220kv变电站直流系统

220kv变电站直流系统
220kv变电站直流系统

220kv变电站直流系统

目录

1.什么是变电站的直流系统

2.变电站直流系统的配置与维护

3.直流系统接地故障探讨

4.怎样提高变电站直流系统供电可靠性

5.如何有效利用其资源

1.什么是变电站的直流系统

变电所是电力系统中对电能的电压和电流进行变换、集中和分配的场所。变电站内的继电保护、自动装置、信号装置、事故照明和

电气设备的远距离操作,一般都采取直流电源,所以直流电源的输出质量及可靠性直接关系到变电站的安全运行和平稳供电。变电站的直流系统被人们称为变电站的“心脏”,可见它在变电站中是多么的重要。直流系统在变电站中为控制、信号、继电保护、自动装置及事故照明等提供可靠的直流电源。它还为操作提供可靠的操作电源。直流系统的可靠与否,对变电站的安全运行起着至关重要的作用,是变电站安全运行的保证。

(1)220kv变电站直流母线基本要求:

蓄电池组、充电机和直流母线

1.设立两组蓄电池,每组蓄电池容量均按单组电池可为整个变电站直流系统供电考虑。

2.设两个工作整流装置和一个备用整流装置,供充电及浮充之用,备用整流装置可在任一台工作整流装置故障退出工作时,切换替代其工作。

3.直流屏上设两段直流母线,两段直流母线之间有分段开关。正常情况下,两段直流母线分列运行,两组蓄电池和两个整流装置分别接于一段直流母线上。

4.具有电磁合闸机构断路器的变电站,直流屏上还应设置两段合闸母线。

5. 220kV系统设两面直流分电屏。分电屏Ⅰ内设1组控制小母线(KM Ⅰ)、1组保护小母线(BMⅠ);分电屏Ⅱ内设1组控制小母线(KMⅡ)、1组保护小母线(BMⅡ)。

6. 110kV系统设1面直流分电屏,屏内设1组控制小母线(KM)、1组保护小母线(BM)。

7. 10kV/35kV系统的继电保护屏集中安装在控制室或保护小间的情况下,在控制室或保护小间设1面直流分电屏。

8.信号系统用电源从直流馈线屏独立引出。

9.中央信号系统的事故信号系统、预告信号系统直流电源分开设置10.每组信号系统直流电源经独立的两组馈线、可由两组直流系统的两段直流母线任意一段供电。

11.断路器控制回路断线信号、事故信号系统失电信号接入预告信号系统;预告信号系统失电信号接入控制系统的有关监视回路。12.事故音响小母线的各分路启动电源应取自事故信号系统电源;预告信号小母线的各分路启动电源应取自预告信号系统电源。13.公用测控、网络柜、远动柜、保护故障信息管理柜、调度数据网和UPS的直流电源从直流馈线屏直接馈出。

(2)、直流系统运行一般规定:

(1)、220Kv变电站一般采用单母线分段接线方式,110Kv变电站一般采用单母线接线方式。直流成环回路两个供电开关只允许合一个,因为母联开关在断开时,若两个开关全在合位就充当母联开关,其开关容量小,线型面积小,又不符合分段运行的规定。直流成环回路分段开关的物理位置要清楚,需要成环时应先合上母联开关再断开直流屏上的另一个馈线开关。

(2)、每段直流馈线母线不能没有蓄电池供电。

(3)、充电机不能并列运行。

(4)、正常情况下,母联开关应在断开位置。

(5)、绝缘检查装置、电压检查装置始终在运行状态。

(6)、投入充电机时先从交流再到直流。停电时顺序相反。

(7)、母线并列时首先断开一台充电机,投入母联开关,在断开检修蓄电池。

(8)、母线由并列转入分段时首先合上检修蓄电池,断开母联开关,再投入充电机。

2.变电站直流系统的配置与维护

A:配置

220kV变电站直流系统设计依据是DL/ T5044—95《火力发电厂、变电所直流系统设计技术规定》,本规定适用于采用固定型防酸式铅蓄电池。

一、要求220kV变电站具备高可靠性直流电源的原因:

1.1 部分变电站建设规模为主变容量3X 150MVA或3X180MVA,且为枢纽站。

1.2 220kV变电站主保护亦实现双重化,采用两套不同原理、不同厂家装置;断路器跳闸回路双重化;且均要求取自不同直流电源。 1.3 线路的两套纵联差动保护、主变压器的主保护和后备保护均分别由独立的直流熔断器供电。

1.4 所有独立的保护装置都必须设有直流电源故障的自动告警回

路。

1.5 变电站综合自动化水平提高,监控系统高可靠运行要求。二、目前单组蓄电池运行、维护存在的主要问题:

2.1 事实证明:要掌握蓄电池运行状态,做到心中有底、运行可靠,必须进行全容量核对试验;然而直流系统配置一组蓄电池,给运行维护造成了极大困难。

2.2 现有220kV变电站蓄电池只对蓄电池组进行部分容量试验,检测出损坏严重的蓄电池;因进行全容量试验工作繁琐因难,部分单位回避容量试验,而不能完全掌握蓄电池的实际运行状态。

2.3 就对各发供电单位已运行的各型式蓄电池统计表明,使用寿命一般为7年到10年;且这期间尚需对个别落后电池维护处理才能够保证整组蓄电池使用年限。对于仅一组蓄电池而言,整个更换期间同样要承担风险运行。

2.4 蓄电池组由106只-108只(无端电池)或118只一12O只(有端电池)单体电池串联组成,若其中一只电池容量下降后,则表现为内阻增大、严重者相当于开路.也就是说:一只电池损坏,祸及整组电池不能发挥作用。目前检测的最佳方法是将浮充机停运,直流负荷由蓄电池组供电;对于仅有一组蓄电他的直流系统,若存在有开路情况.则造成全站失去直流。

2.5 整流设备的好坏也影响蓄电池的寿命。新近入网交流整流设备,虽然具有充电、均衡充电、浮充电自动转换功能,但功能还不完善。如浮充电缺少温度补偿,温度低时充电容量不足、温度高时容易

过充电,造成电池漏液鼓肚现象,缺乏单体电池端电压测量,当有2—3只电池充容量不足不能发现时就影响整组电池寿命。

2.6 近2—3年间投运的变电站蓄电池大多采用全密封阀控式铅酸电池,因不能象原固定防酸式铅酸蓄电池正常远行中能够通过测单体电池电压、量其比重、观其外观而综合分析判断电池运行状态。其日常仅能靠测量单体电池进行监视,运行状态好坏难以充分把握。2.7 对蓄电池容量的在线监测现在仍是一大难题。对阀控式全密封蓄电池能否依据某—指标数据判断或多项指标数据综合判断运行状态尚处于探索时期。

3 220kV变电站直流系统配置两组电池的必要性及优点

3.1 正在编写制订的《阀控式铅酸蓄电池运行、维护导则》国家标准,明确要求蓄电池必须进行容量试验。

3.2 220kv变电站内通信用直流系统按有关规定均配置二组48V 蓄电池。而220kV变电站控制、保护、信号、安全自动装置等负荷同样需要高可靠的直流系统。

3. 3 由于单组蓄电池不能很好的满足22kV变电站运行可靠性要求,且运行维护困难,故此 220kV变电站直流系统配置两组蓄电池是必要的。

3. 4 220kV变电站直流系统配置两组蓄电池,完全满足运行要求,并符合部局有关继电保护反措对直流供电的要求,采用该系统对增加控制保护设备运行的可靠性有较重要的意义。

3.5 220kV变电站配置两组全容量蓄电池组或两组半容量蓄电池

组后,从简化母线结构、减少设备造价、节约能源、避免降压装置故障开路造成母线失压,扩大为电网稳定事故和更大设备事故出发,可考虑直流动力,控制母线合一,去掉端电池及调压装置,使直流系统进一步简化、可靠。

4 220kV变电站直流系统配置两组蓄电池方案

4.1 为了保证两组蓄电池能够独立工作,相互间不影响,保持自身特性,采取不完全并联运行方式,即两组蓄电池充、放电独立,相互间不互充放。

4.2 根据变电站的建设规模、负荷地位和负荷水平,可选择采用下列不同的配置方案:

4.2.1 采用两组全容量蓄电池组、三台充电机、直流负荷母线分段接线。此方案是完备的方案,在各种运行方式下,能够保证提供可靠直流电源。

4.2.2 采用两组全容量蓄电池组、二台充电机、直流负荷母线分段接线。

4.2.3 为进一步降低工程费用,可采用两组半容量蓄电池不完全并联运行,配置二台充电机,直流母线分段。

5 结束语:

直流系统是变电站二次设备的生命线,直流系统故障就有可能影响到电网稳定和设备安全。根据现在220kV变电站对直流电源可靠性要求进一步提高,及蓄电池运行、维护的需要,并考虑220kV变电站直流系统网络与蓄电池直流电源可靠性匹配要求,220kV变电站直流

系统应配置两组蓄电池,虽在经济上多投入,但其运行可靠性却得到了大幅度提高,且运行方式灵活、维护简便。

B:维护

电力直流系统的维护现状:

现在的变电站一般都是无人值守的,智能高频开关直流电源系统可通过监控串口与变电站后台的监控实现通讯,可在调度端实现对直流系统的“三遥”. 运行人员或专职直流维护人员定期对直流设备进行一般性的清扫、日常检查等工作.对充电设备只进行巡检,对蓄电池组进行日常维护和年度放电核对容量.。

.220KV设两组蓄电池,110KV一般装设一组蓄电池,在有条件时220KV最好装设两组蓄电池,因为220KV的继电保护装置是双重化的,从电流互感器二次侧到断路器跳闸线圈都是双重化,因此,直流系统也宜相应的设置两组,分别对两套保护及跳闸线圈供电,以利系统安全运行.。

在正常运行情况下,变电站的二次设备只需由充电模块来供电就行了.现有的变电站,断路器一般有电磁合闸方式和储能合闸方式两种.在电磁式断路器进行合闸操作时,要求直流电源能提供瞬时的合闸电流(20~200ms内提供数百安培的大电流),显然仅由充电模块来供电是远远不够的,这时蓄电池组就发挥了重要的作用,它能无间断地提供大电流,保证断路器的正常合闸,这也是直流系统为什么要有合闸母线的原因了.在储能合闸方式下,合闸电流远小于充电模块的额定输出电流,不用蓄电池来合闸.现在新建的变电站一般都是这种储

能式的断路器,这时直流系统也就可以不要合闸母线。

当电网发生事故时,必然使交流输入电压下降,当充电模块不能正常工作时,蓄电池无间断的向直流母线送电,毫不影响直流电源屏的对外功能,保证二次设备和断路器的正确动作,确保电网的安全运行.而作为最后保障的蓄电池,如果其容量的不足将会产生严重后果.所以,蓄电池的重要性就可想而之了,其维护一直是最为重要的问题.。

电池巡检仪作为在线监测装置,可实时发现落后或故障电池,并可检测电池组的温度是否处于正常范围内,但直流系统工作时输出电流较小,电池容量的不足或漏液、破损很难通过电池巡检仪发现,而电池内阻和电池容量的在线测试,准确度依旧不高,其测量精度和可靠程度通常只用于定性分析.所以还是需要运行人员或专职直流维护人员对蓄电池进行定期巡视。

由于电池品牌、型号及电池状况的不同,应根据实际情况通过监控模块重新调整电池充电参数,以保证电池处于良好工作状态.蓄电池寿命一般为8~ 10年左右,影响蓄电池寿命的主要因素有:1、过放电;2、充电压设置不合理,充电电流过大或过小; 3、充电设备的性能超标;4、温度。

所以,我们不但要定期对蓄电池组做放电实验,还要定期测试充电设备的稳压精度、稳流精度及纹波系数、充电机效率等性能参数。

3.直流系统接地故障探讨

直流电源作为电力系统的重要组成部分,为一些重要常规负荷、继电保护及自动装置、远动通讯装置提供不间断供电电源,并提供事故照明电源。直流系统发生一点接地,不会产生短路电流,则可继续运行。但是必须及时查找接地点并尽快消除接地故障,否则当发生另一点接地时,就有可能引起信号装置、继电保护及自动装置、断路器的误动作或拒绝动作,有可能造成直流电源短路,引起熔断器熔断,或快分电源开关断开,使设备失去操作电源,引发电力系统严重故障乃至事故。因此,不允许直流系统在一点接地情况下长时间运行,必须加强在线监测,迅速查找并排除接地故障,杜绝因直流系统接地而引起的电力系统故障

1、直流系统接地查找一般原则

(1)、“直流接地”信号发出后,可通过直流屏监控器和绝缘检查装置找出接地支路号及接地状态,支路号的排列大都是按直流馈线屏馈线开关从上至下或从左到右的顺序,绝缘检查装置还可以显示接地电阻(接地电阻小于15-20千欧时报警),判断接地程度,可通过绝缘检查开关判断正对地、负对地电压,判断接地程度。有时绝缘检查装置判断不出支路只报“直流母线接地”,此时有可能直流母线接地,也可能是支路接地。

(2)、直流接地信号发出后,必须停止二次回路上的工作,值班员应详细询问情况,及时纠正修试人员的不规范行为。

(3)、利用万用表测量正对地、负对地电压,核对绝缘检查装置的准确性。万用表必须是高内阻的,2000欧/伏,否则会造成另一点接地。

(4)、试拉变电站事故照明回路。

(5)、试拉检修间直流电源回路。

(6)、试拉380伏配电直流电源回路。

(7)、试拉通讯远动电源回路。

(8)、解列蓄电池。

(9)、解列充电机。

(10)、1段母线负荷倒至2段母线,判断1段母线是否接地。(11)、使用接地查找仪对控制、保护、信号回路逐一查找。

2.造成变电站直流系统接地的几种原因:

(1)雷雨季节,室外端子箱或机构箱内潮湿积水导致直流二次回路中的正电源或负电源对地绝缘电阻下降,严重者可能到零,从而形成接地。

(2)部分型号手车开关的可动部分与固定部分的连接插头或插座缺少可靠的绝缘隔离措施,手车来回移动导致其中导线破损,从而使直流回路与开关金属部分相接触,从而导致接地。

(3)部分直流系统已运行多年,二次设备绝缘老化、破损,极易出现接地现象。

(4)因施工工艺不严格,造成直流回路出现裸线、线头接触柜体等,引起接地。

3.查找接地故障的基本原则和方法:

(1)一般处理原则:根据现场运行方式、操作情况、气候影响来判断可能接地的地点,按照先室外后室内,先合闸后控制,由总电源到

分路电源,逐步缩小范围的原则,采取拉路寻找、处理的方法。应注意:切断各专用直流回路的时间不要过长(一般不超过3秒钟),不论回路接地与否均应合上。

(2)具体处理方法:首先,了解现场直流电源系统构成情况,通过直流系统绝缘监测装置或接地试验按钮初步判断是直流正极接地还是负极接地(以下假设绝缘监测可靠,并假设正接地)。然后,瞬时切除所有合闸电源开关,如接地信号消失,说明接地点在合闸回路,应对站内合闸回路用同样方法拉合负荷开关或解除正电源端,进行分路检查、判断;如监测装置仍报接地,则说明接地点在控制、信号等回路,则应进一步用同样方法检查直流屏、蓄电池柜及站内各保护屏、控制屏、信号屏及其控制回路。查明接地点属于哪一输出电源回路后,应迅速拉合接地回路的直流负荷开关或拔插回路内的正电源保险,并根据绝缘监测装置报警情况判断接地点在开关(保险)之前或之后。判断清楚后,根据查出的范围,迅速解除范围内相关设备的正极端子,观察报警信号,判断接地点是否在这一部分设备内。然后继续按照以上原则和方法,逐步缩小查找范围,直至找出接地点。

4.总结:

造成变电站直流系统接地的因素较多,为了较好的解决这一问题,在日常运行维护中还应视具体情况采取不同措施:

(1)严格二次设备施工工艺,发挥主观能动性,减少接地故障的发生概率。如对室外端子箱、机构箱等加强密封,加装防潮除湿设备或材料;对手车开关的活动部位采取措施提高其绝缘性能,如用绝缘材

料包裹其线头部分等,避免因其随手车活动引起接地;对绝缘老化,已不能满足对地绝缘电阻要求的控制电缆及有关二次设备及时更换。(2)加强断路器、隔离开关、手车等一次设备的运行维护管理。严格断路器、隔离开关等具有机械传动部分设备的操作规程,避免因操作不合理造成接地故障。

(3)查找处理接地故障时严格遵守相关电气设备检修运行规程要求,并结合现场实际条件进行。禁止单人工作,禁止直流电源长时间停止运行(尤其在天气条件不允许的情况下),拆除、恢复各端子、各开关的时间应尽可能短。

4.怎样提高变电站直流系统供电可靠性

1 概述:

供电公司220KV及以下变电所的直流供电系统为环状系统,若一个元件故障可能会引起整个系统的瘫痪,达不到电力系统的安全稳定的要求。而近两年来,随着电力系统的飞速发展,保护设备的增多,对直流系统可靠性和稳定性的要求越来越高,直流系统故障将严重影响到系统的安全稳定运行。针对这一问题我们进行了大量的调查与分析,并发现220KV及以下变电所的直流供电系统存在:直流系统接线方式不合理;保护直流回路用交流断路器;蓄电池和充电装置数量都不符合要求。

2 直流系统供电现状:

直流系统事故后果严重,严重的可造成变电所直流系统全部停电,造成一次设备处在没有保护和监视的不可控状态,不能反应一次设备的故障,极易造成一次设备事故范围的扩大,造成区域电网的大面积停电事故;经过调查发现,该局的变电所普遍采用环状供电方式。

环状供电方式示意图

环状供电方式是指将两个独立的直流供电系统在其下一级直流支路中连接,当分支直流元件故障时,非故障母线将断开供电回路,这样扩大了直流故障范围。严重时会使整个变电所处于无直流状态下,对系统正常运行造成重大的安全威胁。同时我们对保护直流回路用的断路器情况进行了统计(见表1)。

表1 各电压等级变电所保护用直流断路器配置情况调查表

交流断路器作为直流电路的保护元件具有局限性。由于交流电流的电弧容易熄灭,故其断路器的动静触点之间的开距小,不能达到拉弧作用,而直流瞬动电流是交流瞬动电流的1.4~2倍,因此在直流回路中断路器不能可靠断开,并且致使交流断路器损坏,从而造成直流系统事故进一步扩大;通过上表我们看到直流系统中采用交流断路器的二次设备占总设备数的2/3。

我们对2000年以来出现的直流供电系统的缺陷进行了分析,发现主要存在以下三个方面的问题:

1、直流供电支路故障造成变电所直流供电系统全部停电。

2、直流回路开关损坏严重。

3、蓄电池和充电装置数量都不符合要求。

3.完善直流系统供电方式:

采取辐射状供电方式,增加蓄电池和充电装置数据

220KV及以上变电所应满足两组蓄电池,且两套直流电源系统完全独立,并设两段独立的保护电源小母线。

3.1.2 各级直流母线分段开关正常运行时应断开。

控制直流母线分为两段,且控制直流母联开关正常运行时应断开。 220KV设备双套保护装置的保护电源应取自不同的独立直流电源系统,接在不同的保护电源小母线。

如果断路器只有一组跳闸线圈,失灵保护装置电源和具有远跳功能装置的电源应与相对应的断路器操作电源取自不同的直流电源系统。采用专用的直流断路器

根据保险配置情况选购GM型(两段保护)、GMB型(三段保护)系列直流断路器,并进行直流断路器的安秒特性及动作电流的检验,并绘制出三段式保护直流断路器保护特性曲线:Int-过载长延时断路器起始动作值

Icu-断路器极限短路分断能力

Iop2-断路器延时动作电流

lopl-短路瞬时断路器动作电流

通过试验发现G系列直流断路器作为替代直流回路中的交流断路器,具有良好的三段保护功能。

过载长延时保护:能在故障电流较小时,根据电流的大小进行反延时动作,能防止线路电缆发热进而造成绝缘破坏和起火。

短路短延保护:能够防止越级动作带来的事故扩大,保证故障电流仅仅由距离故障点最近的断路器来切除,还可作为下一级保护的后备保护

短路瞬时保护:能够在故障电流较大时瞬时切除故障回路,避免对设备及线路的动稳定性带来较大的危害。

结束语:

为防止和杜绝变电所直流系统事故,确保电网的安全稳定运行,我们对变电所的直流系统的不足做了进一步完善,消除了造成直流系统故障的安全隐患,进一步减小了变电所发生直流系统事故的可能性,在保证直流系统安全稳定运行的同时也保证了继电保护及自动装置的可靠运行。

5.如何有效利用其资源

变电所直流系统为继电保护以及开关机构提供保护、信号、动力能源;变电所UPS为远动、通讯、微机监控装置提供不间断的电源。多年来,根据各变电所直流设备运行现状,发现从设计、规划、审批、运行、维护等环节存在管理弊端,不同程度地造成设备重复投资、资源浪费等现象。

近年来,随着两网改造,设备更新升级,变电所的继电保护及其

自动化使得当地监控、信息数据采集、计量等专业相互渗透。对于变电所直流系统,如在变电所直流系统电源保证安全可靠性的前提下,即直流系统蓄电池容量和绝缘水平满足运行参数要求,变电所UPS实现集中配置(废除UPS自带蓄电池配置)是可行的。

1 变电所交、直流电源运行

(1)所用电380/220V低压系统:

变电所所用电380/220V系统电源的质量、可靠性较差。主要表现为:

①交流失电(全所失电、互投时间间隔长、暂态停电);

②欠压、过压(一般变电所自备电源较高,末端所电压不易调节,闪变);

③电压短时波动(如电气化铁路干扰,谐波畸变,电压聚降、瞬变);

④电压三相不平衡(所内负载不平衡,中性线断);

⑤二次设备共模、差模超标(接地和泄露电流)等故障。

对于变电所的综合自动化装置、计算机监控、远动装置、信息数据采集、微机保护、脉冲式电能表等采用静态电路,设备对电压质量及供电连续性要求较高。一旦计算机失电造成死机、远动信息数据采集失电造成丢失数据、电源产生的问题等导致设备误操作将造成更大的损失。

鉴于以上原因,许多变电所配置了UPS电源,但多见于分散配置,各成一体。

(2)变电所UPS不间断电源:

变电所UPS不间断电源,供给远动自动化、信息数据采集、微机

监控、电力通讯等电源。在许多变电所内,由于UPS维护不善造成蓄电池容量不足,交流断电后,由于电压过低而自动关机,使得设备电源中断,不能正常工作。

(3)变电所直流系统:

变电所直流系统作为操作电源,供给断路器分合闸及二次回路的仪器仪表、继电保护、控制、事故照明及自动装置电源。

近年来,接受以往事故教训,专业人员在研讨继电保护反措和直流系统反措中,均提出了双重化配置要求,对220kV变电所的直流系统进行了3+2配置(三台充电机、两组蓄电池)单母分段互联式接线改造。对继电保护实现独立保护、独立电源,主保护的线路、变压器、母线双重化保护专用供电,实现保护装置跳闸线圈双重化,控制、保护电源分开。由两套独立(可相互备用)直流系统供电。

2改造目标:

通过对变电所直流系统实施技术改造,要求变电所直流系统的管理水平、运行维护和设备健康水平均达到100%。同时,还要使变电所直流系统资源得以充分有效利用。

(1)目标制定:

①加强变电所直流系统运行维护管理。

②对直流系统为UPS提供电源可行性、安全性进行评估、计算,并付诸实施。应用后充分体现了UPS使用直流系统供电的优点。

③规范运行管理,有效利用直流系统。对于改造后的变电所,由生产技术部门协调归口管理。

(2)可行性分析:

①体制管理:变电所直流系统就是为变电所继电保护及其自动装置服务的。但从变电所进行自动化实现四遥,改造变电所直流系统与UPS 电源从设计、规划、审批及体制管理上就分开了。直流设备由检修专业班维护变电所直流系统,远动通讯专业班则维护UPS不间断电源。变电所运行人员一般只对直流系统做定期维护监测,而对于UPS电源形成无人维护。

②设备投资:变电所220kV以上及重要的110kV变电所直流系统双重化3+2配置后,完全可以满足继电保护及其自动装置的参数要求。上级在此投资是原来设备的两倍,而有些变电所还在设计安装UPS不间断电源单设蓄电池组。这无疑会造成重复投资浪费。

③绝缘要求:变电所直流系统与变电所通讯电源用直流电源运行方式不同,有可能造成变电所直流系统绝缘降低,影响系统稳定。对于远动通讯电源应该区别对待,如通讯电源从变电所蓄电池抽头现象必须杜绝,但在绝缘要求满足的前提条件下,完全可以集中配置蓄电池。

3 实施方案:

(1)要求各专业分工明确,不留死角:

①归口管理,直流专业不能单一只维护充电机、蓄电池组,还应考虑直流系统的完整性。如馈出回路辐射、环路完整、负荷分配、运行方式、接线方式、熔断器及空气开关级差配置、电压质量、直流系统绝缘水平等,应满足继电保护及其自动装置参数要求。

②对设计维护人员要求专业相互渗透。因为继保、远动、通讯、计量、

直流专业就是电力系统及其自动化的各分支专业,所以各专业有必然的联系。

③过去有些变电所通讯电源有在直流系统蓄电池中抽头的现象,由于影响直流系统蓄电池内阻、容量,通过落实反措以及整改,已将这种方式消除。对于小容量的载波机以及通讯用计算机UPS,只要满足绝缘要求,可以使用直流系统电源。对于大容量程控交换机、光纤通讯、微波通道,考虑到其独立性以及使用蓄电池运行方式不同,通讯电源UPS设置自备电源。

(2)集中配置:

①变电所UPS使用变电所直流系统蓄电池,可以不用自配蓄电池组,这样,可以节约自备电池以及占地空间,还可以避免重复维护。

②使用直流系统逆变电源,能够防止所用电系统的暂态干扰进入负荷侧。

③一般商用UPS自备电池,放电时间是在10~15min,时间短;工业用UPS装置自备电池放电在30min。采用直流系统蓄电池可以保证事故停电1h使用。

④利用直流系统容量优势,全所集中配置UPS系统,并实现双重化配置。交流电源使用所用电各段母线电源,直流电源分别使用直流系统各段电源(110kV以上无人值守变电所、较重要的枢纽变电所)。

(3)评估:

①双重化3+2配置后,蓄电池容量增加一倍,而保护自动装置通过

变电站的直流系统

变电站的直流系统 (包头供电局,内蒙古包头 014030) 摘要:文章介绍了,它在全站都停电的情况下,通常提供2小时供电,能确保事故处理快速进行,在变电站中为控制、信号、继电保护、自动装置及事故照明等提供可靠 关键词:整流;操作电源;事故照明;蓄电池直流电源; 中图分类号:TM63 文献标识码:A 文章编号:1007—6921(XX)15—0090—02 由蓄电池和硅整流充电器组成的直流系统,在变电站中为控制、信号、继电保护、自动装置及事故照明等提供了可靠的直流电源。它还为操作提供可靠的操作电源,直流系统的可靠与否,对变电站的安全运行起着至关重要的作用,是变电站安全运行的保证。把交流电源变成直流电源称为 1 是作为继电保护及自动装置、信号设备,控制及调节设备的工作电源及断路器的跳、合闸电源。大中型变电站采 1.1

按其用电特性的不同分为经常负荷、事故负荷和冲击负荷3 1.1.1 经常负荷。它是指在所有运行状态下,由直流电源不间断供电的负荷。它主要包括:①经常带电的直流继电器、信号灯、位置指示器;②经常点亮的直流照明灯;③经 一般说来,经常负荷在总的直流负荷中所占的比重是比 1.1.2 事故负荷。事故负荷指正常运行时由交流电源供电,当变电站的自用交流电源消失后由直流电源供电的负 1.1.3 冲击负荷。冲击负荷是指直流电源承受的短时最大电流。它包括断路器合闸时的冲击电流和当时所承受的 1.2 直 1.2.1 蓄电池直流电源。蓄电池是一个独立、可靠的直流电源,即使全站交流系统都停电的情况下,仍然在一定时间可靠供电,是变电站不可缺少的电源设备。蓄电池组通常采用110V或220V 蓄电池一般分为酸性蓄电池或碱性蓄电池两种。前者端电压较高、冲击放电电流大,适合于断路器跳、合闸的冲

220kV GIS 变电站电气设计

2.1 电气部分 2.1.1 变电站规模 (1)本期建设2台220kV、240MVA变压器,最终规模3台220kV、240MVA三相三绕组变压器; (2)220kV出线,本期4回,远景6回; (3)110kV出线,本期4回,远景12回; (4)35kV出线,本期6回,远景8回; (5)无功补偿,本期装设6×1.0万千乏电容器,电容器电抗率按3组5%、3组12%考虑;远景按装设9组电容器预留场地,电容器串联电抗率按12%的位置预留。 2.1.2 电气主接线及主要电气设备选择 采用国网A1-1方案,根据系统要求,对通用设计电气主接线进行调整。 2.1.2.1 电气主接线 220kV本期采用双母线接线,远景采用双母线接线。 110kV本期采用单母线分段接线,设分段断路器,装设2组母线设备,远景单母线三分段接线。 35kV本期采用单母线分段接线,远景采用单母线分段+单母线接线。 根据国家电网生[2011]1223文件“关于印发《关于加强气体绝缘金属封闭开关设备全过程管理重点措施》的通知”附件1第二章第八条“采用GIS的变电站,其同一分段的同侧GIS母线原则上一次建成。如计划扩建母线,宜在扩建接口处预装一个内有隔离开关(配置有就地工作电源)或可拆卸导体的独立隔室;如计划扩建出线间隔,宜将母线隔离开关、接地开关与就地工作电源一次上全。”本工程110kV侧有出线间隔的GIS母线一次建成,建成母线的远景扩建间隔本期预装空间隔。 本工程主变220kV、110kV中性点采用经隔离开关直接接地或经避雷器、放电间隙的接地方式;35kV系统中性点采用经消弧线圈接地方式。由于主变35kV侧为三角形接线,在35kV母线上配置接地变。

220kV西泾智能变电站二次系统的设计

第39卷第5期2011年5 月Vol.39No.5 May2011 220kV西泾智能变电站二次系统的设计 娄悦,秦华,孙纯军 (江苏省电力设计院,南京211102) 摘要:简要介绍了常规变电站二次系统设计表达需求。针对智能变电站网络化信息共享的特点,根据220 kV西泾智能变电站实施方案,提出“SV/GOOSE信息流图+SV/GOOSE信息逻辑配置表+装置光缆联系图”的智能化变电站二次施工图设计方法。SV/GOOSE信息流图表达逻辑原理,SV/GOOSE信息逻辑配置表将原理映射为虚回路的具体输入输出信号关联,装置光缆联系图描述物理介质连接方法。指导了西泾变电站工程的数据模型配置、施工及调试情况。在此基础上提出加快开发智能站二次系统设计工具的需求。 关键词:智能变电站;二次系统;设计表达;信息流图;逻辑配置;SV/GOOSE 作者简介:娄悦(1983-),女,工程师,硕士,主要从事变电站电气设计工作。 中图分类号:TM63文献标志码:A文章编号:1001-9529(2011)05-0732-05 基金项目:国家电网公司智能变电站试点依托工程项目 Secondary System Design Technology for220kV Xijing Intelligent Substation LOU Yue,QIN Hua,SUN CHun-jun (Jiangsu Electric Power Design Institute,Nanjing211102,China) Abstract:General introduction is made about the design expression requirements for conventional substation secondary system.And based on the implementation scheme of220kV Xijing intelligent substation,this paper proposes a de-sign method for network information sharing,"SV/GOOSE information-flow charts+SV/GOOSE information logic configuration tables+Optical cable connection charts"method:SV/GOOSE information-flow charts describe logical principle of virtual circuit;SV/GOOSE information logic configuration tables map the principle to concrete link be-tween input and output signals;Optical cable connection charts show physical connection of equipments.This method provides an effective solution to data model configuration,construction and commissioning for the Xijing project.With the implementation experience,this paper also points out that it is necessary to speed up the development of design tools for the secondary system of intelligent substation. Key words:intelligent substation;secondary system;design expression;information-flow charts;logic configuration;SV/GOOSE Foundation items:The Experimental Intelligent Substation Project of State Grid Corporation of China 智能变电站以全站信息数字化、通信平台网络化、信息共享标准化为基本要求[1],网络化信息共享是智能变电站的重要特征[2]。基于IEC 61850标准的智能变电站通过数据模型配置及数据流连接实现功能,网络通信实现多路信息复用,少量光纤代替大量电缆[3,4]。但与此同时,依赖于电缆接线的大量硬件回路的取消,也导致传统基于设备和回路的二次系统设计方式不再适用[5]。本文基于220kV西泾变电站设计方案,在现有技术可支持的前提下,提出了“SV/GOOSE 信息流图+SV/GOOSE信息逻辑配置表+装置光法,使设计人员在智能化变电站施工图设计过程中能准确反映二次设备之间的逻辑关系和物理连接,同时根据实施经验分析目前设计方式的弊端并提出改进建议,为智能变电站设计技术的发展提供思路。 220kV西泾变电站是国家电网公司首批智能变电站试点之一,自动化系统在逻辑功能上由站控层、间隔层和过程层3层设备组成,采用分层、分布式网络系统实现连接,整个体系为“3层设备2层网络”结构。220kV过程层采样值采用点对点方式,GOOSE采用组网方式,220kV线路

《220kv变电站直流系统》

220kv变电站直流系统 目录 1?什么是变电站的直流系统 2.变电站直流系统的配置与维护 3.直流系统接地故障探讨 4.怎样提高变电站直流系统供电可靠性 5.如何有效利用其资源 1?什么是变电站的直流系统

变电所是电力系统中对电能的电压和电流进行变换、集中和分配的场所。变电站的继电保护、自动装置、信号装置、事故照明和电气设备的远距离操作,一般都采取直流电源,所以直流电源的输出质量及可靠性直接关系到变电站的安全运行和平稳供电。变电站的直流 系统被人们称为变电站的“心脏”,可见它在变电站中是多么的重要。 直流系统在变电站中为控制、信号、继电保护、自动装置及事故照明等提供可靠的直流电源。它还为操作提供可靠的操作电源。直流系统的可靠与否,对变电站的安全运行起着至关重要的作用,是变电站安 全运行的保证。 (1)220kv变电站直流母线基本要求: 蓄电池组、充电机和直流母线 1.设立两组蓄电池,每组蓄电池容量均按单组电池可为整个变电站直流系统供电考虑。 2.设两个工作整流装置和一个备用整流装置,供充电及浮充之用,备用整流装置可在任一台工作整流装置故障退出工作时,切换替代其工作。 3.直流屏上设两段直流母线,两段直流母线之间有分段开关。正常情况下,两段直流母线分列运行,两组蓄电池和两个整流装置分别接于一段直流母线上。 4.具有电磁合闸机构断路器的变电站,直流屏上还应设置两段合闸母线。 5.220kV系统设两面直流分电屏。分电屏I设1组控制小母线(KM I)、1组保护小母线(BM I);分电屏H设1组控制小母线(KMI)、

1组保护小母线(BMI)。 6.110kV系统设1面直流分电屏,屏设1组控制小母线(KM)、1组保护小母线(BM。 7.10kV/35kV系统的继电保护屏集中安装在控制室或保护小间的情况下,在控制室或保护小间设1面直流分电屏。 8 信号系统用电源从直流馈线屏独立引出。 9.中央信号系统的事故信号系统、预告信号系统直流电源分开设置 10.每组信号系统直流电源经独立的两组馈线、可由两组直流系统的两段直流母线任意一段供电。 11.断路器控制回路断线信号、事故信号系统失电信号接入预告信 号系统;预告信号系统失电信号接入控制系统的有关监视回路。 12.事故音响小母线的各分路启动电源应取自事故信号系统电源;预告信号小母线的各分路启动电源应取自预告信号系统电源。 13.公用测控、网络柜、远动柜、保护故障信息管理柜、调度数据网和UPS勺直流电源从直流馈线屏直接馈出。 (2)、直流系统运行一般规定: (1)、220KV变电站一般采用单母线分段接线方式,110KV变电站一般采用单母线接线方式。直流成环回路两个供电开关只允许合一个,因为母联开关在断开时,若两个开关全在合位就充当母联开关,其开关容量小,线型面积小,又不符合分段运行的规定。直流成环回路分段开关的物理位置要清楚,需要成环时应先合上母联开关再断开直流屏上的另一个馈线开关。

220kV智能变电站设计关键问题分析

220kV智能变电站设计关键问题分析 发表时间:2018-07-03T10:34:10.910Z 来源:《电力设备》2018年第2期作者:桑文杰王民现尹发海张永军[导读] 摘要:220kV智能变电站有其不可比拟的优势和技术特征,在实时、在线监测的技术运用和集成化的设备模块条件下,可以较好地保障智能变电站的运行安全与稳定。 (云南能鑫电力设计有限公司云南昆明 650000) 摘要:220kV智能变电站有其不可比拟的优势和技术特征,在实时、在线监测的技术运用和集成化的设备模块条件下,可以较好地保障智能变电站的运行安全与稳定。在实际应用中需要根据220kV智能变电站的运行要求,加强设计优化,促进220kV智能变电站运行的稳定性及安全性,以促进我国的智能电网的建设,提升智能变电站的运行效果。基于此本文分析了220kV智能变电站设计关键问题。 关键词:220kV;智能变电站;设计 1、智能变电站综述 智能变电站在计算机网络时代显现出信息化共享、集成化结构模块的特征,它在运用自动化设备的前提下,实现了对相关信息数据的实时采集、计量检测、控制保护等操作,是基于实时自动控制、在线分析决策的高级智能化调节变电站。 220kV智能变电站是一个复杂的多系统结构,围绕其终极目标而运行。具体包括以下架构内容:(1)站控层。在光纤电缆传输的前提下,实现站控层与间隔层的通讯传递,通过其通信子系统、对时子系统、站域子系统模块实现对智能变电站的实时监测、闭锁操作、智能诊断、控制保护等。(2)间隔层。它是在站控层的制约和控制的前提下运作的部分,重点实现对变电站设备的保护控制、故障控制等内容,并且在继电保护装置、测控装置、故障录波等二次设备的应用条件下,可以较好地实现信息数据的传输与接收作业。(3)过程层。它也同样处于站控层的控制下,由复合传感器、基于罗科夫斯基的TA、接地开关、隔离开关、分压型VD等一次设备构成。 2、智能变电站设计中的关键技术 2.1、IEC62850标准 随着大规模集成电路的出现,为微型处理器的发展提供了平台,也是变电站自动化的基础。变电站在处理通讯信息、保护信息、系统监控信息时,急需一种互操作性强、高效的通讯协议来保证智能变电站各种信息传输的标准化。IEC61850标准为智能变电站信息共享和交互提供了国际标准并且是实现电力系统无缝通信的基础。IEC61850标准在智能变电站中的应用实现了信息的互操作性,同时也为变电站功能的扩展和自由分布提供了良好的环境。其功能的实现具有以下技术支撑:智能变电站功能分层、信息模型、数据自描述和配置语言。 2.2、电子式互感器 电子式互感器是智能变电站重要的技术环节。传统电磁式互感器由于其成本高、绝缘复杂精度低不适用于智能变电站中。其暂态输出电流的畸变可能导致电网运行的安全性受影响,同时PT也会由于电磁谐振而产生过电压,使得电气设备无法正常运行。智能变电站中的电子式互感器可以适应小功率信号和数字信号的输入,其得以广泛应用的基础即IEC61850标准。目前所用的电子式互感器可以分为两种,包括光电式电子互感器和线圈式电子互感器。这两种电子互感器的传感原理有所不同。其中光电式互感器又可以分为光学电压互感器、光学电流互感器和组合式光学互感器。光电式互感器的技术要点是光纤传感技术。线圈式电子互感器采用的原理为电容、电感和电阻的分压原理,其主要的技术要点是利用空心线圈或者磁铁芯感应得到二次电流。电子式互感器具有很多传统电磁式互感器不具备的优点,其抗电磁干扰性强,测量精确、频率响应范围宽、不会出现PT谐振和体积小的优势使得电子式互感器得以广泛应用于智能化变电站中。 2.3、智能化开关 智能开关是智能化变电站中的重要设备。智能开关是利用计算机技术、电子式互感器以及电力电子技术将信息技术与传统的高压电器设备组合起来的智能化高压电器。智能开关是有微机控制的,其执行单元为电力电子器件,智能开关可以测量大量的数字量和模拟量信息,其控制装置必须就地安装。具有的功能包括:智能感知,波形精确控制的跳、合闸角度和时间,故障预报,运行状态的智能化评估和监测,专家人工智能判定和信息网络化共享。 3、220kV智能变电站设计方案优化 3.1、解决电子式互感器接入合并单元规约存在的问题 现阶段,智能电网在运行过程中,存在电子式互感器接入合并单元规约问题,当电流互感器与电压互感器接入到一起时,会发生延时现象。为了解决这一问题,应解决电流及电压输出问题,将电子式互感器的输出信号与到达合并单元之间的时间控制在2m/s内,在220kV智能变电站中要适当的增加合并单元数量,性控制好智能组件柜的体积。 3.2、优化二次接线方式 为了确保二次回路功能设计的合理性,在对220kV智能变电站进行设计时,应加大对数字化技术的应用,做好优化设计工作,改进后的智能变电站二次系统的接线形式有两种,一种是利用网络方式来形成网路跳闸方式,通过对二次回路线路进行分析可知,该种方式下的线路较为简单,凸显了网络的共享性,并且网络延时不会对点对点跳闸方式产生任何影响。另外一种保护线路的方式是光纤线路,能够将跳闸信息快速的传输到智能终端设备中,该种传输形式信息的稳定性较强,提升了信息传输效率。在对220kV智能变电站进行优化设计时,要做好二次设计及电气施工工作,严格按照标准的施工要求,开展各项施工及设计工作。 3.3、加强细节问题优化 (1)构建全站一体化信息平台,实现高级应用功能 建立全站一体化信息平台,实现顺序控制、智能操作票及全景智能防误、智能告警及事故辅助分析决策、状态检修、经济运行与优化控制、站域控制等高级应用,提高生产运行的自动化、智能化水平,为生产运行提供辅助决策。(2)设置智能辅助控制系统,实现全站联动控制 在220kV变电站利用智能辅助控制系统建立传感测控网络,实现图像监视、安全警卫、火灾报警、采暖通风、运行温度监测等辅助系统的集成应用和联动控制。整合原有分散的各子系统资源,提高智能化和自动化水平,满足智能变电站无人值班的要求。(3)采用智能交直流一体化电源系统,实现电源系统统一管理 将交流、直流、UPS、通信电源系统统一设计、生产,建立电源系统统一监控平台,统一智能监控。

(完整word版)变电站直流系统简介

变电站直流系统简介 第一章直流及不间断电源系统 第一节概述 为供给继电保护、控制、信号、计算机监控、事故照明、交流不间断电源等直流负荷,变电站内应设由蓄电池供电的直流系统。 第二节站内直流母线接线方式简介 一、变电所直流系统典型接线 变电站常用的直流母线接线方式有单母线分段和双母线两种。双母线突出优点在于可在不间断对负荷供电的情况下,查找直流系统接地。但双母线刀开关用量大,直流屏内设备拥挤,检查维护不便,新建的220-500kv变电站多采用单母线分段接线。 220kv变电所直流系统典型接线:(如下图10-1) 220kv变电所直流系统典型接线:(如下图10-2)

二、站内直流电压特点的简介: 变电所的强电直流电压为:110V或220V,弱电直流电压为48V。 强电直流采用110V的优点: 1)蓄电池个数少,降低了蓄电池组本身的造价,减少蓄电池室的建筑面积,减少蓄电池组平时的维护量。 2)对地绝缘的裕度大,减少直流系统接地故障的机率,在一定程度上提高直流系统的可靠性。 3)直流回路中触点的断开时,对连接回路产生干扰电压,直流用110V时,能降低干扰电压幅值。 4)对人员较安全,减少中间继电器的断线故障。 强电直流采用110V的缺点: 1)变电站占地面积大,电缆截面大,给施工带来困难。

2)一般线路的高频保护的收发信机输出功率大小与直流电压有关,对长线路的保护不利。 3)交流的220V照明电源和110V的直流电源无法直接切换,需增加变压器和逆变电源,增加事故照明回路的复杂性。 4)在站内有大容量直流电动机的情况下,增大电缆截面,增加投资。 基于技术和经济上的考虑,对于采用集中控制(电缆线较长)的220-500kV 变电站,强电直流系统的工作电压宜选用220V。 当变电站规模较小或全户内的220kV变电所情况下,控制电缆长度较小时,强电直流系统的工作电压宜选用220V。 500KV变电所多采用分布式控制方式,二次设备分部控制,在主控室和分控室都设有独立的直流系统控制,电缆的长度大大缩短,变电所的蓄电池组数多。这种情况下变电所强电直流系统的工作电压宜选用110V。 三、变电站弱电直流系统的电压: 按我国的惯例,变电所弱电系统的工作电压一般采用48V,这一电压等级也符合国际标准。 第三节直流系统的绝缘监察和电压监察 一、提高直流系统 直流系统的绝缘水平,直接影响到直流系统乃至变电所的安全运行。当变电所的绝缘降低造成接地或极间短路时,将造成严重后果。 为防止直流系统绝缘水平下降危及安全运行,可采用以下对策: (1)对于直流系统直接连接的二次设备绝缘水平有严格的要求。 (2)在有条件的情况下,将保护、断路器控制用直流和其他设备用直流分开。(3)户外端子箱、操作机构,要采用具有防水、防潮、防尘、密封的结构。(4)户外电缆沟及电缆隧道要有良好的排水设施。 (5)主控室内的控制、保护屏宜采用前后带门的封闭式结构。 (6)对直流系统的绝缘水平要进行经常性的监视。 (7)采用110V的直流系统。 二、直流系统的绝缘监察 1.电磁式绝缘监查装置 利用电桥原理构成的电磁型直流系统绝缘监查装置的接线如图10-13所示。这种装置具有发出绝缘下降的信号和测量绝缘电阻值两种功能。

变电站直流系统保护选择的有关问题

变电站直流系统保护选择的有关问题 变电站直流电源既是开关的操作电源,也是继电保护装置的电源,电网和变电站的安全运行要求直流电源必须具有高可靠性,失去直流将可能造成继电保护和开关的拒动,造成电网大面积停电和设备的损坏,严重威胁设备和电网的安全运行。直流由所属单位分散管理,设备种类多,标准应该统一,下面就直流电源使用谈以下几个应引起注意的问题。 一、目前存在的直流断路器(直流开关)和熔断器(保险管)的配合 其配合关系应执行《电力工程直流系统设计技术规程》DL/T5044-2004条款中6.1.3的规定: 1. 熔断器装设在直流断路器上一级时,熔断器额定电流应为直流断路器额定电流的2倍及以上。这样可保证动作的选择性。 2. 直流断路器装设在熔断器上一级时,直流断路器额定电流应为熔断器额定电流的4倍及以上。即:熔断器为2A时,上一级直流断路器应为8A及以上。这样的配合主要是考虑了直流断路器动作速度相对比较快。由于下级采用熔断器,相应增加了上级开关的额定电流,所以建议最末一级应尽量采用直流断路器。 二、上下级熔断器之间、上下级自动开关之间额定电流的选择,其配合关系应按《火力发电厂、变电所二次接线设计技

术规程》DL/T5136-2001条款9.2.10、9.2.11中的规定: 9.2.10条款为:1.熔断器额定电流应按回路的最大负荷电流选择,并满足选择性的要求。干线上熔断器熔件的额定电流应较支线上的大2级——3级。 在安全评价文件中,要求上、下级熔体之间(同一系列产品)额定电流值,必须保证2——4级级差,电源端选上限,网络末端选下限。为避免蓄电池组总熔断器无选择性熔断,该熔断器和分路熔断器之间,必须保证3——4级级差,对级差的要求又有所加大,其目的主要是使上级脱扣(熔断)时间大于下级,确保上、下级直流熔断器在过负荷或直流短路时选择性。 级差是熔断器( 直流断路器)生产制造时的额定电流关系,额定电流分别为3A、6A、10A、16A、20A、25A、32A、40A 、50A、63A、80A、100A、125A等,它不是成固定倍数的关系。分支熔断器选用6A,按大2-3个级差考虑干线应选用16A或20A的熔断器。 一般每个回路继电保护配置的保险丝为3A或6A,可以根据直流电压和一次开关合闸、跳闸线圈电阻阻值很容易确定合闸、跳闸电流,那么它干线上保险丝的额定电流就很容易确定了,直流屏馈出的熔断器电流值不宜选择过大,因为它决定着上一级熔断器电流值的大小,否则无法与总保险配合,必要时必须增加直流馈出的数量,分散负荷,避免负荷

220kV智能变电站方案

浙江220kV 智能变电站过程层解决方案江苏西电南自智能电力设备有限公司

目录 一.智能一次设备说明 (3) 1.1智能一次设备的概念 (3) 1.2设备智能化演变 (3) 1.3智能一次设备在智能电网中的作用 (4) 1.4智能一次设备现况 (4) 1.5变压器智能化 (5) 1.6断路器智能化 (6) 二、智能一次设备解决方案及建议 (9) 2.1PSSC600系列智能组件简介 (9) 2.2互感器及智能组件技术方案 (13) 2.2.1 220kV及110kV线路、母联电子式互感器技术方案 (13) 2.2.2 变压器220kV侧电子式互感器技术方案 (16) 2.2.3 变压器110kV侧电子式互感器技术方案 (17) 2.2.4变压器35kV侧电子式互感器技术方案 (17) 2.2.5 35kV出线电子式互感器技术方案 (18) 2.2.6 35kV母线电压技术方案 (19) 2.3TDC-05户外柜 (19) 2.3.1 户外柜的技术特点 (20) 2.3.2 户外柜的专利 (21) 三.组屏方案及即插即用方案 (21) 四.在线监测方案分析 (23) 4.1概述 (23) 4.2在线监测及状态检修系统配置的必要性及可行性分析 (23) 4.3主变压器在线监测范围及参量选择必要性分析 (23) 4.3.1主变压器油色谱在线监测配置的必要性分析 (23) 4.3.2主变压器局放在线监测配置的必要性分析 (24) 4.3.3主变压器套管介损在线监测配置的必要性分析 (27) 4.3.4主变压器绕组光纤测温在线监测配置的必要性分析 (27) 4.4断路器三相分合闸同期性监测的的必要性分析 (27) 4.5避雷器 (28) 四.过程层设备配置一览表 (29)

220kV变电站设计说明书

220kV变电站设计说明书1.1 220kV变电站在国发展现状与趋势 电力工业是国民经济的重要部门之一,它是负责把自然界提供的能源转换为供人们直接使用的电能的产业。它即为现代工业、现代农业、现代科学技术和现代国防提供不可少的动力,又和广大人民群众的日常生活有着密切的关系。电力工业的发展必须优先于其他的工业部门,整个国民经济才能不断前进。但是,随着近年来我国国民经济的高速发展与人民生活用电的急剧增长,电力行业的发展水平越来越高,特别是在电的输送方面有了更高的要求。因此,确定合理的变压器的容量是变电所安全可靠供电和网络经济运行的保证。在选择主变压器时,要根据原始资料和设计变电所的自身特点,在满足可靠性的前提下,要考虑到经济来选择主变压器。 1.2 220kV变电站设计规 (1)国家电网公司《关于印发<国家电网公司110(66)~500kV变电站通用设计修订工作启动会议纪要>的通知》(基建技术〔2010〕188号) (2)《国家电网公司220kV变电站典型设计》(2005版) (3)《国家电网公司输变电工程通用设备(2009年版)》 (4)《国家电网公司输变电工程典型设计-220kV变电站二次系统部分》(2007年版)(5)Q/GDW166-2007 《国家电网公司输变电工程初步设计容深度规定》 (6)Q/GDW204-2009 《220kV变电站通用设计规》 (7)Q/GDW383-2009 《智能变电站技术导则》 (8)Q/GDW393-2009 《110(66)~220kV智能变电站设计规》 (9)Q/GDW161-2007 《线路保护及辅助装置标准化设计规》 1.3变电站位置的选择 图1为广西大学西校园用电量比较大的建筑物简化地图,对于变电站位置的选取,我

220kV智能变电站的设计与应用

220kV智能变电站的设计与应用 摘要:随着经济发展和技术进步,智能变电站已经成为未来变电站的发展趋势。它通过信息共享和设备智能化,大大提高了电力系统的安全性和可靠性。本文就220kV智能变电站进行了总体分析,以供参考。 关键词:智能变电站;设计;应用 1.智能变电站的内涵 1.1设计原则 智能化变电站的设计要采用先进可靠、高度集成、低碳环保的智能设备,以实现全站信息数字化、通信平台网络化和信息共享标准化,并且要能够自动完成电力信息的采集测量以及控制保护等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动、智能巡检等高级应用功能。 1.2智能化变电站的表现方式 要符合IEC61850通信规约的应用;一次设备智能化;二次设备的网络化;电子互感器及常规互感器就地数字化;合并单元及智能终端的应用;增加变压器等的在线监测装置;高级应用的实现;辅助系统的应用等等。 1.3智能变电站的特点优势 可靠性:变电站的最基本要求。智能变电站在可靠性方面具有优秀的自诊和自治功能,能对设备故障进行可靠的预警监测,提高了供电的可靠性,有效减少系统损失。 信息化:在接收“四遥”信息的同时,智能变电站也能够接收其他数字信息,包括设备、图像以及环境信息。智能变电站对信息的处理更加准确、实时和可靠,相比传统变电站,站与站之间以及站内信息的传输和访问更加方便快捷。 数字化:智能变电站不仅能采集电气量信息,也能采用数字化方式采集非电气量和安全警报信息,从而能够对系统正常运行、预警与故障准确判断。 自动化:智能变电站自动化体现在系统工程数据的自动生成,二次设备的自动校验以及变电站的状态自检。 2.智能变电站的设计与应用 2.1220kV变电站的数字化设计

220kV智能变电站二次系统的设计

220kV智能变电站二次系统的设计 发表时间:2016-01-13T13:39:51.607Z 来源:《基层建设》2015年14期供稿作者:孙可瑾 [导读] 无锡市广盈电力设计有限公司我们应该通过网络化技术的深入研究,应用诸如三层一网网络集成方案这样的设计方案,推动智能变电站的二次系统的信息化和网络化进程。 孙可瑾 无锡市广盈电力设计有限公司 214171 摘要:根据我国电网公司对于智能电网的发展展望,智能变电站已经成为电网建设的重点。其中220kV智能变电站的二次系统的设计工作尤为重要,本文对220kV智能变电站二次系统的设计问题、结构和优化方案进行了分析和探讨。 关键词:220kV智能变电站;二次系统;设计 一、概述智能变电站二次系统设计中的问题 根据我国电网公司对于智能电网的发展展望,智能变电站已经成为电网建设的重点。二次系统的设计中涉及到众多一次设备和二次设备,承担着发电、配电和输电这些重要工作,对整个电网的正常运营具有重要影响。我国现阶段运营的智能变电站在二次系统的设计中存在不少子系统,对于维护变电站和电网的顺利运行并不可靠,其主要问题有: 第一,各级子系统间因为分属于不同专业而被单独设立,为主站进行数据计算增加了难度; 第二,传统的设计方案中,站控层设备比较冗杂,间隔层与过程层中的设备没有进行整合,具有优化空间; 第三,传统的二次系统设计不能适应数字化测控体系的要求。 针对这些问题,220kV智能变电站的二次系统设计应当以自动化技术和信息化技术作为基础,构建更加高效、灵活的设备结构,适应智能电网时代的发电、配电和输电的需求,并保障电网的可靠性,兼顾灵活性和安全性。 二、智能变电站二次系统的常规设计流程 (一)绘制SV与GOOSE 信息流图 在对设备类型、保护测控原理、自动化目标、间隔设计进行过分析研究之后,着手绘制SV和GOOSE 信息流图,将设备之间的逻辑关系表现在两份信息流图纸上。其中,SV信息流图与传统的保护原理图、电流和电压回路图的主要功能类似,能表达出电流数据流和电压数据流之间的连接关系;GOOSE 信息流图集中体现了信息传输和设备控制的逻辑原理。 SV和GOOSE 信息流图的绘制涵盖了信息流向、信息传输回路两个部分的内容。信息流向能表现出SV 和 GOOSE信息所采用的传输路径,展现出该设计是否使用了交换机,明确了信息流向。信息传输回路能表现出不同的信息集编号所对应的不同发送方与接收方,以及各个信息集编号代表的信息。这两者组成了完整的信息流图,能够充分表达该设计中运用的保护测控原理、信号自动化和闭锁自动化信息,更明确地展现出信息传输的具体路径。 (二)绘制信息逻辑表 由设备制造厂商提供ICD文件,通过智能站设计系统软件绘制出相应设备的光缆接线图与虚端子图,绘制 SV和GOOSE信息逻辑表,实现数据模型的配置,并为变电站工程提供表格和数据作为依据。 在SV和GOOSE 信息流图的基础上,必须结合虚端子图才能构建数据模型,表现装置开入、开出时的具体虚端子关联情况,SV和GOOSE 信息逻辑配置表的功能就是将方案中涉及到的各项输入、输出信号之间的连接关系表现出来。 在绘制SV和GOOSE 信息逻辑配置表时,需要根据常规二次回路设计中对于模拟量和开关量的开入、开关量的开出实施的分类,采用表格的方式将智能设备间的虚端子关联情况表达出来。在这个表格中,需要罗列如下几种名目:信息内容与集编号,起点设备的名称、虚端子号和数据属性,终点设备的名称、虚端子号和数据属性。 (三)绘制SV和GOOSE装置光缆配置图 绘制SV和GOOSE装置光缆配置图,是为了促进施工过程中正确完成光缆接线的工作。这份图纸是对二次设备间的光缆连接进行集中反映,表现出该设计中应当采用何种接口连接方案、光缆类型。根据该设计的网络方案、SV和GOOSE 信息流图、接口配置,确定光缆的类型、走向,对光缆实施配线,构建光配单元,绘制对应的光缆配置图。 常规设计方案广泛应用于常规变电站的二次系统设计,具有一定的经验优势,但也存在较多弊端,对于厂商和设计院的依赖较为严重,人为的信息输入还会造成图纸误差,因此有必要优化设计方案,加快智能变电站的信息化和网络化进程。 三、变电站二次系统的优化设计方案 (一)三层一网网络集成方案 三层一网从本质上来说,是一种网络集成方案,指的是优化站控层与过程层的网络,并进行整合,从而达到共网使用SV、GOOSE和MMS的目标。这种网络集成方式对于信息化技术的要求较高,却并非粗糙地将站控层与过程层合并起来,而是在保障网络信息数据传输安全、可靠的基础上,通过专门的交换机满足更多的数据传输要求:每当交换机或单个设备出现问题时,能够及时抑制错误报文,有效避免单个数据服务设备出错导致所有数据服务失常,进而提高网络数据传输的安全性和可靠性。这也就是说,三层一网能够保障智能变电站的网络系统不会因为某一个数据服务设备的故障而整体瘫痪。 构建三层一网的过程中,对于原本的保护测控设备、变电器高低侧的合并单元、智能终端都没有要求,这些设备不需要更换,它们完全可以依照既定要求继续运行;只对交换机的设置提出了新的要求,一是交换机的数量会减少,二是需要更换站控层的交换机及其配置,使用具备光纤接口的设备。 三层一网网络集成方式能够符合220kV智能变电站的发展需求,因此值得研究,但因为这种方案对于通信设备也就是专门的交换机的要求较高,需要在研究出可靠性更高的交换机后进一步推广。 (二)过程层优化方案 对于220kV智能变电站的二次系统,可以根据我国关于智能变电站集成技术要求的批文内容,利用集成装置对110kV部分的间隔层和过程层设备实施优化,将保护和测控装置合一,智能终端和合并单元合一,并将装置都分散下放安装在GIS智能控制柜内,采用SV和GOOSE

变电站直流系统及故障分析

变电站直流系统及接地故障分析 国家广电总局2022台周恒虎 摘要:本文通过介绍直流系统的工作原理,详细阐述了它的维护方法,并通过“直流接地”这一故障实例,分析了直流系统在实际运行中出现该故障的处理措施。 关键字:直流系统绝缘监察故障分析接地维护 1、概述 变电站内的直流系统是一个独立的操作电源,直流系统为变电站内的控制系统、继电保护、信号装置、自动装置提供电源;即使是所用变全部失压后,它仍能为断路器合闸及二次回路中的仪表、继电保护和事故照明等提供直流电源,为二次系统的正常运行提供动力,其重要性就可向而知了,但是很多人都只对变电站的保护回路及控制回路等比较重视,而对为继电保护回路提供能量的直流系统的重要性就忽视了,平时维护一般只是进行一些简单的蓄电池电压测试和绝缘监视等,这就使直流系统往往运行在不可控的状态,这是相当危险的。下面简单谈一下直流系统的基本情况,以及在运行过程中的一些维护心得。 2、直流系统的组成 组成变电站内的直流系统一般由蓄电池、充电装置、直流回路、直流负荷四大部分组成。它的工作电压一般为220VDC或110VDC。 蓄电池目前用的比较多的是GCF型防酸隔爆式铅酸蓄电池和GFM(SP)型阀控式铅酸蓄电池,我站采用的是后者SP—100这一系列的;充电装置主要是通过硅整流达到充电和浮充电目的;直流回路中主要包括熔断器、断路器、绝缘监察装置;直流负载主要是在电力系统二次回路中起控制和保护的元器件。 3、直流系统接地故障分析 3.1.直流接地形式 按引起接地的原因,主要有以下几种形式: (1)由下雨天气引起的接地。 (2)由小动物破坏引起的接地。 (3)由挤压磨损引起的接地。

浅谈220kV智能变电站设计思路

浅谈220kV智能变电站设计思路 发表时间:2018-10-17T10:32:03.313Z 来源:《电力设备》2018年第19期作者:李多强 [导读] 摘要:随着社会经济的不断发展与进步,变电站设计智能化愈发引起人民的关注,其能够有效提高变电站运行实施的效率,本文以220kV变电站智能化设计为研究对象对智能化变电站设计过程进行了深入的分析与研究,以期能够为变电站智能化设计提供相应的借鉴作用。 (广西送变电勘察设计有限公司) 摘要:随着社会经济的不断发展与进步,变电站设计智能化愈发引起人民的关注,其能够有效提高变电站运行实施的效率,本文以220kV变电站智能化设计为研究对象对智能化变电站设计过程进行了深入的分析与研究,以期能够为变电站智能化设计提供相应的借鉴作用。 关键词:220kV变电站;智能化;设计 1.智能变电站概述 (1)智能变电站的基本概念 智能变电站是为实现全站信息数字化、网络化为基本要求,通过采用先进可靠的智能设备实现对信息的采集、计量、智能调节控制及协同互动等高级功能的变电站。 (2)智能变电站的构成及特征 智能变电站是能源转换和控制的核心平台,其可以有效的对发电、输电、变电、配电、用电和调度六大关键环节进行衔接,从而实现风能、太阳能等能源接入电网。 1)智能变电站的技术特征 智能变电站主要的技术特征包括平台网络化、信息共享化以及数字化以等技术特征。 ①平台网络化 平台网络化主要是利用标准化网络通信体系实现全站信息的网络化传输,其可以根据需求的不同灵活选择网络拓扑结构,利用光缆减二次回路连线数量,发送至测控及相角测量等装置,实现数据共享,提高了系统的可靠性。 ②信息共享化标准化 信息共享标准化是通过统一的方式将数据按照规定的格式、编号进行存放,从而实现变电站内外的信息交互和信息共享。 ③数字化 智能变电站信息数字化是指通过信息网络管理,实现数据采集、传输、处理等工作,提高数据处理速度。 2)智能变电站的功能优势 智能变电站从实际业务需求出发,将技术、经济及管理问题进行统筹规划,从而实现对数据的统一采集和处理,提高智能电网全景信息感知力,实现变电站智能化目标。 智能变电站的功能优势 2.220kV智能变电站设计思路 (1)智能变电站设计的关键因素 1)一次设备智能化 一次设备智能化设计是智能化变电站设计的首要因素,应做好电子式互感器、智能化开关及合并单元等部件的设计工作。其中电子式互感器可以缓解或消除变电站电磁式饱和问题。合并单元可以解决数据采集投资浪费问题。网络化可以减少电缆的铺设数量,解决二次电缆交直流串扰问题。 2)二次设备网络化 二次设备网络化主要是为了满足光电式互感器、智能化一次设备及通讯规则的需求而有针对性进行设计,以实现资源共享。 3)运行管理系统自动化 变电站运行管理系统自动化是指自动化系统能够在设备发生故障时,快速对发生故障的原因进行分析,并给出处理措施,减少人力、物力、财力的投入,提高工作效率。 (2)智能变电站的一次设备选型 1)智能变电站一次设备选型的注意事项 智能变电站一次设备选型应注意以下几个方面: 首先,明确一次设备设计在智能变电站设计过程中的重要性,其主要包括电压等级、冗余度以及故障影响因素等。 其次,自动监测技术及宿主设备的可靠性设计。 最后,自动监测技术的使用成本、替代方案等。 2)智能变电站的一次设备选型设计 ①变压器 变压器智能化是通过在变压器上增加智能组件,利用传感器、执行元件及变压器共同作用,将三者合为一体,实现数字化测量和网络

议变电站直流系统存在的问题及对策

议变电站直流系统存在的问题及对策 发表时间:2018-06-21T10:26:14.497Z 来源:《电力设备》2018年第6期作者:田彪 [导读] 摘要:作为变电站系统中二次设备的工作电源,直流系统的运行状态影响着整个变电站的安全、稳定运行。 (昆明供电局云南省昆明市 650000) 摘要:作为变电站系统中二次设备的工作电源,直流系统的运行状态影响着整个变电站的安全、稳定运行。为了能够保证变电站直流系统供电的稳定性和可靠性,应高度重视直流系统的运行维护,加强其运行管理和控制,及时发现运行故障,采取合理有效的处理措施,减少直流系统故障影响。本文主要对变电站直流系统存在的问题及对策,希望对相关企业有所裨益。 关键词:变电站;直流系统;问题;对策 变电站直流系统是变电站最核心的部分,做好变电站直流系统的运行维护对于变电站的安全稳定运行至关重要,变电站的断路器、继电保护及自动装置要可靠动作,最基本的条件是操作电源的可靠性。变电站的操作电源来自于直流系统,在运行中要高度重视直流系统的运行维护。当直流系统发生严重故障,对电网会造成灾难性的后果。 1变电站直流系统简述 变电站直流系统主要是由直流馈线单元、直流充电单元、蓄电池单元以及交流配电单元这四个部分构成。交流配电单元其主要职责是向直流系统供应安全稳定的交流电。直流充电单元主要包括中央监控器和高频整流模块,主要负责对经过交流配电单元的稳压电流实现整流,且还输出可以为蓄电池充电的直流电。直流馈线单元主要包括合闸母线以及控制母线、绝缘检测仪、降压硅链、各直流馈线输出开关和合母、控母开关等等。蓄电池单元由蓄电池组和蓄电池电压监测两个部分组成,其主要功能就是实现对直流电进行蓄能,除此之外就是对蓄电池进行检测,保证其安全稳定的放电以及蓄能。为了保证直流系统能够有较高的可靠性,一般情况下,直流负荷断环运行,运行时两段母线最好分列运行。两套充电电源系统各自带一部分的直流负荷,进而让两段母线的直流负荷能维持基本平衡,严禁两套充电系统长期并列运行。 2变电站直流系统存在的问题 2.1直流接地的故障问题 直流接地故障分为两种,第一种为正极接地故障,如果正极存在多点接地的问题,那么系统中的保护装置就有可能发生误动,这是因为一般跳合闸线圈、继电器线圈与负极电源接通,若这些回路再发生一点接地,就可能引起误动(误跳、误合)。第二种为负极接地故障,如果负极发生多点接地,跳合闸线圈及保护继电器线圈会被接地点短接而不能动作。(拒跳或拒合)。另外,正负极同时接地,则直流回路短接,使电源保险熔断,失去保护及操作电源,并且可能烧坏继电器接点,影响系统的正常运行。 2.2蓄电池与充电机的问题 直流系统中的蓄电池也是可用于维持整个电力系统运行的备用电源,因此做好充电机以及蓄电池的保护工作是十分重要且必要的。充电机与蓄电池常见的故障有三种:第一是蓄电池漏液,如果蓄电池的质量不符合实际标准,就有可能有漏液情况发生,继而导致接地故障,致使保护装置发生拒动或误动;第二是回路开路,如果系统出现失压,那么蓄电池组将无法实现自身的供电功能,致使电网发生规模较大的停电事故;第三是充电机设置问题,如果其参数设置不合理,那么蓄电池就有可能发生过电或少电问题,蓄电池组的使用寿命也将因而降低,甚至直接报废。 2.3绝缘监测的问题 在运行工作中,工作人员需利用设备对直流系统展开全面的绝缘监测,但是由于设备运行方式的问题,监测工作并不到位:第一,以信号寻迹原理为指导展开监测,直流系统中的低频检测仪、故障探测装置等均属于应用这一原理的检测装置;第二,在传感器的制作中应用倍频调制器,再利用计算机对传感器传递的数据信息进行分析与处理。在监测的过程中,如果信号较弱或者存在异常情况,传感器很难及时监测并发出信号,计算机无法有效对其进行分析与处理。 2.4系统接线与配合的问题 直流系统的供电方式有两种:一是环形供电,二是辐射供电。传统电网均采用环形供电,其优势在于系统可靠性高、成本低,但是内部设计却存在不合理的情况,如果系统运行时间过长就极有可能发生故障。如果空气开关与熔断器与系统不匹配或者质量达不到标准,就无法对系统予以有效的保护,故障影响较大。 3变电站直流系统问题的解决策略 3.1按照规定分级配置空气开关 直流熔断器和空气开关应采用质量合格的产品,按照有关级差规定分级配置,并定期进行核对。变电站现场运行规程中应有直流电源系统空气开关、熔断器配置一览图(表)和直流电源系统充电装置参数设置清单。要定期进行统计检查,出线不匹配情况,立即更换空气开关。 3.2定期对蓄电池进行检测与维护 蓄电池在整个直流系统中占据着重要地位,因此应当加强检测与维护工作。第一,定期进行蓄电池充放电试验;第二,每个季度都应当对蓄电池内阻予以检测,分析蓄电池电压是否保持在合理的范围内,避免电压过高或者过低情况的发生,同时对环境的湿度与温度进行检测,避免因环境问题影响蓄电池的使用,做好蓄电池的清洁维护工作;第三,要及时更换检测出问题的蓄电池,以免蓄电池组运行中发生安全问题。 3.3全面检查系统中的充电装置 对充电设备也应当予以足够的关注,工作人员应当关注充电装置参数设置和均充浮冲切换。如果充电装置未处于工作状态,而母压电线仍要维持运行稳定,则蓄电池应当一直为直流母线供电。要定期核对充电装置参数设置,定期巡视充电装置,确保充电装置正常运行。 3.4加强对直流系统的绝缘管理 为了提高变电站运行的安全性,应当加强对直流系统绝缘性的关注与管理,避免因绝缘降低而发生短路事件。首先,工作人员应当将直流系统与其它设备分开,分别展开有针对性的保护工作;其次,在日常工作中应当做好防尘、防潮以及防水工作,避免不良因素降低系统的绝缘性;最后,工作人员应定期展开巡查,如果发现直流系统的绝缘性降低,应当找到原因,并及时作出对应处理。

相关文档
最新文档