作物耐盐性状研究综述
水稻耐盐性状的分子机制研究

水稻耐盐性状的分子机制研究水稻(Oryza sativa L.)是世界上最主要的粮食作物之一,但同时也是一种耗水量大的作物。
在面对全球气候变化和严峻的水资源短缺问题时,如何提高水稻的耐盐性成为了一个热门话题。
水稻的耐盐性状是由多个基因和环境因素共同作用而形成的。
因此,分子机制研究是提高水稻耐盐性的必经之路。
本文将从水稻耐盐性的分子机制进行讨论。
一、水稻中与耐盐性相关的基因水稻的耐盐性状受到多个基因的调控。
根据科学家的研究成果,至少有三十个基因与水稻的耐盐调节网络相关。
其中包括质膜离子转运蛋白基因、离子通道基因、转录因子基因等。
例如,基因 OsHKT1;5 能够影响离子通道的功能,进而调节水稻的盐分吸收和转运。
基因 PPR756 能够介导 RNA 编辑,与质膜和线粒体功能相关。
基因 VqSAP1 能够调节水稻的酸碱平衡,影响植株的生长和发育。
这些基因的不同组合,对水稻耐盐性的影响也不同。
二、离子调节的机制盐胁迫条件下,植物细胞内外离子生成差异,导致离子稳态失衡。
调节离子转运的蛋白质是水稻耐盐性的关键因素。
其中,K + / Na + 转运蛋白、Na + / H + 交换蛋白、Cation/Proton Antiporter 以及 Chs 一家四名家族蛋白质等协同作用,参与了水稻的离子调节机制。
这些基因编码的蛋白质能够调节离子进入或离开细胞,以达到维持细胞内外离子平衡的作用。
例如,基因 OsHKT1;5 编码的蛋白质实现了对进入根系的钠离子的调控;OsNHX1 能够调节细胞内部的钠离子浓度,以及 pH 值的平衡。
另外,一些离子调节蛋白质具有多层次的调节作用。
例如,SAPS 单反式钾通道蛋白能够通过与 F-box 相结合,调节细胞内外离子平衡、细胞分裂、抗氧化防御和激素信号等多种生理过程。
这些蛋白质的精确调控,是水稻耐盐性的关键因素之一。
三、抗氧化剂和蛋白质途径盐胁迫会改变植物的代谢水平和生理状态。
水稻能够通过抗氧化系统,减轻盐胁迫对植物造成的损害。
玉米耐盐性研究进展

2020.06种植技术盐害是一种主要的非生物胁迫,随着全球土壤盐渍化形势不断加剧,大面积的土壤盐渍化已经成为我国农业发展的主要制约因素之一。
玉米是我国三大大粮食作物之一,其生长影响我国国民经济的发展。
然而玉米属于盐敏感作物,盐害能够抑制其生长和发育,导致产量降低甚至造成颗粒绝收。
与盐渍土壤改良相比,培育耐盐玉米品种是一种经济有效的方法。
1 玉米耐盐的重要性禾本科是最重要的易受非生物胁迫影响的农作物,其中玉米属于盐敏感作物,在缺水或盐碱胁迫时表现出严重的减产,其耐盐性表现出种内变异性[1]。
土壤盐渍化不仅影响玉米的生长更限制它的产量和品质。
当盐浓度超过250mM时玉米受到损害,较高的渗透压导致其籽粒不能正常吸水萌发,造成根部生理代谢不正常,从而抑制生长发育。
2 盐胁迫对玉米生长的影响盐胁迫对玉米的危害主要包含三个方面:渗透胁迫、离子毒害和次级氧化胁迫。
渗透胁迫属于初级胁迫,是由玉米生长过程中缺水造成的一种高渗透压胁迫,通常发生在盐胁迫响应的早期阶段。
种子萌发是植物生长过程中至关重要的阶段,决定玉米能否存活的因素,而苗期是玉米对盐最敏感的时期。
离子毒害是盐胁迫的第二阶段,土壤中的盐分多以离子形式存在,植物在吸水过程中同时吸收大量盐离子。
玉米对NaCl产生的盐害非常敏感,Fortmeier等[2]通过实验探究NaCl和Na 2SO 4在玉米生长过程的影响,证明玉米在盐胁迫第二阶段的主要问题是由Na +毒性而不是Cl -毒性造成的,但是严杰等[3]认为不能排除Cl -对玉米的毒害作用。
次级氧化胁迫是盐胁迫的第三阶段,通常情况下,植物体内活性氧代谢系统保持平衡状态。
当活性氧的含量超过活性氧清除剂的阈值范围时,大量的活性氧会加剧膜脂的过氧化速率,产生丙二醛(MDA),导致细胞膜的通透性增加。
常用MDA作为衡量植物衰老和抗性的指标,其含量能够反映植物遭受盐胁迫的伤害程度。
3 玉米耐盐分子研究进展玉米耐盐性是一个受多基因控制的数量性状,其耐盐机制涉及一系列的形态改变和生理生化过程。
植物抗盐性研究综述解读

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2.3.2生态区间差别不同生态区的调查样本对有机、无机肥的投入量差异也很大(表7,3个生态区表现无机肥的投入大于有机肥,其中沿黄灌区的无机肥投入大于定西地区和陇东地区。
定西地区的调查农户施用有机肥的比例相对最高,由有机肥而来的氮磷钾分别为48.05、22.42、47.78kg/hm 2,分别占到该区小杂粮氮磷钾总投入量的19.7%、9.2%和19.6%;陇东地区和沿黄灌区的小杂粮种植均未施用有机肥,这可能与区域间的施肥习惯有关,定西地区多施有机肥可以发挥肥料的长期效益,而陇东地区和沿黄灌区的农民为了得到短期效益而多以无机肥料为主。
3小结调查结果表明,甘肃省种植的小杂粮肥料投入明显不足,且投入比例不协调。
调查区农户对小杂粮的施肥主要采用基肥或种肥的方式,追肥量较少。
追肥多以氮肥为主,忽略了对于磷钾肥的后期投入。
调查区对有机肥的投入比例较小,并且区域间极不平衡,定西地区施用有机肥的比例和面积相对较大,而灌溉条件充足的陇东地区和沿黄灌区施用有机肥的比例和面积相对较小,甚至不施用有机肥。
参考文献:[1]姬永莲,吴丽岗.甘肃小杂粮生产现状及发展前景[J ].调查研究,2009(6:39-40.[2]任瑞玉,杨天育,何继红,等.甘肃省小杂粮生产优势与发展对策[J ].中国农业资源与区划,2009(2:68-70.[3]吴国忠.甘肃省小杂粮生产现状及发展措施[J ].甘肃农业科技,2003(3:19-21.[4]赵有彪.关于甘肃小杂粮产业化开发的思考[J ].甘肃科技,2007(1:17-18;89.[5]吴朝霞,丁霞.杂粮的营养价值及杂粮保健食品的开发和利用[J ].杂粮作物,2001,21(5:48-50.[6]黎青慧.陕西省黄瓜西红柿施肥调查[J ].西北农林科技大学学报(自然科学版,2003,31(增刊:73-78.(本文责编:郑立龙定西地区16.6619.49048.0522.4247.78陇东地区72.5900000沿黄灌区136.6279.990表7小杂粮区域间有机肥和无机肥投入量kg/hm 2作物无机肥有机肥NP 2O 5K 2O N P 2O 5K 2O 摘要:综述了盐分胁迫对植物的危害和机理,以及植物的抗盐性基本机理和提高植物抗盐性的途径。
作物耐盐机制及作物耐盐分子育种研究进展

作物耐盐机制及作物耐盐分子育种研究进展摘要:本文概述了作物耐盐机理、作物耐盐分子育种(相关基因的克隆及转基因作物)和几种重要作物耐盐研究现状,并对作物耐盐机制研究进行展望。
同时从分子、细胞和个体水平简述作物耐盐机制,为未来的作物耐盐研究提供基本的理论参考。
关键词:耐盐机制分子育种全球有大约三分之一的土地为盐碱地,由于耕作方式的不当,次生盐碱地面积逐年增加,至今全球大约有57亿亩土地受到盐害影响,其面积占据了全球6%的土地面积[1]。
而土壤中盐分过高是抑制植物生长发育的重要环境因素,绿色植物的主要生理过程光合作用、能量和脂肪代谢等都会受到盐胁迫的影响,从而导致作物减产甚至死亡[2]。
目前,农业用地的盐碱化程度仍在不断加重,有研究显示预计到2050年,将有超过50%的耕地盐碱化。
众所周知,全球人口仍在急剧增长,食品安全问题已然成为研究关注焦点。
如何利用盐碱土地对维持农业生产的可持续性发展起到了重要作用。
要想解决此问题,一种方法是优化土壤,降低盐份含量;另一种方法是培育耐盐的作物品种,使其适应盐碱含量较高的土地。
但改良土壤不仅耗资巨大、时间长,而且随着化学物质的大量引入进一步的加重了土壤次生盐碱化,因此,摸清作物耐盐机制并培育耐盐的作物品种是对盐碱地改良的最佳手段。
本文基于查阅大量耐盐相关文献,对作物耐盐机理、作物耐盐分子育种(相关基因的克隆及转基因作物)和几种重要作物的耐盐研究进展进行整理,概述现阶段作物耐盐机制及作物耐盐分子育种研究进展。
同时从分子、细胞和个体水平简述植物耐盐机制方面的重要进展,为未来的实际应用提供基本的理论参考。
1、作物耐盐机制随着分子生物学、生理学和基因组学的发展,人类对于植物耐盐的生理和分子机制也有了更深刻的认识。
在耕地盐碱化日趋严重的今天,研究粮食作物的耐盐机制成为保证人类食品安全的重要举措之一。
盐碱化是指土壤中含有高浓度的可溶性盐。
当土壤的ECs值大于等于4dS/m时,该土地就被称为盐渍化土壤。
十字花科作物耐盐种质研究现状及展望

十字花科作物耐盐种质研究现状及展望十字花科作物耐盐性是指在高盐胁迫环境下,这些作物能够维持正常的生长和发育,其生理生化机制复杂多样。
由于全球气候变化和环境污染,盐碱化现象愈加严重,导致广大耕地盐碱化,造成大量农业损失。
因此,研究十字花科作物的耐盐性,培育出优良的耐盐品种,对于解决农业生产和保障粮食安全具有重要意义。
目前,十字花科作物的耐盐性研究取得了许多进展。
首先,国内外学者通过采用分子生物学和基因组学手段,挖掘了一系列与耐盐性相关的基因。
在积累了大量的耐盐基因序列信息的基础上,通过生物信息学分析,发现了许多良种特有的耐盐基因。
研究表明,高盐环境下盐浓度的提高会引起细胞内离子平衡失调,从而导致生理代谢出现障碍,积极的耐盐品种呈现出了多种适应机制,如调节细胞原代谢途径和脯氨酸代谢途径等。
此外,十字花科作物也会表现出根系分泌物、离子分配和叶片韧皮性等对抗高盐的特征。
基于现有研究成果,发掘和利用耐盐种质资源已成为研究耐盐机制和品种培育工作的重要手段。
研究表明,十字花科作物的耐盐性存在差异,不同品种对盐碱胁迫的适应力不同,而广泛的地理分布使十字花科作物资源多样性极其丰富。
例如,通草等良种在逆境下表现出较好的生长和发育能力,已经被开发成为优良的耐盐品种,为解决盐渍化土地治理和推广耐盐作物种植提供了可靠的种质资源。
然而,目前十字花科作物的耐盐研究还面临着许多挑战和难点。
其中之一是对耐盐作物遗传变异机制的深入理解。
此外,当前的措施在尝试开发耐盐品种时多为基于表型选择,而缺少对基因型的准确检测和优选,导致了品种品质不稳定、收益不高、抗风险能力较差等问题。
因此,未来的研究应着眼于强化对基因型、环境因素与耐盐表型的关系的理解,并建立适用的遗传背景分析模型,推进耐盐品种的精准培育。
在此基础上,不断挖掘和利用更多优秀的耐盐种质资源,为农业生产和粮食安全做出贡献。
作物抗盐生理研究进展

作物抗盐性研究进展苏利荣摘要:植物耐盐性是多基因控制的复合遗传性状,植物的耐盐机理涉及到植物生理生化等多个方面的反应。
近年来,人们从不同方面对植物的耐盐性进行了研究,也取得了一定的成果。
本文就植物的耐盐机理、选育耐盐植物的方法和耐盐的生理指标等方面作一综述,以期为深入揭示植物抗盐机理,建立植物抗盐性评价生态指标体系以及筛选抗盐植物种质提供依据。
盐碱土又称盐渍,包括盐土、盐化土以及碱土、碱化土。
盐碱土是陆地上广泛分布的一种土壤类型,约占陆地总面积的25%。
我国从滨海到内陆,从低地到高原都分布着不同类型的盐碱土壤,总面积约3000多万hm2,其中已开垦的有600多万hm2,还有2000多万hm2盐荒地等待开垦利用[1]。
目前,全国约有600多万hm2的次生盐渍化土壤,约占10%耕地总面积。
我国人均资源无论是土地或是水都低于世界平均水平,在人口、粮食与耕地日益紧张的今天,特别是沙漠和干旱地区,合理开发与利用盐渍土资源成为重要课题。
因此,了解植物的耐盐机理,研究盐胁迫下植物的生理生化变化,对探讨盐胁迫作用机理及提高植物抗盐性具有重要的意义。
土壤盐渍化是影响农业生产和生态环境的严重问题,在盐胁迫下,植物生长缓慢,代谢受抑制,严重时出现萎蔫,甚至死亡。
因此,土壤盐渍化也已成为国际上和生物科学技术迫切需要解决的重大课题。
就我国而言,盐碱土主要分布在平原地区,地形平坦,土层深厚,一般都有较丰富的地下水源,对发展农业生产,尤其对于实现农业机械化、水利化极为有利,是一类潜力很大的土壤资源。
目前,人们主要通过两种方式来利用盐碱地:一是通过合理的排灌、淡水洗涤、施用化学改良药剂来改造土壤[2]。
实践证明,该方法成本高,效果并不理想;二是选育和培育耐盐植物品种以适应盐渍环境并最终达到改善土壤的目的,此方法更加具有应用前景。
1植物耐盐性1.1植物耐盐性的含义植物耐盐性是指植物在盐胁迫下维持生长、形成经济产量或完成生活史的能力,这种能力存在着明显的种间及种内差异。
作物耐盐性育种的研究进展

四.几种主要粮食作物的耐盐品种
经过多年的科学鉴定和生产实践,不同的盐渍地 区根据自己的生产需要通过引种、系统选育、辐 射诱变等不同育种方法引进、筛选和培育了各种 作物的许多耐盐品种,各种作物的耐盐品种在盐 渍地区的到了一定的普及和推广,取得了良好的 经济效益和社会效益,也得到了种植者的认可, 有的甚至成为作物耐盐性科学研究和生产应用的 对照品种。
6.生物工程
途径: 1)以组织培养筛选自发和诱发的耐盐突变体,获得 耐盐体细胞无性系变种。 2)通过原生质体培养,获得耐盐体细胞和体细胞杂 核种。 3)通过基因工程获得耐盐新品种。
针对脯氨酸、甜菜碱等植物耐盐的渗透调节物质, 挖掘耐盐相关基因,并进行遗传转化,创造新个 体,选育耐盐新品种。
实例: 美国和以色列的科学家在大肠杆菌中已发现影响 脯氨酸生成的基因并定名为OSM基因;美国加利 福尼亚大学Davis正在克隆K/Na基因;中国农业科 学院作物品种资源研究所正在克隆野生大麦的耐 盐相关基因,并且获得了相关cDNA片段。
4.远缘杂交 大多数作物品种间耐盐性差异小,因而通过一般的种内杂 交来改良其耐盐性的可能性很小,可以用野生种质资源的 变异导入到栽培种中,通过远缘杂交将获得耐盐性强、适 应性广的新品种。 E.Epstein等利用海边生长的野生番茄品种和栽培种杂交, 获得能用70%海水灌溉的耐盐番茄品种,已具有商品性价 值。 J.Dvorak报道了将耐盐性很高的10倍体冰草的染色体转移 到小麦中,合成了双二倍体,可以在18g/L混合盐分和 14.6g/LNaCl溶液之中生长并结实。创造相应含有冰草耐 盐基因相应染色体的附加系、代换系和异位系都表现较高 的耐盐性。
3.杂交育种
耐盐性状受一些主效基因控制,至少受三对基因控制。 我国东北的一种大豆含有隐性基因fe,它以纯合形式控制 低离子利用率。
十字花科作物耐盐种质研究现状及展望

十字花科作物耐盐种质研究现状及展望十字花科作物是农业中的重要作物群体之一,包括了许多重要的农作物品种,如油菜、芜菁、芸薹等。
这些植物在农业生产中占据着重要的地位,然而在全球气候变化和土地资源逐渐减少的情况下,盐碱地的利用成为了一个迫切需要解决的问题。
因而,耐盐种质的研究成为了当前的热点话题之一。
本文将对十字花科作物耐盐种质的研究现状及展望进行探讨。
一、耐盐种质研究现状1.目前的研究主要集中在模式植物拟南芥上。
拟南芥具有较强的抗逆性,是许多植物耐逆性研究的模式植物。
近年来,许多研究者利用拟南芥进行了盐胁迫下的耐盐机制研究,揭示了许多重要的耐盐基因和信号通路。
2.耐盐种质的筛选与育种。
在传统的作物育种中,研究者通过对不同品种进行盐胁迫试验,筛选出具有较强耐盐性的种质,然后进一步进行育种改良,培育出更具有耐盐性的新品种。
这是目前耐盐种质研究的另一个重要方向。
3.分子生物学与遗传学研究。
近年来,随着分子生物学和遗传学的发展,许多研究者开始从基因水平对耐盐种质进行研究。
通过克隆和功能验证一些耐盐相关基因,揭示其在耐盐过程中的作用机制。
4.耐盐生理学研究。
生理学研究可以揭示植物在盐胁迫下的生理和生化响应,为进一步的耐盐机制研究提供重要的理论基础。
1.研究模式植物。
尽管在拟南芥上已经取得了重要成果,但是拟南芥毕竟与农作物有着差异,因而需要将这些成果转化到农作物中。
未来的耐盐种质研究可以将更多的目光转向农作物本身,利用先进的技术手段对具体的农作物进行耐盐性研究。
2.耐盐种质的创新利用。
在传统的耐盐种质挖掘基础上,可以利用现代生物技术手段对其进行改良和利用。
3.耐盐种质的资源保护和利用。
很多耐盐种质分布在世界的一些极端环境中,如盐碱地,这些资源的保护和合理利用对于人类应对气候变化、食品安全具有重要意义。
4.构建多层次的耐盐种质数据库。
建立一个综合的耐盐种质数据库,包括基因型和表型数据,为研究者提供参考和查询的资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作物耐盐性状研究进展
I耐盐性含义和耐盐机制种类
耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。
有活性氧清除系统的植物通过SOD超氧化物歧化酶)、POD 过氧化物酶)、CAT(过氧化氢酶)将活性氧清除出去,免受盐胁迫
一般盐土含盐量在0.2%~ 0.5%时就已对植物生长不利,而盐土表层
含盐量往往可达0.6%〜10%
丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCI浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。
2耐盐性的鉴定技术和指标
耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。
群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。
3对耐盐机制的研究
泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的
泌盐机理,是一个主动的生理过程。
此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体外。
稀盐:形态学上的适应:茎或叶的肉质化.碱蓬(黄须菜)茎或叶的薄壁细胞组织大量增生,细胞数目增多,体积增大,可以吸收和储存大量水分,既可以克服植物在盐渍条件下由于吸水困难造成的水分不足,又可将吸收到体内的盐分稀释,保持低水平。
拒盐植物的抗盐机理
拒盐:不让外界盐分进入植物体(大麦)或允许土壤中的盐分进入
根部,但进入根部后大部分储存在根部,不再向地上部分运输,使地上部分盐分浓度保持较低水平,从而避免盐分的伤害作用。
如芦苇
脯氨酸是最重要和有效的有机渗透调节物质。
几乎所有的逆境,如干旱、低温、高温、冰冻、盐渍、低pH 营养不良、病害、大气污染等都会造成植物体内脯氨酸的累积,尤其干旱胁迫时脯氨酸累积最多,可比处理开始时含量高几十倍甚至几百倍。
脯氨酸在抗逆中有两个作用:
是作为渗透调节物质,用来保持原生质与环境的渗透平衡。
它可与胞内一些化合物形成聚合物,类似亲水胶体,以防止水分散失。
二是保持膜结构的完整性。
脯氨酸与蛋白质相互作用能增加蛋白质的可溶性和减少可溶性蛋白的沉淀,增强蛋白质的水合作用。
盐胁迫与信号传递:现已确定,细胞内Ca2+信号是最重要的信号分子之一,处于调节细胞代谢和生长发育的多种信号途径的交叉点上。
钙离子可以减缓植物盐害、增强植物耐盐性,其重要作用在于能维持细胞膜完整性,并调节离子运输等。
盐胁迫下,细胞游离Ca2+浓度的增加显著减少了细胞Na 啲浓度,这可能是通过Na+吸收和运输两方面完成的,有证据表明:Ca2+是通过降低质膜透性来减少Na+进入细胞的。
当植物受到盐胁迫时,细胞内的Ca2+浓度增加,Ca2+通过与其主要受体CaM结合,从而进一步激活适当的蛋白激酶激发细胞产生应激反应,这Ca2+的一般作用方式。
通过栽培措施也可提高耐盐性[13]:培肥、中耕、水旱轮作、地膜覆盖、灌水洗盐、淤泥压盐等。
另外,还有化学物质改良(如石膏)、种子处理(如VB6)等措施。
4耐盐品种的选育
耐盐品种选育的方法有杂交和回交育种、远缘杂交、体细胞突变筛选、分子标记辅助选择聚合育种、转基因育种、分子设计育种等。
5.提高植物抗盐性途径
(1)选育抗盐品种:采用组织培养等新技术选择抗盐突变体,培养
抗盐新品种。
(2)抗盐锻炼:播种前用一定浓度的盐溶液浸种。
(3)使用生长调节剂:利用生长调节剂促进作物生长,稀释体内盐
分。
脱落酸
ABA是一种胁迫激素,它在植物激素调节植物对逆境的适应中显得最
为重要。
ABA主要通过关闭气孔,保持组织内的水分平衡,增强根的透性,提
高水的通导性等来增加植物的抗性。
在低温、高温、干旱和盐害等多种胁迫下,体内ABA含量大幅度升高,这种现象的产生是由于逆境胁迫增加了叶绿体膜对ABA的通透性,并加快根系合成的ABA向叶片的运输及积累所致。
外施脱落酸对抗逆性的影响许多试验表明,外施适当浓度(10-6〜
10-4 mol • L-1)的脱落酸可以提高作物的抗寒、抗冷、抗盐和抗旱能力。
外施脱落酸后要经过一定时间(24 h以上)的代谢变化,才能
提高作物的抗逆性。
植物生长延缓剂能提高植物体内脱落酸的含量,提高抗逆性,已被广泛地应用于生产。
(4)改造盐碱土:合理灌溉,泡田洗盐,增施有机肥,种耐盐绿肥和耐盐树木以及耐盐碱作物
外施脱落酸提高抗逆性的原因,可以归纳为下列3点:
(1)减少膜的伤害逆境会伤害生物膜,而脱落酸可能使生物膜稳
定,减少逆境导致的伤害。
有人认为脱落酸可以提高膜烃酰链(hydrocarbon acyl chain )的流动性;有人则认为脱落酸阻止还原
态谷胱甘肽的减少;也有人认为脱落酸使极性脂类脂肪酸去饱和作用。
(2)减少自由基对膜的破坏经脱落酸处理后,会延缓SO併口过氧化氢酶等活性的下降,阻止体内自由基的过氧化作用,降低丙二醛等有毒物质的积累,使质膜受到保护。
(3)改变体内代谢外施脱落酸,可使植物体增加脯氨酸、可溶性糖和可溶性蛋白质等的含量,从而使植物产生抗逆能力。
植物经历了某种逆境后,能提高对另一些逆境的抵抗能力,这种对不良环境之间的相互适应作用,称为交叉适应(或交叉保护)。
干旱或盐处理可提高水稻幼苗的抗冷性;
生长素能降低玉米根系对Na啲吸收能力
(5)利用基因工程提高植物抗盐性。