2020年北师大基础数学考研招生情况、分数线、参考书目、真题分析
2020考研数学(三)真题(含解析)

,
而 cos f '(x) cos f '(x) ,故 cos f '(x) 也为偶函数,故 cos f '(x) f (x) 为非奇非偶函数。
(4) 已知幂级数 nan (x 2)n 的收敛区间为(−2,6) ,则 an (x 1)2n 的收敛区间为
n1
n1
(A).(-2,6) (B).(-3,1) (C).(-5,3) (D).(-17,15)
(C) x k11 k23 k34
【答案】 C
(D) x k12 k23 k34
4
(5)设 4 阶矩阵 A (aij ) 不可逆, a12 的代数余子式 A12 0 ,1,2,3,4 是矩阵 A 的列向量组, A*为
A 的伴随矩阵,则 A* x 0 的通解为(
)
(A) x k11 k22 k33
(B) x k11 k22 k34
f ( x)a f ( x) a
ua u a
【解析二】由拉格朗日中值公式得 sin f (x) sin a ( f (x) a)cos ,其中 介于 a 与 f (x) 之间,
由 lim f (x) a b ,知 lim f (x) a 0 ,即 lim f (x) a ,故 lim a ,
)
xa x a
xa
xa
(A) bsin a (B) bcos a (A) bsin f (a) (A) bcos f (a)
【答案】B
【解析一】由 lim f (x) a b ,知 lim f (x) a 0 ,即 lim f (x) a ,
xa x a
北京师范大学教育硕士(珠海分校)考研 招生人数 参考书 报录比 复试分数线 考研真题 考研经验 招生简章

爱考机构考研-保研-考博高端辅导第一品牌研究生院珠海分院教育硕士专业招生简章为了更好地适应珠海及珠三角地区经济社会发展和基础教育领域对高层次专门人才的需求,我校研究生院珠海分院2013年拟在教育管理、学科教学(思政)、学科教学(语文)、学科教学(数学)、学科教学(英语)、心理健康教育六个专业领域,培养教育硕士100人。
请点击此处查询北京师范大学研究生院珠海分院招生说明!欢迎有志于从事基础教育领域教育教学工作的考生报考!一、总体说明我校全日制教育硕士专业学位旨在适应基础教育发展需要,培养热爱基础教育事业,掌握现代教育理论,具有较强教育教学实践能力和研究能力的高素质的基础教育领域一线教师。
教育硕士毕业生应能胜任相关的教育教学工作,能运用所学理论和方法解决教育教学中的实际问题,能创造性地开展教育教学工作。
研究生在规定学习年限内完成规定的学习内容,符合毕业要求的,由北京师范大学颁发教育硕士专业学位研究生毕业证书;符合学位授予条件的,由北京师范大学授予教育硕士专业学位证书。
二、招生人数2013年北京师范大学研究生院珠海分院计划招收双证教育硕士100人。
主要面向珠海及珠三角地区招生,全国其他地区符合报考条件者,亦可报考。
不接收推荐免试生。
招生专业、学科领域及拟招生人数见下表。
专业学位领域代码专业学位领域名称拟招生总人数备注045101 教育管理10 以非全日制方式学习045102 学科教学(思政)15045103 学科教学(语文)25 只招收汉语言文学专业、对外汉语专业的考生045104 学科教学(数学)10 只招收数学专业的考生045108 学科教学(英语)20 只招收英语专业的考生045116 心理健康教育20三、报考条件及报考程序(一)报考条件1.中华人民共和国公民。
2.拥护中国共产党的领导,愿为社会主义现代化建设服务,品德良好,遵纪守法。
3.学历必须符合下列条件之一:(1)国家承认学历的应届本科毕业生。
清华考研辅导班-2020清华大学962数学-数据方向基础综合考研经验真题参考书目

清华考研辅导班-2020清华大学962数学-数据方向基础综合考研经验真题参考书目清华大学962数学-数据方向基础综合考试科目,2020年初试时间安排为12月22日下午14:00-17:00业务课二进行笔试,清华大学自主命题,考试时间3小时。
一、适用院系及专业清华大学伯克利深圳学院0812J3数据科学与信息技术清华大学伯克利深圳学院0830J2环境科学与新能源技术二、考研参考书目清华大学962数学-数据方向基础综合有官方指定的考研参考书目,盛世清北整理如下:《数据结构》(C语言版) 清华大学出版社严蔚敏、吴伟民盛世清北建议:(1)参考书的阅读方法目录法:先通读各本参考书的目录,对于知识体系有着初步了解,了解书的内在逻辑结构,然后再去深入研读书的内容。
体系法:为自己所学的知识建立起框架,否则知识内容浩繁,容易遗忘,最好能够闭上眼睛的时候,眼前出现完整的知识体系。
问题法:将自己所学的知识总结成问题写出来,每章的主标题和副标题都是很好的出题素材。
尽可能把所有的知识要点都能够整理成问题。
(2)学习笔记的整理方法A:通过目录法、体系法的学习形成框架后,在仔细看书的同时应开始做笔记,笔记在刚开始的时候可能会影响看书的速度,但是随着时间的发展,会发现笔记对于整理思路和理解课本的内容都很有好处。
B:做笔记的方法不是简单地把书上的内容抄到笔记本上,而是把书上的关键点、核心部分记到笔记上,关上书本,要做到仅看笔记就能将书上的内容复述下来,最后能够通过对笔记的记忆就能够再现书本。
三、重难点知识梳理2020年清华大学深圳国际研究生院962 《数学-数据方向基础综合》考研考试大纲:考试内容:1.1什么是数据结构1.2基本概念和术语1.3抽象数据类型的表示与实现1.4算法和算法分析1.4.1算法1.4.2算法设计的要求1.4.3算法效率的度量1.4.4算法的存储空间需求2 线性表2.1线性表的类型定义2.2线性表的顺序表示和实现2.3线性表的链式表示和实现2.3.1线性链表2.3.2循环链表2.3.3双向链表2.4一元多项式的表示及相加3栈和队列3.1栈3.1.1抽象数据类型栈的定义3.1.2栈的表示和实现3.2栈的应用举例3.2.1数制转换3.2.2括号匹配的检验3.2.3行编辑程序3.2.4迷宫求解3.2.5表达式求值3.3栈与递归的实现3.4队列3.4.1抽象数据类型队列的定义3.4.2链队列——队列的链式表示和实现3.4.3循环队列——队列的顺序表示和实现3.5离散事件模拟4 串4.1串类型的定义4.2串的表示和实现4.2.1定长顺序存储表示4.2.2堆分配存储表示4.2.3串的块链存储表示4.3串的模式匹配算法4.3.1求子串位置的定位函数Index(S,T,pos)4.3.2模式匹配的一种改进算法4.4串操作应用举例4.4.1文本编辑4.4.2建立词索引表5 数组和广义表5.1数组的定义5.2数组的顺序表示和实现5.3矩阵的压缩存储5.3.1特殊矩阵5.3.2稀疏矩阵5.4广义表的定义5.5广义表的存储结构5.6m元多项式的表示5.7广义表的递归算法5.7.1求广义表的深度5.7.2复制广义表5.7.3建立广义表的存储结构6 树和二叉树6.1树的定义和基本术语6.2二叉树6.2.1二叉树的定义6.2.2二叉树的性质6.2.3二叉树的存储结构6.3遍历二叉树和线索二叉树6.3.1遍历二叉树6.3.2线索二叉树6.4树和森林6.4.1树的存储结构6.4.2森林与二叉树的转换6.4.3树和森林的遍历6.5树与等价问题6.6赫夫曼树及其应用6.6.1最优二叉树(赫夫曼树)6.6.2赫夫曼编码6.7回溯法与树的遍历6.8树的计数7 图7.1图的定义和术语7.2图的存储结构7.2.1数组表示法7.2.2邻接表7.2.3十字链表7.2.4邻接多重表7.3图的遍历7.3.1深度优先搜索7.3.2广度优先搜索7.4图的连通性问题7.4.1无向图的连通分量和生成树7.4.2有向图的强连通分量7.4.3最小生成树7.4.4关节点和重连通分量7.5有向无环图及其应用7.5.1拓扑排序7.5.2关键路径7.6最短路径7.6.1从某个源点到其余各顶点的最短路径7.6.2每一对顶点之间的最短路径8 动态存储管理8.1概述8.2可利用空间表及分配方法8.3边界标识法8.3.1可利用空间表的结构8.3.2分配算法8.3.3回收算法8.4伙伴系统8.4.1可利用空间表的结构8.4.2分配算法8.4.3回收算法8.5无用单元收集8.6存储紧缩9 查找9.1静态查找表9.1.1顺序表的查找9.1.2有序表的查找9.1.3静态树表的查找9.1.4索引顺序表的查找9.2动态查找表9.2.1二叉排序树和平衡二叉树9.2.2B树和B+树9.2.3键树9.3哈希表9.3.1什么是哈希表9.3.2哈希函数的构造方法9.3.3处理冲突的方法9.3.4哈希表的查找及其分析10 内部排序10.1概述10.2插入排序10.2.1直接插入排序10.2.2其他插入排序10.2.3希尔排序10.3快速排序10.4选择排序10.4.1简单选择排序10.4.2树形选择排序10.4.3堆排序10.5归并排序10.6基数排序10.6.1多关键字的排序10.6.2链式基数排序10.7各种内部排序方法的比较讨论11 外部排序11.1外存信息的存取11.2外部排序的方法11.3多路平衡归并的实现11.4置换一选择排序11.5最佳归并树12 文件12.1有关文件的基本概念12.2顺序文件12.3索引文件12.4ISAM文件和VSAM文件12.4.1ISAM文件12.4.2VSAM文件12.5直接存取文件(散列文件)12.6多关键字文件12.6.1多重表文件12.6.2倒排文件四、考研真题2009年,教育部出台了严格管理院校自主命题专业考试科目相关资料、限制专业课辅导的规定,很多学校从那时起不再公布和出售真题,并不再提供专业课参考书目。
八年级北师大版上册数学期中卷面分析

期中考试质量分析一、总体情况期中考试顺利结束了,由于这次考试是全县统考,所以它的作用可以说是多方面的。
既考了学生也考了老师。
对学生而言,是对前半学期学习情况的一次全面检测,对老师而言又何尝不是呢?同时还能看清楚与别的学校的差距在哪里,与别的老师的差距在哪。
所以说,考试结束了但工作远还没结束,考后的经验总结尤其重要。
今年八年级共有103人参加考试。
优秀的有56人,及格的有73人,最高分为120分,最低分为34分,学生的两极分化严重。
二、试卷分析八年级数学期中统考试卷由填空题、选择题、解答题组成。
试卷符合新课标要求,试题能扣紧教材,有梯度。
,试题设计新颖,渗透分类讨论、数形结合和函数建模等数学思想与数学方法。
试卷的知识覆盖面大,注重考查学生对知识和技能的理解与应用能力,考查学生的动手操作能力和观察能力,达到了考查创新意识、应用意识、综合能力的目的,有利于激发学生创造性思维,有利于发挥试卷对数学教学的正确导向作用。
本卷试题设置了适量的开放性、应用性、信息性、实验操作性试题,加强与社会生活、学生经验的联系,增强问题的趣味性、真实性和情境性,重视考查学生在真实情境中提出、研究、解决实际问题的能力,体现了重视培养学生的创新精神和实践能力的导向。
关注基础的数学素养、关注生活、关注创新是本卷试题的亮点。
三、答题情况分析下面是学生答题中的情况分析:第一大题(选择题1~10小题):第1、2、3、4、5、6、9题学生完成得很好,第7、8、10题学生答题较差,主要错因缺少分析问题的能力。
考虑问题不全面。
对所学知识遗忘过多。
尤其是第10题错误较多,考虑问题不全面。
第二大题(填空题11~18小题):第11、12、17、题完成得很好。
完成得较差的有:第13、14、15、16、18题学生审题不严谨,顾此失彼,学生没有良好的开放思维的习惯,同时切入点有误。
导致错误较多。
以后要多加训练,要多强调。
第三大题:解答题(19——24)第19计算题,学生大部分计算能力很高。
2020年考研数学二真题及解析

2020全国硕士研究生入学统一考试数学二试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( ) (A )()21xt e dt -⎰(B)(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D)1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。
(A )()()222011x t x e dt e x '-=-~⎰(B )(()(22ln 1ln 1x t dt x x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 22301sin sin(1cos )2xt dt x x x-'=-⎰经比较,选(D )(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ( )(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()lim lim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---;1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x exf x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞----故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。
北京大学2020年数学分析试题及解答

+
fy
(u cos θ, u sin θ) sin θ du
du fx (u cos θ, u sin θ) cos θ + fy (u cos θ, u sin θ) sin θ dθ
∫0 r ∫0 r
0
1 u 1 u
0∫
du
fx dy − fy dx (第二型曲线积分)
∫x∫2 +y 2 =u2 du
3
8. (1) 直接套公式可计算出 f (x) 的 Fourier 级数为
sin πp ∑ ∞ (−1)n sin πp ( 1 +
+
) 1 cos nx,
πp
π
p+n p−n
n=1
由于 f (x) = cos px 是分段单调有界的, 故上述级数收敛于 cos px.
(2) 取 x = 0, 由(1) 知:
形 Stokes 公式的证明
∫
∫
R(x, y, z) dz = ∂R dy dz − ∂R dz dx,
L⃗
S⃗ ∂y
∂x
其中 R 是 C1 函数, S⃗ 的方向为 S 的上侧, L⃗ 为 S⃗ 的边界曲线 R 相应的方向.
7.
(15 分) 设 f (x, y) 在 点, 半径为 r 的圆周.
R 上有连续二阶偏导数, 满足 f (0, 0) = 请求出 f (x, y) 在 Cr 上的平均值 A(r)
但是
limn→+∞
√1 n
=
0,
故
f (x)
在
[0, +∞)
上不一致收敛.
注 判断这种在无穷区间上的连续可微函数是否一致收敛, 首先是看函数在无穷处的极限是否存在, 若存在则一
2024年北师大版初一数学知识点总结(二篇)
2024年北师大版初一数学知识点总结一、集合与运算1. 集合的概念与表示- 集合的概念:具有某种特定性质的事物的总称。
- 集合的表示:列举法、描述法、集合关系式。
2. 集合的基本运算- 交集:属于同时属于两个集合的元素所组成的新集合。
- 并集:属于两个集合中至少一个的元素所组成的新集合。
- 差集:属于一个集合而不属于另一个集合的元素所组成的新集合。
- 互斥事件:两个事件不可能同时发生的事件。
- 逆事件:一个事件不发生的事件。
- 交换律、结合律、分配律、对偶律。
二、数与运算1. 自然数与整数- 自然数:正整数及零的集合,用N表示。
- 整数:正整数、负整数和零的集合,用Z表示。
2. 有理数- 有理数:可以表示为两个整数之比的数,有限小数、无限循环小数和无限不循环小数的集合,用Q表示。
- 有理数的运算:加法、减法、乘法、除法。
- 有理数的性质:相等性、大小关系、绝对值。
3. 小数与分数- 小数:有限小数、无限循环小数、无限不循环小数。
- 分数:整数和真分数。
- 分数的化简、比较大小、加法、减法、乘法、除法。
4. 实数- 实数:有理数和无理数的集合,用R表示。
- 实数的性质:有序性、稠密性。
5. 整数的除法- 整数除法的概念与性质。
- 余数与商的关系。
三、代数式与方程式1. 代数式与代数式的值- 代数式:由数和变量以及运算符号组成的式子。
- 代数式的值:当变量取某一确定的值时,代入代数式中计算得到的值。
2. 方程与方程的解- 方程:含有一个或多个未知数的等式。
- 方程的解:是使方程成立的未知数的值。
- 方程与方程组的思想与模型应用。
四、几何图形1. 平面与空间几何- 点、线、面和体。
2. 几何图形与基本图形的性质- 几何图形:点、线和面的集合。
- 基本图形:三角形、四边形、五边形、六边形、圆等。
- 基本图形的性质与分类。
3. 直线与角- 直线:直径、相交、垂直、平行等性质。
- 角:角的概念、角的度量、角的分类。
2020全国硕士研究生入学统一考试数学(二)真题及答案解析
kx
x1x
lim
x
1
x
x
1 e
x
lim
x
x
1
1 1
x
x
1
e
令t
1 lim
x t0
1
e 1t t
1
et 1 t t
1 e2
1ln(1t )
et lim
t 0
t
e
1 lim
e t0
1ln(1t )1
et
1
t
1 lim
1ln(1t )1 t
1 lim ln(1 t) t
.
答案: 1 ga3 3
【解析】 F
a
2 g(a y) ydy 2 g
a (ay y2 )dy 2 g(1 a3 1 a3) 1 ga3
0
0
23 3
13.设 y yx满足 y 2y y 0,
且
y0
0
,
y0
1
,则
0
yx
dx
.
答案:1
【解析】 y 2y y 0, 所以特解方程: 2 +2+1=0,(+1)2 =0 1=2 =-1; y通 =(C1 C2x)ex ; y通' ex (C2 C1 C2x) ;又 y(0) 0,y' (0) 1 ;
三、解答题:15~23 小题,共 94 分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答. 题.纸.指定位置上.
15.(本题满分 10 分).
求曲线
y
x1 x
1 xx
x
0 的斜渐近线。
x1 x
【解析】:斜率 k
lim x
2020-2020学年达州市北师大七年级上期中数学试卷含答案解析
四川省达州市2020-2020学年七年级(上)期中数学试卷(解析版)一、精心选一选,慧眼识金!((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为25 ±0.25千克”,则下列面粉中合格的有()A. 24.70 千克B. 25.32 千克C. 25.51 千克D. 24.86 千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A. 1.94X1010B. 0.194X1010C. 19.4X109D. 1.94 X 1093.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B ,圆柱体C.球体D ,三棱柱4. - 23的意义是()A. 3个—2相乘B. 3个—2相力口C. - 2乘以3D. 3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A. 0个B. 1个C. 2个D. 3个6.将如图RtAABC绕直角边AC旋转一周,所得几何体的左视图是((1) 78 - 23+ 70=70+70=1 ;(2) 12- 7X (- 4) +8+ (- 2) =12+28- 4=36; (3) 12+ (2X3) =12 + 2X3=6X3=18;(4) 32X 3.14+3X (- 9.42) =3x 9.42+3X (- 9.42) =0.其中错误的有()A. 1个B. 2个C. 3个D. 4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字二个数起,每个数都等于 1与它前面那个数的差的倒数 的排列规律,利用这个规律可得a 2020等于()C. 2 D, 3an. 右a1=y,从第通过探究可以发现这些数有一定A.7.下列计算:表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为(9,有若干个数,第一个数记为a1,第二个数记为a2,…,第n 个数记为10.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是 1, 3和4,则这6个整数的和是()备”字所代表的面相对的面上的汉字16. 在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?17. 《庄子.天下篇》中写道:工尺之植,日取其半,万世不竭 ”意思是:一根一尺的木棍, 如果每天截取它的一半,永远也取不完,如图.A. 15B. 9 或 15C. 15或 21D. 9, 15 或 21二、耐心填一填,一锤定音!(本部分 在题中的横线上)11.计算(-3) - (-7) =.7个小题,每小题3分,共21分.把最后答案直接填12 .如图所示的三个几何体的截面分别是:(1);(3)13 .把边长为lcm 的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.;(2)14.如图所示的是一个正方体的表面展开图,则与1-2三、用心做一做,马到成功!(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.( 6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数: ;(3)绝对值大于3且小于6的所有负整数: ;(4)在数轴上,与表示-1的点距离为5的所有数: ;(5)倒数等于本身的数: ;(6)绝对值等于它的相反数的数: .19.( 7分)画一条数轴,在数轴上表示出 3.5和它的相反数,-2和它的倒数,最小的自然数.然后用S ”把这些数连接起来.20.(16分)计算:⑴⑵(3)(4)21.( 6分)根据实验测定,高度每增加100米,气温大约下降0.6C.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是- 16C,如果当时地面温度是8C, 那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形, 其长为10cm ;从上面看到的是等边三角形,其边长为4cm求这个几何体的侧面积.(4分)已知|x|=3, y 2=25,且x>y,求出x, y 的值.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从出发,晚上到达 B 地.规定向东为正,当天的航行记录如下(单位: km ) : -16, -7, 12,6, 10, - 11 , 9. B 在A 地的哪侧?相距多远?若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?如果把正方体的棱 2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设如果把正方体的棱三等分, 然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有 3个面涂有颜色的有 a 个,各个面都没有涂色的有b 个,则a+b=(3)如果把正方体的棱 4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有 2个面涂有颜色的有 c 个,各个面都没有涂色的有b 个,则c+b=(4)如果把正方体的棱 n 等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有 2个面涂有颜色的有 c 个,各个面都没有涂色的有b 个,则c+b=23. 24. (4 分)已知 12m — 6|+ (-1) 2=0,求 m - 2n 的值.25. 26. (10分)将一个正方体的表面全涂上颜色.其中3面被涂上颜色的有 a 个,则a=(2) 从王面看以左面看从上面青3等分2020-2020 学年四川省达州市七年级(上)期中数学试卷参考答案与试题解析一、精心选一选,慧眼识金!((本部分10 个小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 .一种面粉的质量标识为“25± 0.25 千克” ,则下列面粉中合格的有()A.24.70 千克B.25.32 千克C.25.51 千克D.24.86千克【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25- 0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:25+0.25=25.25;25-0.25=24.75,,合格的面粉质量在24.75和2.25之间,故选:D .【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2 .在我国南海某海域探明可燃冰储量约有194 亿立方米.194 亿用科学记数法表示为()A. 1.94X1010B. 0.194X1010C. 19.4X109D. 1.94X109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为ax 10n的形式,其中1W| a| <10, n为整数.确定n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值》1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为: 1.94X1010.故选:A .ax 10n的形式,其此题考查了科学记数法的表示方法.科学记数法的表示形式为中1w|a|v10, n为整数,表示时关键要正确确定a的值以及n的值.3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()白A.长方体B.圆柱体C.球体D.三棱柱【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形. 故选:C.【点评】本题考查几何体的分类和三视图的概念.4. - 23的意义是()A. 3个—2相乘B. 3个—2相力口C. -2乘以3D. 3个2相乘的积的相反数【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:-23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A. 0个B. 1个C. 2个D. 3个【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】 解:① 没有最小的整数,故 ① 错误; ② 有理数中没有最大的数,故 ②正确;③ 如果两个数的绝对值相等,那么这两个数相等或互为相反数,故 ④ 互为相反数的两个数的绝对值相等,故 ④ 正确; 故选:C.【点评】 本题考查了有理数,没有最大的有理数,没有最小的有理数.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】 解:RtAABC 绕直角边AC 旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形, 故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.下列计算:(1) 78 - 23+ 70=70+70=1 ;(2) 12- 7X (- 4) +8+ (- 2) =12+28- 4=36; (3) 12+ (2X3) =12 + 2x3=6x3=18;(4) 32X 3.14+3X (- 9.42) =3X 9.42+3X (- 9.42) =0.其中错误的有()③错误;6.将如图RtAABC 绕直角边AC 旋转一周,所得几何体的左视图是(A. 1个B. 2个C. 3个D. 4个【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78—4=77■,错误;(2)原式=12+28— 4=36,正确;(3)原式=12+ 6=2,错误;(4)原式=3X 9.42+3X (- 9.42) =0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3歹U,从左到右的列数分别是4, 3, 2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.一* …一、, -―… ―99 .有若干个数,第一个数记为 a i,第一个数记为a 2,…,第n 个数记为a n.若a i 专,从第二个数起,每个数都等于 1与它前面那个数的差的倒数 的排列规律,利用这个规律可得a 2020等于(【分析】根据每个数都等于 1与它前面那个数的差的倒数 + 3=672 可知a 2020=a 3. 2 【解答】解:当ail 时,_ 1 -1-^^=1 J”, 1 I 1 a 3=l 一力=1-3 =力「2020 + 3=672,1a 2020=a 3=一故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于 可知这列数的周期为 3是解题的关键.10 .如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是 1, 3和4,则这6个整数的和是()A. 15B. 9 或 15C. 15或 21D. 9, 15 或 21【考点】 认识立体图形;有理数的加法.通过探究可以发现这些数有一定”可知这列数的周期为 3,由2020 1与它前面那个数的差的倒数【考点】规律型:数字的变化类.・•・这列数的周期为 3,【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6 或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A .【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、耐心填一填,一锤定音!(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(-3) - (-7) = 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(―3) —(― 7) = (― 3) +7=7 - 3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数. 这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:( 1) 圆;(2) 长方形:(3) 三角形【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆, 截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14 cm. 【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:二•正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,•••要剪12-5=7条棱,1X (7X2)=1 X 14=14 (cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7, 14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与奋”字所代表的面相对的面上的汉字是 _【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面生”与面是”相对,面活与面奋”相对,面就“与面斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0, b>0,且| a| v | b| ,用之”把a, - a, b, - b连接起来:―b v av — av b【考点】有理数大小比较. 【分析】有理数大小比较的法则: 数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:: a<0, b>0,- a>0, - bv 0, - I al <1 bl , - a< b,— b< a< - a< b.故答案为:-bvav - a< b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确: ①正数都大于0;②负数都小于0;③正数大于一切负数; ④ 两个负数,绝对值大的其值 反而小.16 .在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,所有可能的情况是剪去1号、2号或3号小正方形.①正数都大于0;②负数都小于0;③正数大于一切负问应剪去几号小正方形?【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答. 【解答】解:二.剩余的部分恰好能折成一个正方体, .•・展开图中没有田字形,・♦・应剪去1号、2号或3号小正方形. 故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的 只要有 白”字格的展开图都不是正方体的表面展开图.11中形式是解题的关键,17.《庄子.天下篇》中写道:二尺之植,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.【考点】规律型:图形的变化类.故答案为:1【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、用心做一做,马到成功!(本部分 8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.写出符合下列条件的数: (1)最小的正整数:1; (2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数: -4, - 5 ;(4)在数轴上,与表示-1的点距离为5的所有数: 4, - 6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数 .【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答. 【解答】解:如图.(1)最小的正整数:1; (2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:-4, - 5; (4)在数轴上,与表示-1的点距离为5的所有数:4, -6;由图易得:I -2A 2-【分析】由图可知第一次剩下-1-出第n 次剩下【解答】解:;第二次剩下 丁,共截取22n共截取1 - k,截取1-二2(5)倒数等于本身的数:士1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1 ; 0; - 4, - 5; 4, - 6;± 1 ;0或负数.1-7 -5 -4-3-2-101 2 3 4 5 61:【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.画一条数轴,在数轴上表示出 3.5和它的相反数,-2和它的倒数,最小的自然数.然后用法”把这些数连接起来.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出 3.5和它的相反数,-2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用夕”号连接起来即可.3.5>0>— 0.5>— 2> — 3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.-14--1-X[2- (- 3) 2].(16分)(2020秋?渠县校级期中)计算:⑴⑵(3)(4)【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可. (2)应用乘法分配律,求出算式的值是多少即可.(3) (4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.3 1 1 ^^^"+^")4 2 4) =15X — =22;一=亍= "12=一1 —/X [2-9]1.yx [ - 7]1 -I,【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序: 先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算; 如果有括号, 要先做括号内的运算.21 .根据实验测定,高度每增加 100米,气温大约下降0.6 C.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是-16C ,如果当时地面温度是 8C,那么小张【解答】解:(1)+ (3 2=1 —(2) 15X 彳 一(T5)X 上+15X2=15X ( (3)一5 + 28 (—2)X (-514一万+(一)x (一5 142.(4) - 14- —X[2- (- 3) 2]所在位置离地面的高度是多少米?【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8- (- 16) ] +0.6=24+0.6=40 (米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.已知如图为一几何体的三种形状图:(1)这个几何体的名称为三棱柱;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm, 求这个几何体的侧面积.从正面看从左面看从上面看【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3X 10X4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.已知|x|=3, y2=25,且x>y,求出x, y 的值.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、v,再根据条件确定x、y.【解答】解:|x|=3,..x= ± 3-y2=25,•-y= ±5,-x>y,x=3 , y= - 5 或x= - 3, y= - 5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.已知|2m —6|+ (£―1) 2=0,求m —2n 的值.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m- 6=0, y - 1=0,解得,m=3, n=2,【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km) : - 16, -7, 12, - 9, 6, 10, - 11, 9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1) — 16+ (— 7) +12+ (— 9) +6+10+ (— 11) +9 =-16-7+12- 9+6+10- 11+9 =-6 (km), | — 6| =6km ,答:B地在A地的西边,相距6km;(2)0.46 X (|—16|+| -7|+12+| -9|+6+10+| -11|+9)=0.46 X (16+7+12+9+6+10+11+9)=0.46 X 80=36.8 (升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解芷“和负”的相对性,明确什么是一对具有相反意义的量. 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.(26)( 10分)(2020秋?渠县校级期中)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= 8 ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= 9 ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= 32 ; (4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到n3个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= 12 (n -2) + (n- 2) 3 .【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到( 1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.( 4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12 (n- 2)个,各面均不涂色(n-2) 3个,b+c=12 (n-2) + (n-2) 3.故答案为:8, 9, 32, n3, 12 (n-2) + (n-2) 3.【点评】本题主要考查了正方体的组合与分割. 手操作. 要熟悉正方体的性质,在分割时有必要可动【考点】认识立体图形.。
北京师范大学2020研究生院硕士研究生招生公告
北京师范大学2020研究生院硕士研究生招生公告目前对于研究生招生简章想必大家都非常关注,为方便大家及时了解全国各省市院校2020年硕士研究生招生简章,下面由小编为你精心准备了“北京师范大学2020研究生院硕士研究生招生公告”,持续关注本站将可以持续获取更多的考试资讯!北京师范大学2020研究生院硕士研究生招生公告一、招生人数我校2020年拟招收硕士研究生4100人左右,招生专业目录上各学部院系、各专业所列招生人数包含拟接收推荐免试生人数(点击此处查询接收办法),招生人数仅供参考,最终招生总人数以教育部正式下达的招生计划文件为准,录取阶段可能会根据生源情况及考试成绩等进行适当调整。
少数民族高层次骨干人才计划、援藏计划和退役大学生士兵计划属于专项计划,详情见附件1。
二、报考条件(一)报名参加全国硕士研究生招生考试的人员,须符合下列条件:1.中华人民共和国公民。
2.拥护中国共产党的领导,品德良好,遵纪守法。
3.身体健康状况符合国家和我校规定的体检要求。
4.考生学业水平必须符合下列条件之一:(1)国家承认学历的应届本科毕业生(含普通高校、成人高校、普通高校举办的成人高等学历教育应届本科毕业生)及自学考试和网络教育届时可毕业本科生,录取当年入学前须取得国家承认的本科毕业证书,否则录取资格无效。
(2)具有国家承认的大学本科毕业学历的人员。
(3)获得国家承认的高职高专毕业学历后满2年(从毕业后到录取当年入学前)或2年以上的人员,以及国家承认学历的本科结业生,同时满足以下三个条件的人员,按本科毕业同等学力身份报考。
条件为①修完大学本科全部必修课程;②在所报考专业领域的学术期刊上以第一作者发表过两篇以上(含)论文;③报考专业与所学专业相同或相近。
(4)已获硕士、博士学位的人员。
(5)在境外获得的学历(学位)证书须通过(中国)教育部留学服务中心认证,资格审查时须提交认证报告。
(二)报名参加以下专业学位全国硕士研究生招生考试的,按下列规定执行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021年北师大基础数学考研招生情况、分数线、参考
书目、真题分析
一、北师大基础数学考研招生情况
070101基础数学
01代数表示论与同调代数
02最优控制与控制理论
03常微分方程与动力系统
04偏微分方程及应用
05函数逼近论
06复分析
07调和分析及其应用
08图论与组合学
09辛几何拓扑与非线性分析
10拓扑学
11代数组合论
12微分几何
13函数空间及其应用
14数理逻辑
15矩阵论及其应用
考试科目:
①101思想政治理论
②201英语一
③762数学分析
④955专业综合一(高等代数85分,空间解析几何65分)
复试内容:
在泛函分析、微分几何、近世代数、复变函数、常微分方程、概率论与数理统计六门课程中任选一门
招生人数:
2019年本专业拟招收41人,含接收推免生28人左右
二、北师大基础数学考研参考书目推荐
北师大近几年开始不公布参考书目,以下是学长学姐推荐书目,供大家参考——
762数学分析
数学分析(第3版)郑学安,邝荣雨等北京师范大学出版社
数学分析华师大高等教育出版社
955专业综合一
高等代数(第三版)北京大学数学系几何与代数教研室前代数小组编高等教育出版社
高等代数(第四版)张禾瑞郝鈵新高等教育出版社
解析几何尤承业北京大学出版社
空间解析几何高红铸、王敬庚、傅若男北京师范大学出版社
三、2018年北师大基础数学考研复试分数线
四、2018 北师大基础数学考研拟录取名单
录取名单请关注“北师大考研联盟”微信公众号查阅!
五、2018年北师大基础数学762考研真题
1 求f(x)=xsin(lnx)的导数和二阶导数
2证明f(x)=(1+1/x)∧x在(0,+∞)上单调增
3求f(x)=x∧2+y∧3——3xy的极值点和极值
4设三角级数a0/2+∑(ancosnx+bnsinnx)在R上一致收敛于f(x),证明
(i)对于k∈N,级数
a0coskx/2+∑(ancosnx+bnsinnx)coskx在R上一致收敛
a0coskx/2+∑(ancosnx+bnsinnx)sinkx在R上一致收敛
(ii)
an= 1/π∫(0,2π)f(x)cosnxdx
bn= 1/π∫(0,2π)f(x)sinnxdx
5 区域Ω由y=x∧2——2x,x+y=2,z=x+y,z=0围成,
(i)把∫∫∫Ω |xyz|dxdydz写成几个累次积分的和(被积函数不能有绝对值)
(ii)设Ω0为{P∈Ω,x≥0,y≥0},求∫∫∫Ω0 |xyz|dxdydz.
6证明
(i)f(x)=xarctanx+(sinx)∧2在R上一致连续
(ii)f(x)=x[arctan(x)](sinx)∧2在R上不一致连续
7给出了两个四元函数F(x,y,u,v),G(x,y,u,v),
(i)要求证明在(1/2,0,1/2,0)处邻域可以确定隐函数组u(x,y),v(x,y)
(ii)求v对x的偏导数,以及二阶偏导数vxx
8设f(x)是[0,1]上连续的正值函数,对于n∈N+,证明
(i)存在唯一的an∈(1/n,1)使得∫(1/n,an)f(x)dx=∫(an,1)f(x)dx
(ii)limn→∞an的极限存在。