高三化学 纳米材料材料分类
精细化工新材料的类型

精细化工新材料的类型一、金属有机框架材料金属有机框架材料(Metal-Organic Frameworks,MOFs)是一种由金属离子或簇与有机配体构成的结晶材料。
MOFs具有高度的可调性和多样性,可以通过改变金属离子和有机配体的选择来调控其结构和性能。
MOFs具有大孔隙、高比表面积和可调控的孔径大小等优点,因此在气体吸附、储能、分离等领域具有广泛的应用前景。
二、纳米材料纳米材料是指在一定条件下制备的颗粒尺寸在1-100纳米之间的材料。
由于其尺寸效应和表面效应的存在,纳米材料具有独特的物理、化学和生物学性质。
纳米材料广泛应用于催化、电子器件、传感器、生物医学和环境保护等领域。
三、高分子功能材料高分子功能材料是以高分子化合物为基础,通过合成和改性得到的具有特定功能的材料。
高分子功能材料具有多样的结构和性能,可用于电子器件、光学材料、超级电容器、生物医学材料等领域。
例如,聚合物发光材料可应用于有机发光二极管(OLED)和荧光传感器等领域。
四、功能陶瓷材料功能陶瓷材料是指具有特定功能和性能的陶瓷材料。
功能陶瓷材料具有优异的物理、化学和机械性能,可用于催化、传感器、电子器件、高温结构材料等领域。
例如,氧化锆陶瓷具有高温稳定性和优异的机械性能,可用于高温气体分离和固体氧化物燃料电池等应用。
五、生物材料生物材料是指具有生物相容性和生物活性的材料,可用于修复和替代人体组织。
生物材料广泛应用于医学领域,如人工关节、脊椎间盘、组织工程和药物传递系统等。
生物材料的开发对于改善人类健康和提高生活质量具有重要意义。
六、功能涂层材料功能涂层材料是将具有特定功能的材料涂覆在基材表面,以赋予基材特定的性能和功能。
功能涂层材料广泛应用于防腐、耐磨、防刮、防腐蚀、隔热和光学等领域。
例如,纳米涂层具有高硬度、耐磨和抗腐蚀性能,可用于汽车、航空航天和建筑等领域。
七、电化学材料电化学材料是指能够在电化学过程中发生电荷转移和电化学反应的材料。
常用纳米材料

常用纳米材料
纳米材料是指至少在一个空间尺度上尺寸在1到100纳米之间的材料。
由于其
特殊的尺寸效应、量子效应和表面效应,纳米材料具有许多传统材料所不具备的特殊性能,因此在诸多领域都有着广泛的应用前景。
本文将介绍一些常用的纳米材料及其应用。
首先,碳纳米管是一种由碳原子通过卷曲而成的纳米材料,具有极高的导热性
和机械强度,因此在材料强化、导热材料和纳米电子器件等领域有着广泛的应用。
其独特的结构和性能使得碳纳米管成为当前研究的热点之一。
其次,纳米颗粒是一种尺寸在1到100纳米之间的微小颗粒,常见的有金纳米
颗粒、银纳米颗粒等。
这些纳米颗粒具有较大的比表面积和表面能,因此在催化、生物医学、传感器等领域有着广泛的应用。
例如,金纳米颗粒可以作为生物标记物、药物载体等,银纳米颗粒则常用于抗菌材料等方面。
另外,纳米复合材料是由两种或两种以上的材料通过纳米技术制备而成的新型
材料,具有优异的性能。
例如,纳米氧化锌复合材料具有优异的光催化性能和抗菌性能,因此在环境治理和医疗材料等领域有着广泛的应用。
此外,石墨烯是一种由碳原子通过平面排列而成的二维纳米材料,具有极高的
导电性和导热性,因此在电子器件、柔性电子、能源存储等领域有着重要的应用前景。
其独特的结构和性能使得石墨烯成为当前研究的热点之一。
总的来说,纳米材料具有许多传统材料所不具备的特殊性能,因此在诸多领域
都有着广泛的应用前景。
随着纳米技术的不断发展,相信纳米材料将会在更多的领域展现出其独特的魅力,为人类社会的发展做出更大的贡献。
大一材料化学知识点

大一材料化学知识点一、材料分类和材料性质1. 金属材料金属材料是由金属元素组成的材料,具有良好的导电性、导热性和可塑性。
常见的金属材料包括铁、铝、铜等。
金属材料在工业生产和建筑领域得到广泛应用。
2. 非金属材料非金属材料主要由非金属元素或化合物组成,具有较差的导电性和导热性。
常见的非金属材料有陶瓷、聚合物和复合材料等。
非金属材料在电子、医疗和环保等领域有重要应用价值。
3. 高分子材料高分子材料是由长链分子组成的材料,具有良好的可塑性和耐磨性。
常见的高分子材料有塑料、橡胶和纤维素等。
高分子材料广泛应用于塑料制品、橡胶制品和纺织品等行业。
4. 纳米材料纳米材料是指具有纳米级尺寸的材料,具有特殊的物理和化学性质。
常见的纳米材料有纳米颗粒、纳米管和纳米线等。
纳米材料在电子、光电和医学等领域发展迅速,具有广阔的应用前景。
二、材料结构和组织1. 晶体结构晶体结构是指材料中原子或离子的排列方式。
晶体结构的种类包括立方晶系、正交晶系和六方晶系等。
不同的晶体结构决定了材料的物理和化学性质。
2. 晶体缺陷晶体缺陷是指晶体中存在的原子或离子排列不完整的区域。
常见的晶体缺陷包括点缺陷、线缺陷和面缺陷等。
晶体缺陷对材料的强度和导电性能有重要影响。
3. 材料组织材料组织是指材料中各种组成成分的分布和排列方式。
常见的材料组织有均匀组织、层状组织和颗粒组织等。
不同的材料组织决定了材料的宏观性能和微观行为。
三、材料性能1. 机械性能机械性能是指材料在外力作用下的表现。
常见的机械性能包括强度、硬度和韧性等。
不同的材料具有不同的机械性能,适用于不同的工程应用。
2. 热学性能热学性能是指材料在热力学过程中的表现。
常见的热学性能包括热导率、膨胀系数和热稳定性等。
热学性能对材料的加工和使用具有重要的影响。
3. 电学性能电学性能是指材料在电场中的表现。
常见的电学性能包括电导率、介电常数和电阻率等。
不同的材料具有不同的电学性能,适用于不同的电子器件制备。
2021届高考化学物质的组成、性质和分类配套导学案

C.③⑤⑥⑦D.①③④⑦
题组二 胶体
6.判定以下说法是不是正确:
(1)依据丁达尔现象可将分散系分为溶液、胶体与浊液( )
(2020·福建理综-8C)
(2)AgI胶体在电场中自由运动( )
(2020·重庆理综-8B)
(3)江河入海口三角洲的形成通常与胶体的性质有关( )
(2020·广东-5①)
②化合态:元素以________形式存在的状态。
(5)元素、物质及微粒间的关系如以下图所示
【问题试探】
1.判定以下说法是不是正确?假设不正确,说出理由。
①元素在自然界的存在形式有原子、分子或离子。
②在化学转变中,分子能够再分,离子和原子不能够再分。
③同一种元素可能有多种不同原子,同一 种原子也可能形成不同的离子。
(2)同素异形体之间的性质不同要紧体此刻________性质上,同素异形体之间的转变属于________转变。
3.混合物和纯净物
(1)纯净物:_________________________________________________________。
(2)混合物:____________________________________________________________。
【问题试探】
4.胶体带电吗?什么缘故胶体是均一、稳固的?
(4)Fe(OH)3胶体的制备
向滚水中逐滴加入____________,继续煮沸至液体呈____________,停止加热,即制得Fe(OH)3胶体,化学方程式为________________________________________________
________________________________________________________________________。
学年第一学期高三化学期末质检复习题

2003-2004学年第一学期高三化学期末质检复习题一、选择题(每题只有一个选项符合题意)1、通常听说的“白色污染”是指()A.冶炼厂的白色烟尘B.石灰窑的白色粉尘C.聚乙烯等白色塑料垃圾D.白色建筑废料2、“纳米材料”(1nm=10-9m)是当今材料科学研究的前沿,其研究成果广泛应用于催化及军事科学中。
“纳米材料”是指研究开发直径为几纳米至几十纳米的材料,如将“纳米材料”分散到液体分散剂中,对于所得分散系的叙述正确的是( )①所得物质一定是溶液②能全部透过半透膜③有丁达尔现象④所得液体可以全部透过滤纸A、①②B、②③C、③④D、①④3、最近,科学家在实验室成功地在高压下将CO2转化为类似Si02的原子晶体结构,下列关于CO2晶体的叙述中不正确的是( ) A.晶体中C、O原子个数比为1:2B.该晶体的熔点、沸点高,硬度大C.晶体中C--O--C键角为180。
D.晶体中C、O原子最外层都满足8电子结构4、2001年9月北京世界大学生运动会结束时,数万只小气球腾空而起,若从安全角度考虑,气球中不应充H 2,而适宜用下列气体中的( )A.NeB.HeC.CH 4D.空气5、下列各组物质中,将前者加入后者时,无论前者是否过量,都能用同一个离子方程式表示的是( )A 、稀盐酸,Na 2CO 3溶液B 、Cu ,FeCl 3溶液C 、稀H 2SO 4溶液,NaAlO 2溶液D 、铁与稀硝酸溶液6、X 、Y 为短周期元素,X 原子所具有的电子层数是最外层电子数的21,Y 原子次外层电子数是最外层电子数的31,X 与Y 能形成多种原子团,其中一定不存在的是( )A.X 2Y-24 B.XY -4 C.XY -23D.X 2Y -237、下列分子中所有原子都满足最外层为8电子结构的是( )。
A.次氯酸B.四氯化碳C.二氟化氙D.三氟化硼8、一定量的质量分数为6%的NaOH 溶液(密度为d 1g·cm -3),物质的量浓度为a mol·L -1,加热溶液使其质量分数的和为30%(密度为d 2g·cm -3),此时溶液的浓度为b mol·L -1,则a 与b 的关系是 ( )A . b=5a B.b >5a C.b <5a D.无法判断9、欲使100 mL 纯水的pH 由7变为4,所需0.1 mol/ L 的盐酸溶液的体积(mL )约为( )A.10.0 B.1.0 C.0.1 D.0.0510、在体积aL的密闭容器中,放入2LA气体和1LB气体,在一定条件下发生反应:3A(气)+B(气)nC(气)+2D(气),反应达平衡后,A的浓度减少到原来的1/2,混合气体的平均相对分子质量增大了1/8倍,则反应式中的n值为()A、1B、2C、3D、411、在一定条件下CO和CH4燃烧的热化学反应方程式为:2CO(g)+O2(g)=2CO2(g);△H= —566 kJ/mol;CH4(g)+2O2(g)→CO2(g)+2H2O(l) ;△H= —890 kJ/mol 由1mol CO和3mol CH4组成的混合气体在上述条件下完全燃烧后,释放出的热量( )kJA.2912 B.2953 C.3236 D.382712、金属X的原子量是金属Y的2/3倍,等质量的X和Y在相同条件下跟过量的稀硫酸反应,所产生氢气的体积VX是VY的一半。
化学纳米材料

化学纳米材料
化学纳米材料是指至少有一个尺寸在纳米尺度范围内的材料,通常是1-100纳米。
这些材料具有独特的物理、化学和生物学特性,因此在许多领域都具有重要的应用前景。
在本文中,我们将探讨化学纳米材料的制备方法、特性和应用。
首先,化学纳米材料可以通过多种方法制备,包括溶剂热法、溶胶-凝胶法、
气相沉积法等。
这些方法可以控制纳米材料的形貌、尺寸和结构,从而调控其性能。
例如,通过溶剂热法可以制备出形貌各异的金纳米颗粒,而溶胶-凝胶法则可制备
出高比表面积的二氧化硅纳米材料。
其次,化学纳米材料具有许多独特的特性。
首先,由于其尺寸在纳米尺度范围内,纳米材料表面积大大增加,使得其具有优异的催化性能和光学特性。
其次,纳米材料的量子效应和表面效应使得其具有优异的电子传输性能和化学反应活性。
此外,纳米材料还具有优异的机械性能和生物相容性,这些特性使得纳米材料在催化、传感、生物医学等领域具有广泛的应用前景。
最后,化学纳米材料在许多领域都具有重要的应用价值。
在催化领域,纳米材
料可以作为催化剂用于催化反应,提高反应速率和选择性。
在传感领域,纳米材料可以制备成传感器,用于检测环境中的有害物质。
在生物医学领域,纳米材料可以用于药物传输、肿瘤治疗和影像诊断。
此外,纳米材料还可以用于制备纳米电子器件、纳米光子器件等,推动纳米科技的发展。
综上所述,化学纳米材料具有独特的制备方法、特性和应用前景。
随着纳米科
技的不断发展,相信化学纳米材料将在更多领域展现出其重要的作用,为人类社会的发展做出更大的贡献。
重难点01 化学与STSE-2023年高考化学重点难点专练(江苏专用)(解析版)

重难点01 化学与STSE1.化学与技术材料(1)绿色化学:核心是利用化学原理从源头上减少和消除化工生产对环境的污染;原则是原子利用率为100%。
(2)环境污染指pH小于5.6的雨雾或其他形式的大气降水。
SO2、NO x是形成酸雨的主要原因:SO2+H2O===H2SO3 ,2H2SO3+O2===2H2SO4(或2SO2+O22SO3,SO3+H2O===H2SO4);2NO+O2===2NO2,3NO2+H2O===2HNO3+NO(1)常规能源与新能源①常规能源:煤、石油和天然气等;①新能源:太阳能、氢能、风能、地热能、海洋能、核能和生物质能等。
(2)一级能源与二级能源①一级能源:在自然界中能以现成形式提供的能源,如:天然气、煤、石油、水能、风能、太阳能等;①二级能源:需要依靠其他能源(也就是一级能源)的能量间接获取的能源,如:电能、热能等。
4.传统文化中蕴含的化学知识(1)传统文化涉及“物质”的判断根据文言文信息分析物质的性质,判断是哪种物质。
如“有硇水者,剪银塊投之,则旋而为水”,“硇水”指的是硝酸;药物“鼻冲水”条目下写道:“贮以玻璃瓶,紧塞其口,勿使泄气,则药力不减,气甚辛烈,触入脑,非有病不可嗅”,“鼻冲水”指的是氨水。
(2)传统文化涉及“变化”的判断由古代文献记载的内容,联系化学反应,判断是否为化学变化、物理变化;判断化学反应的类型,如置换反应、氧化还原反应等。
如“烈火焚烧若等闲”,该过程涉及化学变化——碳酸钙的分解。
“熬胆矾(CuSO4·5H2O)铁釜,久之亦化为铜”,涉及的反应类型为置换反应或氧化还原反应。
(3)传统文化涉及“分离”方法的判断根据过程判断分离和提纯的常见方法,如蒸馏、蒸发、升华、萃取等。
如“自元时始创其法,用浓酒和糟入甑,蒸令气上……其清如水,味极浓烈,盖酒露也。
”该过程涉及蒸馏操作;“……(KNO3)所在山泽,冬月地上有霜,扫取以水淋汁后,乃煎炼而成”,“煎炼”涉及蒸发结晶操作。
高三化学分散系及分类

能否透过滤 纸
能否透过半 透膜
能 能
不能 不能
??
??
?
科学探究2
3.分别用激光笔照射Fe(OH)3胶体和CuSO4溶液, 在与光束垂直的方向进行观察。
胶体的性质
1、丁达尔现象(光学性质)
实验:光束分别通过Fe(OH)3胶体和CuSO4溶液,观察现象。 现象:一束光通过胶体时,从侧面可观察到胶体里 产生一条光亮的“通路”。
2. 下列事实与胶体的性质有关的是 ( D ) ①用盐卤点豆腐 ②用明矾净水 ③医药上用三氯化铁止血 江河入海口形成三角洲 A.只有①② B.只有①②④ C.只有①②③ D.全部
④
分析:①盐卤的主要成份是MgCl2等电解质,豆浆的主要成分 是由蛋白质形成的液溶胶。用盐卤点豆腐是利用电解质使液溶 胶发生聚沉。 ②明矾的水溶液中含Al3+,Al3+与水作用产生Al(OH)3, Al(OH)3以胶体形式存在。Al(OH)3胶粒吸附作用很强,能吸附 水中的杂质和其它胶粒,例如粘土形成的胶粒,聚沉成较大的 微粒而沉淀,使水得到净化。 ③血液是一种液溶胶,三氯化铁是电解质,用三氯化铁止血就 是利用电解质促使血液胶体聚沉。 ④江河中含有大量泥砂,也含有大量土壤胶体,海洋中含有大 量NaCl等电解质。电解质促使胶体聚沉,与泥沙一起形成三 角洲。
胶粒带同种电荷,相互间产生排斥作用, 不易结合成更大的沉淀微粒,这是胶体具有稳 定性的主要因素。
胶体的分类:
雾、 云、 烟 有 色 玻 璃
Fe(OH)3
AgI胶体ຫໍສະໝຸດ 淀粉 胶体Fe(OH)3
AgI胶体
渗析
利用半透膜把胶体中混有的离子或分子从胶体溶液 里分离的操作,叫做渗析。
其原理为胶体微粒不能透过半透膜,而溶液中的分 子和离子能透过半透膜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米材料分类
纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。
其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。
(1)纳米粉末
又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。
可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。
(2)纳米纤维
指直径为纳米尺度而长度较大的线状材料。
可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。
静电纺丝法是制备无机物纳米纤维的一种简单易行的方法。
(3)纳米膜
纳米膜分为颗粒膜与致密膜。
颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。
致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。
可用于:气体催化(如汽车尾气处理)材料;过滤器材
料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。
(4)纳米块体
纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。
主要用途为:超高强度材料;智能金属材料等。
纳米材料定义:
材料的基本结构单元至少有一维处于纳米尺度范围(一般在11100nm),并由此具有某些新特性的材料(1微米=1000纳米)。
纳米级结构材料简称为纳米材料(nanometermaterial),是指其结构单元的尺寸介于1纳米~100纳米范围之间。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如:熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
发展历程:
1861年,随着胶体化学的建立,科学家们开始了对直径为
1~100nm的粒子体系的研究工作。
真正有意识的研究纳米粒子可追溯到20世纪30年代的日本的为了军事需要而开展的“沉烟试验”,但受到当时试验水平和条件限制,虽用真空蒸发法制成了世界第一批超微铅粉,但光吸收性能很不稳定。
到了20世纪60年代人们开始对分立的纳米粒子进行研究。
1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。
1984年德国萨尔兰大学(Saarland University)的Gleiter以及美国阿贡实验室的Siegal相继成功地制得了纯物质的纳米细粉。
Gleiter在高真空的条件下将粒子直径为6nm的铁粒子原位加压成形,烧结得到了纳米微晶体块,从而使得纳米材料的研究进入了一个新阶段。
1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience&Technology),正式宣布纳米材料科学为材料科学的一个新分支。
自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段:
第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。
第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。
第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。
国际上把这类材
料称为纳米组装材料体系或者纳米尺度的图案材料。
它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。