150
00
150
>> x=-8:0.01:8;
>> y=(x.*x+sqrt(sqrt(1+x))+5).*(x>0)+0.*(x==0)+(x.*x.*x+sqrt(1-x)-5).*(x<0); >> y=plot(x,y)
7. 某工厂2005年度各季度产值(单位:万元)分别为:450.6、395.9、410.2、450.9,试绘制柱形图和饼图,并说明图形的实际意义。

>> value=[450.6;395.9;410.2;450.9];
>> season=[1;2;3;4];
>> b=int8(c==min(value));
>> subplot(1,2,1),bar(season, value, 'stack');
>> subplot(1,2,2),pie3(value,b);
24%
26%
23%
26%
8. 在同一坐标轴中绘制下列两条曲线并标注两曲线交叉点。

(1).y x =-205
(2)sin()cos ,sin()sin x t t
t y t t π=⎧≤≤⎨
=⎩
303
x=-1:1; y=2*x-0.5; plot(x,y); hold on t=0:pi/100:pi; x=sin(3.*t).*cos(t); y=cos(3.*t).*sin(t); plot(x,y); hold off
P=fix((y+2.5)./(x+1).*10); A=rem(P,20)==0; A
Q=find(A==1)
Q =
3 30 最后结果是:
x = 0.1870 y =0.0617
x = 0.2434 y = -0.7252。

相关文档
最新文档