太阳能电池的的性能主要取决于它的光电转换效率和输出功率

合集下载

太阳能电池原理及效率的影响因素

太阳能电池原理及效率的影响因素

太阳能电池原理及效率的影响因素太阳能电池是一种将太阳能转化为电能的设备,它基于光电效应的原理运作。

其主要组成部分是半导体材料,当太阳光照射到半导体表面时,光子能量被吸收,导致半导体中的电子从其原子轨道跃迁到能级较高的导带。

这个过程中,光能转化为电子能量,形成了阳极和阴极之间的电场。

当外部负载接入电池电路中时,电子就会从阳极流出,阴极上就会形成一个电流。

1.材料选择:太阳能电池的效率与材料的能带结构和光吸收特性有关。

目前常用的太阳能电池材料主要有硅、铜铟镓硒(CIGS)、镓砷化物(GaAs)等。

硅晶体太阳能电池的效率较低,但材料成本较低;CIGS和GaAs等材料的效率较高,但成本也较高。

2.光吸收能力:太阳能电池对太阳光的吸收能力越强,转化效率就会越高。

因此,提高太阳能电池材料的光吸收能力是提高效率的关键。

3.光电转换效率:光电转换效率是指电池将吸收到的太阳能转化为电能的效率。

主要取决于太阳能电池的能带结构和载流子的捕捉和传输过程。

提高光电转换效率是提高太阳能电池效率的关键。

4.电子损失:太阳能电池中的电子在运输过程中可能会发生损失,包括反射、散射、复合等。

减少电子损失可以提高太阳能电池的效率。

5.光伏温度系数:太阳能电池的效率随温度的变化而变化,常用温度系数表示。

如果温度系数较小,太阳能电池在高温环境下的效率损失较小。

6.光照强度和角度:太阳能电池效率还与光照强度和入射角度有关。

太阳光强度越高,太阳能电池的效率就越高;而入射角度与电池表面的法线角度差异越大,效率就越低。

7.背面反射:太阳能电池背面的反射损失会降低太阳能电池的效率,可以通过添加抗反射涂层等措施降低反射损失。

总结起来,太阳能电池效率的提高需要从多个方面进行优化,包括材料选择、光吸收能力、光电转换效率、电子损失、光伏温度系数、光照强度和角度以及背面反射等因素的综合考虑。

通过不断的研究和创新,可以提高太阳能电池的效率,促进太阳能的广泛应用。

太阳能电池的制作和性能测试

太阳能电池的制作和性能测试

太阳能电池的制作和性能测试太阳能电池是一种将太阳能转化为电能的装置,它通过将太阳光转化为电能来满足人们的能源需求,具有环保、安全和可再生等优点,因而备受关注。

本文将介绍太阳能电池的制作和性能测试。

一、太阳能电池的制作1.材料准备太阳能电池的主要材料有硅、氮化镓、磷化铟等,这些材料必须具有良好的光电转换特性,以充分利用太阳能的能量。

此外,太阳能电池还需要导体、胶水、电缆等辅助材料。

2.制作步骤(a) 切割硅片:选择高纯度的硅片,按照特定的尺寸切割成方形薄片,用盐酸与氢氟酸混合液清洗表面,使其表面光滑。

(b) 涂布导体:在硅片上涂布一层导电胶水,以便将光电转换产生的电流传输到外部电路中。

导体的厚度应适中,以免影响光电转换机理。

(c) 涂布氧化铝:在导体表面涂布一层氧化铝,作为二极管的质壁。

(d) 涂布反射层:在氧化铝层上方涂布一层反射层,用以提高太阳能电池的光吸收效率。

(e) 制作p-n结:在硅片上加入掺杂元素,使硅片形成p-n结。

此时,导体与硅片中生成的电场相互作用,形成光电势差,将太阳能转化为电能。

(f) 封装:在硅片上用胶水或有机材料进行封装,以防止环境污染和潮湿对太阳能电池的影响。

二、太阳能电池的性能测试在制作太阳能电池后,需要对其进行性能测试,以确定其光电性能。

以下是几个重要测试方法:1.开路电压测试将太阳能电池与电压表相连,遮住阳光,记录电压表上的数值,这个数值就是太阳能电池的开路电压。

开路电压是指在负载电阻耗散电流为0时太阳能电池的电压。

2.短路电流测试短路电流是指在负载电阻为0时,太阳能电池的最大输出电流。

短路电流的测试方法是将电池短路并测量通过电池的电流。

3.最大输出功率测试最大输出功率是指在最大输出点上的功率。

其取决于太阳能电池的输出电流和输出电压。

测试方法是在太阳能电池输出电压和输出电流之间加入负载电阻,寻找输出功率最大点。

4.效率测试太阳能电池的效率是指其将光能转化为电能的比率,可通过实验来测定。

太阳能电池的工作原理与性能

太阳能电池的工作原理与性能

太阳能电池的工作原理与性能随着环保理念的深入人心,太阳能逐渐成为人们重视和追逐的一个能源发展方向。

太阳能电池是将太阳能直接转化成电能的一种电子器件,具有高效、无污染、可再生等优点,成为未来可持续发展的重要组成部分。

本文将从太阳能电池的工作原理和性能两方面深入论述。

一、太阳能电池的工作原理太阳能电池的工作原理基于晶体管和PN结。

PN结就是P型半导体和N型半导体结合处的PN结会在两种半导体中产生电场而形成势垒。

如果在PN结的两端分别连接电极作为外接电路,当阳光射入太阳能电池时,光子的能量被用来激发电流载体。

在“p-n”结的区域内,光电子被击中而产生能量,然后由势垒电场作用,靠近不同电位的电子和空穴被聚集起来,形成电子流进入外电路,使阳极短路而形成一个电路。

太阳能电池是光伏效应的实现器,光伏效应就是将光线直接转化成电子流的现象。

太阳能电池产生电流的原理是,太阳能电池上的n型半导体层有大量的自由电子,p型半导体层有大量的电子空穴,两者之间有一个障垒。

当光线照射到太阳能电池上时,光子和半导体表面产生电子-空穴对,其中电子受到电场作用被吸收到n型半导体中,而空穴则被吸收到p型半导体中,这样产生了电导~电流,然后这个电流通过外部负载进入回路。

当外部电路被关闭时,太阳能电池的电流就会消失。

二、太阳能电池的性能太阳能电池的效率主要取决于光伏转换效率和光损失、反射损失、折射损失、漏电、热损失等的综合影响。

当光线照射在太阳能电池表面时,会有一部分光线被反射回来,其中一部分遗漏到外面,导致了光伏转换效率的下降。

一般而言,太阳能电池的转换效率越高,产生的能量就会越多。

典型的太阳能电池效率通常在15%左右,高效的太阳能电池可以达到限定的40%以上。

另外,太阳能电池的输出电压和电流也是需要考虑的重要性能参数。

在现实中,太阳能电池组在不同的使用环境下获得的输出电压和电流是不同的。

因此,在设计系统的时候,需要分析和计算不同使用环境下的最大输出功率。

太阳能光伏电池中光电特性分析研究

太阳能光伏电池中光电特性分析研究

太阳能光伏电池中光电特性分析研究随着新能源的发展,太阳能作为最为广泛应用的新能源之一,受到了越来越多人的关注。

然而,太阳能的收集与利用也需要依赖于太阳能光伏电池。

因此,了解太阳能光伏电池的光电特性分析研究对于太阳能能源开发和利用具有重要意义。

太阳能光伏电池中的光电特性分为光电转换效率、暗电流和光电流三个方面。

一、光电转换效率太阳能光伏电池中的光电转换效率是指光能转换成电能的效率,它是衡量太阳能光伏电池性能的重要指标。

光电转换效率的提高可以增加光伏电池的输出功率,提高光伏电池的使用寿命。

光电转换效率与电池的化学成分、结构和材料密切相关。

其中,化学成分是影响光电转换效率的关键因素之一。

硅材料是主要的太阳能光伏电池材料,可分为单晶硅、多晶硅和非晶硅等。

单晶硅太阳能电池在高品质化妆技术的支持下可以达到高达24%以上的光电转换效率。

而未来的光伏电池将采用双层钙钛矿结构,这种材料具有更高的能量转换效率。

二、暗电流在太阳能光伏电池中,闭合电路的条件下,在完全无光情况下,仍流过电路的电流被称为暗电流。

暗电流是影响光伏电池性能的重要因素之一。

当太阳能光伏电池工作在开路电压条件下,暗电流将会降低整个光伏电池的输出电压。

另外,暗电流也会使光伏电池的储电效果变差,影响电池的使用寿命。

对于解决暗电流的问题,一方面需要改进太阳能光伏电池的制造工艺和材料,另外一方面也需要优化光伏电池的接线和使用条件等方面进行调整。

三、光电流当太阳能光伏电池工作在与太阳光照射相同的光照下,会产生光电流。

光电流是太阳能光伏电池输出电流的主要组成部分之一。

光电流的大小与光照的强度、光照角度以及太阳能光伏电池的材料等有关系。

为了提高太阳能光伏电池的光电流,可以通过以下措施来实现:1. 优化材料。

制造更高效的太阳能光伏电池需要使用化学成分更纯净的硅材料。

2. 优化结构。

将太阳能光伏电池的传导率和蓄电率提高,以提高太阳能光伏电池的光电流。

3. 改进能量转移机理。

太阳能光伏电池的性能与效率研究

太阳能光伏电池的性能与效率研究

太阳能光伏电池的性能与效率研究太阳能光伏电池是一种利用太阳能通过光电效应将光能转化为电能的设备,它是目前最受关注的可再生能源之一。

太阳能光伏电池的性能和效率是决定其应用前景的重要因素。

本文将就太阳能光伏电池的性能和效率进行深入的研究。

一、太阳能光伏电池的性能太阳能光伏电池的性能主要包括光电转化效率、输出功率、电压和电流等方面。

1.光电转化效率光电转化效率是太阳能光伏电池的重要性能参数,它是指光电转化为电的效率,通常用百分比表示。

光电转化效率越高,太阳能光伏电池所产生的电能就越多,其应用领域也就越广。

2.输出功率输出功率是太阳能光伏电池的实际输出功率,同时也是衡量太阳能光伏电池质量的关键指标之一。

输出功率越高,表示太阳能光伏电池的光电转化效率越高,使用效果也更好。

3.电压和电流太阳能光伏电池的电压和电流是指其在光照条件下的电压和电流值。

电压与输出功率成正比,而电流则与面积有关。

在太阳强度相同的情况下,面积越大的光伏电池,其电流也就越大。

二、太阳能光伏电池的效率太阳能光伏电池的效率依赖于其所处环境的温度、光照强度、角度等因素。

在实际应用中,太阳能光伏电池的效率往往无法达到理论上的最大值。

当前太阳能光伏电池的实际效率普遍在10%~20%之间,而实现最高效率的太阳能光伏电池理论上可以达到33%。

1.温度对太阳能光伏电池效率的影响太阳能光伏电池的温度高低对其性能有很大的影响。

太阳能光伏电池在高温环境下,其效率会逐渐降低,在极端情况下甚至会引起热失控。

因此,在实际应用中,需要通过散热措施来降低太阳能光伏电池的温度,提高其效率。

2.光照强度对太阳能光伏电池效率的影响光照强度也是太阳能光伏电池效率影响因素之一。

太阳光照强度越大,太阳能光伏电池所吸收的光能就越多,电池的输出功率也就越大。

但是太阳能光伏电池在过于强烈的光照下,也容易出现过载现象,导致电池损坏。

3.角度对太阳能光伏电池效率的影响太阳能光伏电池安装的角度也会影响电池的效率。

太阳能电池测试原理

太阳能电池测试原理

太阳能电池测试原理太阳能电池是一种将太阳光转化为电能的器件,其测试原理主要涉及太阳能电池的光电效应、电子运动、电流测量和功率计算等方面。

首先,太阳能电池的测试原理与光电效应密切相关。

光电效应是指光照射到物质表面时,光子能量被物质中的电子吸收后,会使电子从原子或分子中脱离出来,从而产生电子流。

太阳能电池的测试原理就是基于该光电效应。

太阳能电池一般由两个半导体材料组成,其中一个为P型半导体,具有正电荷载流子缺陷,另一个为N型半导体,具有负电荷载流子缺陷。

当太阳光照射到太阳能电池上时,能量较高的太阳光子被吸收,撞击到半导体材料中的原子或分子上,使其内部电子获得光子的能量并跃迁到导带中,形成自由电子;同时,原本在禁带中的电子-空穴对被打破,产生正负载流子(电子和空穴)。

这样,通过P-N结形成的电场,将产生的电子和空穴分离,形成电势差。

这个过程就是光电效应转换的电能。

接着,太阳能电池的测试原理还涉及电子运动过程。

在光照射下,电子在P-N 结的作用下从P区域流向N区域,形成电流。

在这个过程中,由于P-N结形成的电场力的作用,使电子在电池中形成方向一致的电流。

这样,我们可以通过测试太阳能电池产生的电流来评估其光电转化效果。

使用电流表或万用表等仪器,将其接入太阳能电池的输出端,就可以测量到通过太阳能电池的电流。

电流测量只是太阳能电池测试的一部分,其中功率的测量也非常重要。

太阳能电池的输出功率是评估其性能优劣的重要指标。

功率是电流和电压的乘积,可以通过测量太阳能电池的输出电压和输出电流来计算得到。

实际测试中,常用数字电压表和电流表来测量输出电压和输出电流,然后将二者相乘,即可得到太阳能电池的输出功率。

除了电流和功率的测量,太阳能电池的效率也是一个重要的测试参数。

太阳能电池的效率是指太阳光转化为电能的有效比例,也是评估太阳能电池性能的关键指标。

太阳能电池的效率可以通过将太阳能电池的输出功率除以太阳光的输入功率来计算得到。

太阳能电池综述:材料、政策驱动机制及应用前景

太阳能电池综述:材料、政策驱动机制及应用前景

太阳能电池综述:材料、政策驱动机制及应用前景一、本文概述随着全球能源需求的持续增长和对环境保护的日益关注,太阳能电池作为一种清洁、可再生的能源转换技术,已经引起了广泛关注。

本文旨在全面综述太阳能电池领域的最新研究进展,包括关键材料的发展、政策驱动机制以及应用前景。

文章首先介绍了太阳能电池的基本原理和分类,然后重点分析了不同类型太阳能电池的关键材料及其性能特点。

在此基础上,文章深入探讨了国家政策对太阳能电池发展的推动作用,包括补贴政策、税收优惠、研发资助等。

文章展望了太阳能电池在未来的应用前景,包括在建筑、交通、航天等领域的应用潜力。

通过本文的综述,旨在为读者提供一个全面、深入的了解太阳能电池领域的窗口,为相关研究和产业发展提供参考。

二、太阳能电池材料太阳能电池的性能和效率在很大程度上取决于所使用的材料。

随着科技的进步,太阳能电池材料的种类和性能也在不断发展。

目前,市场上主流的太阳能电池材料主要包括硅基材料、多元化合物材料、有机材料以及新兴材料如钙钛矿材料等。

硅基材料是最早也是目前应用最广泛的太阳能电池材料。

单晶硅和多晶硅因其稳定的性能和较高的光电转换效率而备受欢迎。

然而,硅基材料也存在一些限制,如成本较高、制备工艺复杂等。

为了降低成本,研究人员正在探索使用薄膜硅、纳米硅等新型硅基材料。

多元化合物材料主要包括铜铟镓硒(CIGS)、铜锌锡硫(CZTS)等。

这些材料具有较高的光电转换效率和较低的成本,因此在近年来得到了广泛的关注。

然而,多元化合物材料的稳定性和制备工艺仍需进一步改进。

有机材料太阳能电池以其轻质、柔性、可大面积制备等优势而受到关注。

有机太阳能电池主要使用聚合物或有机小分子作为光活性材料,通过光电转换过程产生电能。

尽管目前有机太阳能电池的光电转换效率相对较低,但其低廉的成本和潜在的应用场景使得这一领域具有巨大的发展潜力。

除了上述几种主流材料外,新兴材料如钙钛矿材料也备受瞩目。

钙钛矿材料具有优异的光电性能和较低的成本,被认为是一种极具潜力的下一代太阳能电池材料。

解读太阳能电池板的工作原理与性能参数

解读太阳能电池板的工作原理与性能参数

解读太阳能电池板的工作原理与性能参数太阳能电池板是一种利用太阳能转化为电能的装置,它的工作原理和性能参数对于我们了解太阳能利用的效率和可行性具有重要意义。

本文将从工作原理和性能参数两个方面进行解读。

一、工作原理太阳能电池板的工作原理基于光电效应。

光电效应是指当光照射到某些物质表面时,光子的能量被物质中的电子吸收,使其获得足够的能量跳跃到导体中。

太阳能电池板的主要组成部分是半导体材料,如硅、镓等。

这些材料具有特殊的电子能级结构,当光子的能量与半导体材料的带隙能量相匹配时,光子被吸收,电子从价带跃迁到导带,形成电子-空穴对。

电子-空穴对的分离形成了电压差,从而产生电流。

太阳能电池板的工作原理可以简单概括为光生电流与扩散电流的平衡。

光生电流是指光子被吸收后形成的电流,而扩散电流是指电子-空穴对在半导体中的扩散运动产生的电流。

在太阳能电池板中,通过合理设计材料的能带结构和电场分布,可以使光生电流和扩散电流达到平衡,从而实现高效的光电转换效果。

二、性能参数太阳能电池板的性能参数是评价其性能优劣的重要指标。

以下是几个常见的性能参数:1. 开路电压(Open Circuit Voltage,简称OCV):当太阳能电池板未连接任何负载时,其输出电压即为开路电压。

开路电压是太阳能电池板的最大输出电压,通常用来描述电池板的电压特性。

2. 短路电流(Short Circuit Current,简称ISC):当太阳能电池板短路时,其输出电流即为短路电流。

短路电流是太阳能电池板的最大输出电流,通常用来描述电池板的电流特性。

3. 最大功率点(Maximum Power Point,简称MPP):太阳能电池板在特定光照和负载条件下,能够输出最大功率的工作点。

最大功率点是太阳能电池板的关键性能参数,它决定了电池板的光电转换效率和输出功率。

4. 填充因子(Fill Factor,简称FF):填充因子是太阳能电池板的一个综合性能指标,它反映了电池板输出特性的优劣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能电池板太阳能电池的的性能主要取决于它的光电转换效率和输出功率.1.效率越大,相同面积的太阳能电池板输出功率也就越大, 用高效率的太阳能电池板可以节省安装面积, 但是价格更贵.2.太阳能电池的功率, 在太阳能电池板的背面标牌中, 有关于太阳能电池板的输出参数, 如VOC开路电压,ISC短路电流,VMP工作电压,IMP工作电流,等. 但我们只需要用工作电压和工作电流就可以了, 这两个相乘就可以得这块太阳能电池板的输出功率.太阳能电池板介绍:采用高质量单晶/多晶硅材料,经精密设备树脂封装生产出来的太阳能板,有良好的光电转换效果,外形美观,使用寿命长。

太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。

太阳能电池板是太阳能发电系统中最重要的部件之一。

太阳能电池组件可组成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。

太阳能电池板的功率输出能力与其面积大小密切相关,面积越大,在相同光照条件下的输出功率也越大。

2.太阳能电池板的种类(1)单晶硅太阳能电池目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。

由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。

(2)多晶硅太阳能电池多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右(2004年7月1日日本夏普上市效率为%的世界最高效率多晶硅太阳能电池)。

从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。

此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。

从性能价格比来讲,单晶硅太阳能电池还略好。

:太阳能电池板solar cell panel由若干个太阳能电池组件按一定方式组装在一块板上的组装件。

所属学科:(一级学科);(二级学科)晶体硅电池板:太阳能电池、太阳能电池。

非晶硅电池板:、。

化学染料电池板:染料敏化太阳能电池。

发电系统太阳能电池板由太阳能电池组、、蓄电池(组)组成。

如输出电源为交流220V或 110V,还需要配置各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。

其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动工作。

太阳能电池板的质量和成本将直接决定整个系统的质量和成本。

(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。

在温差较大的地方,合格的控制器还应具备温度补偿的功能。

其他附加功能如光控开关、时控开关都应当是控制器的可选项。

(三)蓄电池:一般为铅酸电池,一般有12V和24V这两种,小中,也可用、镍镉电池或。

其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(四)逆变器:在很多场合,都需要提供AC220V、AC110V的交流电源。

由于太阳能的直接输出一般都是DC12V、DC24V、DC48V。

为能向AC220V的电器提供电能,需要将太阳能发电系统所发出的能转换成交流电能,因此需要使用DC-AC逆变器。

在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。

的制作过程:晶体硅太阳能电池“硅”是我们这个星球上储藏最丰量的材料之一。

自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。

20世纪末,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。

生产过程大致可分为五个步骤:a、提纯过程 b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。

原理太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通后就形成电流。

这就是光电效应太阳能电池的工作原理。

一、方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。

(1)光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。

前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。

因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。

(2)光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。

太阳能电池是一种由于而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。

当许多个电池串联或并联起来就可以成为有比较大的输出功率的了。

太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的电池板原料:玻璃,EVA,、铝合金壳、包锡铜片、支架、蓄电池等太阳能电池板光伏发电的工作原理是利用界面的光生伏特效应而将光能直接转变为电能的一种技术。

这种技术的关键元件是。

太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。

光伏发电的优点是较少受地域限制,因为阳光普照大地;还具有安全可靠、无噪声、低污染、无需消耗燃料和架设即可就地发电供电及建设同期短的优点。

光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。

不论是独立使用还是并网发电,主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。

理论上讲,可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。

的最基本元件是电池(片),有单晶硅、多晶硅、非晶硅和等。

目前,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器等。

国产晶体硅电池效率在10至13%左右,国外同类产品效率约18至23%。

由一个或多个太阳能电池片组成的太阳能电池板称为。

目前,光伏发电产品主要用于三大方面:一是为无电场合提供电源,主要为广大无电地区居民生活生产提供,还有微波中继电源、通讯电源等,另外,还包括一些移动电源和备用电源;二是太阳能日用电子产品,如各类太阳能充电器、和太阳能草坪灯等;三是并网发电,这在发达国家已经大面积推广实施。

组成(1)单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。

由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。

(2)多晶硅太阳能电池的制作工艺与差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右 (2004年7月1日夏普上市效率为%的世界最高效率多晶硅太阳能电池)。

从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。

此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。

从性能价格比来讲,单晶硅太阳能电池还略好。

(3)是1976年出现的新型薄膜式太阳电池,它与单晶硅和多晶硅太阳电池的制作方法完全不同,工艺过程大大简化,消耗很少,电耗更低,它的主要优点是在弱光条件也能发电。

但非晶硅太阳电池存在的主要问题是光电转换效率偏低,目前国际先进水平为10%左右,且不够稳定,随着时间的延长,其转换效率衰减。

(4)多元化合物太阳电池多元化合物太阳电池指不是用单一元素半导体材料制成的太阳电池。

现在各国研究的品种繁多,大多数尚未工业化生产,主要有以下几种:a) 硫化镉太阳能电池b) c) 铜铟硒太阳能电池(新型多元带隙梯度Cu(In, Ga)Se2薄膜太阳能电池) Cu(In, Ga)Se2是一种性能优良太阳光吸收材料,具有梯度能带间隙(导带与价带之间的能级差)多元的半导体材料,可以扩大太阳能吸收光谱范围,进而提高光电转化效率。

以它为基础可以设计出光电转换效率比硅薄膜太阳能电池明显提高的薄膜太阳能电池。

可以达到的光电转化率为18%,而且,此类薄膜太阳能电池到目前为止,未发现有光辐射引致性能衰退效应(SWE),其光电转化效率比目前商用的薄膜太阳能电池板提高约50~75%,在薄膜太阳能电池中属于世界的最高水平的光电转化效率。

寿命现在太阳能电池板厂家提供的数据是包用20年,不是储能的,只是电池板,现在每瓦的价格在国内差不多30-40元,国际价格美元每瓦。

价格是按瓦算的!功率计算方法太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和共同组成;太阳能直流发电系统则不包括逆变器。

为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。

下面以100W输出功率,每天使用6个小时为例,介绍一下计算方法:1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗):若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用5小时,则耗电量为111W*5小时=555Wh。

2.计算太阳能电池板:按每日有效为6小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为555Wh/6h/70%=130W。

其中70%是充电过程中,太阳能电池板的实际使用功率。

发电系统太阳能发电系统由太阳能电池组、太阳能、蓄电池(组)组成。

如输出电源为交流220V或 110V,还需要配置逆变器。

各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电中的核心部分,也是太阳能发电系统中价值最高的部分。

其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。

太阳能电池板的和成本将直接决定整个系统的质量和。

(二)太阳能控制器:太阳能控制器的作用是控制整个系统的状态,并对蓄电池起到过充电保护、过放电保护的作用。

相关文档
最新文档