(整理)大物实验太阳能电池.

合集下载

大物实验(上)太阳能电池的特性测量补充材料

大物实验(上)太阳能电池的特性测量补充材料

太阳能电池的特性测量补充材料1、实验电路图如图1所示:
图1-a实验电路图
图1-b实际电路图
2、太阳能电池伏安特性的典型曲线(见图2),学会测量下图中四个不同物理量的实验方法。

I s短路电流,可调电阻阻值最小时,电路中的电流值。

U0开路电压,可调电阻阻值最大时,太阳能电池两端的电压值。

I max最大功率电流:太阳能电池达到最大功率时,电路中的电流值。

U max最大功率电压:太阳能电池达到最大功率时,电路中的电压值。

3、电流表及电压表示意图如下:
注意:仿真实验中万用表的符号是错误的,此处对应直流档位。

万用表的红黑表笔如果接反,则万用表显示负值读数,记录数据的时候不需要记录负号。

4、实验数据表格1中的四个表格不需要测量20组数据,只要满足如下测量范围,并从中得到最大功率值就可以。

Is=45 mA,电流范围45-40 mA;电压大于1.00V。

Is=35 mA,电流范围35-30 mA;电压大于1.00 V。

Is=25 mA,电流范围25-20 mA;电压大于1.00 V。

Is=15 mA,电流范围15-10 mA;电压大于1.00 V。

5、重要提醒:建议同学们在测量过程中及时把测量数据记录到自己的Excel表格里,以免实验出什么问题,同时可以更简单的处理相应的数据,不用一次次都要按计算器来计算。

6、关于万用表自动关机的问题:万用表一段时间没变化就会自动关机,再重新开机后读数会有一点点变化,这时候不需要再从头开始测一遍了,可以接着测数据,这一点变化对最终结果影响不大,在实验的误差范围之内。

太阳能电池综合实验

太阳能电池综合实验

太阳能电池(硅光电池)基本特性的研究太阳能电池又称光生伏特电池,简称光电池。

它是一种将太阳或其他光源的光能直接转换成电能的器件。

由于它具有重量轻、使用安全、无污染等特点,在目前世界性能源短缺和环境保护形势日益严峻的情况下,人们对太阳能电池寄予厚望。

太阳能电池很可能成为未来电力的重要来源,美国预期到2005年太阳能电站将提供美国30%的电力。

同时,太阳能电池在现代检测和控制技术中也有十分重要的地位,在卫星和宇宙飞船上都用太阳能电池作为电源。

本实验对太阳能电池的基本特性做初步研究。

一. 实验目的1. 了解太阳能电池的基本结构及基本原理。

2. 研究太阳能电池的基本特性:太阳能电池的开路电压和短路电流以及它们与入射光强度的关系;太阳能电池的输出伏安特性等。

二. 实验仪器HN-TYN-II 太阳能电池(硅光电池)基本特性测量仪、实验装置、负载电阻模板。

1. 实验装置实验装置由光源和太阳能电池两部分组成, 如图1所示。

图12. 负载电阻模板如图2所示。

图2三. 实验原理1.太阳能电池的基本结构。

太阳能电池用半导体材料制成,多为面结合PN 结型,靠PN 结的光生伏特效应产生电动势。

常见的有硅光电池和硒光电池。

在纯度很高、厚度很薄(0.4mm )的N 型半导体材料薄片的表面,采用高温扩散法把硼扩散到硅片表面极薄一层内形成P 层,位于较深处的N 层保持不变,在硼所扩散到的最深处形成PN 结。

从P 层和N 层分别引出正电极和负电极,上表面涂有一层防反射膜,其形状有圆形、方形、长方形,也有半圆形。

太阳能电池的基本结构如图3所示。

图32.太阳能电池的基本原理当两种不同类型的半导体结合形成PN 结时。

由于分界层(PN 结)两+ + 负电极N 层PN 结 P 层 正电极层 防反射层边存在着载流子浓度的突变,必将导致电子从N区向P区和空穴从P区向N区扩散运动,扩散结果将在PN结附近产生空间电荷聚集区,从而形成一个由N区指向P区的内电场。

实验32 太阳能电池实验_大学物理实验_[共12页]

实验32 太阳能电池实验_大学物理实验_[共12页]

218大学物理实验⑤如何获得高电压、大电流输出的光电池?实验32 太阳能电池实验太阳能是指太阳辐射的能量。

我们知道在太阳内部无时无刻不在进行着氢转变为氦的热核反应。

反应过程中伴随着巨大的能量向宇宙空间的释放。

所有太阳释放到宇宙空间的能量都属于太阳能的范畴。

科学研究已经表明太阳的热核反应可以持续百亿年左右,能量辐射功率约3.8 × 1023kW。

根据地球体积、地球与太阳的距离等数据可以计算出地球被辐照到的太阳能大致为全部太阳能量辐射量的20亿分之一。

考虑到地球大气层对太阳辐射的反射和吸收等因素,实际到达地球表面的太阳辐照功率为80亿kW,折合500万吨标准煤的能量。

太阳能给人无限的遐想,但需要我们对太阳能有一个全面、客观的认识。

任何的事物总是具有两面性的。

就太阳能而言,其优势在于“普遍”,地球的任何角落都存在;“巨大”,太阳能是地球可供开采的最大能源;“无害”,不污染环境;“持续”,可稳定供应时间超过100亿年。

太阳能的缺点在于它具备的分散性、不稳定性、高成本。

分散性和不稳定性是地球地理特征决定的。

高成本是工艺技术水平的不足导致的。

太阳能是非常活跃的研究和应用领域,前景广阔,回报丰厚。

这个领域也充满问题和挑战,对相关人才的需求量巨大。

人类对硅材料的认识及固体理论、半导体理论的发展和成熟,是太阳能利用的关键推动力,具有里程碑意义的事件是1945年美国Bell实验室研制出实用性硅太阳能电池。

近年来,太阳能成为研究、技术、应用、贸易的热点。

太阳能潜在的市场为全世界所关注。

除了人类能源需求量的增大、化石能源储量的下降和价格的提升、理论和工艺技术水平的提高等因素外,环保意识、可持续发展意识的提升也是一个重要的因素。

太阳能电池是目前太阳能利用中的关键环节,核心概念是PN结和光生伏特效应。

理解太阳能电池的工作原理、基本特性表征参数和测试方法是必要和重要的。

一、实验目的①了解PN结的基本结构与工作原理。

大物实验报告

大物实验报告

大物实验报告各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢姓名:任文浩学号:2141601049第二十四次实验成绩_________实验日期教师签字_____________同组者许林松审批日期_____________实验名称:太阳能电池性能的研究一. 实验目的1. 了解太阳能电池的原理及性能。

2. 学习太阳能电池的性能测量与研究方法。

二. 实验所给仪器及用法实验仪器:LB-SC太阳能电池研究仪,太阳能电池板,连线若干,60W白炽灯,挡板。

用法:1.在光照状态下太阳能电池的短路电流Isc、开路电压Uoc、最大输出功率Pm,最佳负载及填充因子FF的测量打开电机箱电源,将控制白炽灯电源的“开灯/关灯”开关置于“开灯”,并把“亮度调节”旋钮调到最小;将太阳能电池的插头用线连接到电机箱的相同颜色插头上,将“明暗状态开关”拨到“明状态”,加载电压调到0v,“负载调节”旋钮逆时针调到最小,此时电流表上有电流显示,这是外界光产生的本底光电流;将灯源亮度调到最强,逆时针调节负载电阻旋钮到最小,测出太阳能电池的短路电流Isc,顺时针调节负载电阻旋钮到最大,测出太阳能电池的开路电压Uoc;将灯源亮度调到最强,调节负载电阻,由最小逐渐调到最大,可以看见光电流及负载电压的变化,负载电压每隔左右测量负载的电压和电流值。

2. 太阳能电池的短路电流Isc、开路电压Uoc与相对光强关系的测量分别将“负载调节”旋钮调到最小和最大,改变白炽灯光强度,分别记录下短路电流和开路电压。

白炽灯光强度刻度分有Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ挡,相对光强分别对应20%、40%、60%、80%和100%。

3. 不同角度光照下的太阳能电池板输出功率的测量将灯源亮度调到最亮,将“负载调节”旋钮固定,测量太阳能电池板在不同俯仰角时的电流和电压值。

比较不同照射角度对太阳能电池板输出的影响。

4. 太阳能电池板的串联并联特性的研究串联将两个太阳能电池对应的红黑插座用插线串联起来,此时重复光照状态下的测试实验,观察在最大照明状态下单个太阳能电池板的开路电压、短路电流与串联时的区别。

物理实验(下)太阳能电池基本特性的测量

物理实验(下)太阳能电池基本特性的测量

太阳能电池基本特性的测量The Experiment of Measuring The Electronic Properties of SolarCells摘要:这个实验旨在测量太阳能电池的一系列特性,根据太阳能电池的PN结结构,探究无光条件下太阳能电池的正向偏压伏安特性。

同时探究在固定光强下太阳能电池的负载特性。

利用光功率测定仪,定量分析太阳能电池的光照特性。

使用不同滤色片测量对应太阳能电池短路电流,从而推算其禁带宽度。

关键词:太阳能电池,伏安特性,填充因子,禁带宽度Abstract:What I did in this experiment is just to achieve an purpose of investigating into the character of solar cells, during which I measured the volt-ampere characteristics with a no-sight of light by the side of the cell and also the load character with a fixed photo intensity of it. With the help of photometer and color filters, the electric properties of the semiconductor solar cells used in different circumstances of illumination are stepping out little by little. And at the end of the game, the forbidden band width of the semiconductor materials is no more hiding.Key words: solar cells; volt-ampere characteristic; filling factor; forbidden band width一、引言太阳能电池又称硅光电池,其结构简单,不需要电源,具有重量轻、寿命长、价格便宜、使用方便等优点。

大学物理2-2太阳能电池实验报告

大学物理2-2太阳能电池实验报告

数据处理一,计算出功率和电阻的数值表1,负载电压和电流记录表电压/V 光电流I/mA 电阻/千欧功率/W0.00 5.02 0.00000 0.00000-0.10 5.00 0.02000 0.00050 -0.20 4.97 0.04024 0.00099 -0.30 4.96 0.06048 0.00149 -0.40 4.92 0.08130 0.00197 -0.50 4.91 0.10183 0.00246 -0.60 4.88 0.12295 0.00293 -0.70 4.85 0.14433 0.00340 -0.80 4.80 0.16667 0.00384 -0.90 4.74 0.18987 0.00427 -1.00 4.67 0.21413 0.00467 -1.10 4.59 0.23965 0.00505 -1.20 4.46 0.26906 0.00535 -1.30 4.31 0.30162 0.00560 -1.40 4.14 0.33816 0.00580 -1.50 3.94 0.38071 0.00591 -1.60 3.69 0.43360 0.00590 -1.70 3.40 0.50000 0.00578 -1.80 3.08 0.58442 0.00554 -1.90 2.71 0.70111 0.00515 -2.00 2.26 0.88496 0.00452 -2.10 1.78 1.17978 0.00374 -2.20 1.27 1.73228 0.00279 -2.30 0.71 3.23944 0.00163 -2.37 0.24 9.87500 0.00057功率与电阻关系图0.0001.0002.0003.0004.0005.0006.0007.0000.000500.0001000.0001500.0002000.0002500.0003000.0003500.000电阻/欧功率/m W功率/mW由图知 最大功率为5.91mW对应的最大电阻为380.71欧 Isc=5.02mA Uoc=2370mV Ff=Pmax/(Isc*Uoc)=0.5表2,太阳能电池正向偏压与电流数据表 U1/V U2/V I/A U/V0.00 0.00 0.00000 0.00 0.20 0.07 0.00034 0.13 0.40 0.15 0.00066 0.25 0.60 0.25 0.00092 0.35 0.80 0.37 0.00113 0.43 1.00 0.50 0.00131 0.50 1.20 0.64 0.00147 0.56 1.40 0.79 0.00160 0.61 1.60 0.96 0.00168 0.64 1.80 1.13 0.00176 0.67 2.00 1.30 0.00184 0.70 2.20 1.49 0.00186 0.71 2.40 1.67 0.00192 0.73 2.60 1.86 0.00194 0.74 2.80 2.06 0.00194 0.74 3.00 2.26 0.00194 0.74 3.20 2.46 0.00194 0.74 3.40 2.66 0.00194 0.743.60 2.87 0.00192 0.73 3.773.05 0.00189 0.72一定光照条件下光电池的伏安特性曲线y = 0.0026x - 6E-18-0.000500.000000.000500.001000.001500.002000.002500.000.100.200.300.400.500.600.700.80U/VI /AU/V线性 (U/V)电压和电流关系的经验公式为y=0.0026x-6E-18 表3,不同光强下太阳能电池开路电压和短路电流 光强比值 Isc/mA Uoc/V6 4.90 -2.36 5 4.42 -2.33 4 3.30 -2.24 3 2.14 -2.09 2 1.20 -1.86 1 0.71 -1.62Isc-Uoc关系曲线y = -0.3802Ln(x) - 4.401-2.5-2-1.5-1-0.50.00000.00100.00200.00300.00400.00500.0060Isc/AU o c /VUoc/V对数 (Uoc/V)表4,不同角度光照下电池开路电压和短路电流 角度/。

太阳能电池性能测试实验报告

太阳能电池性能测试实验报告

太阳能电池性能测试实验报告实验目的:研究太阳能电池的性能表现,并分析其适用范围。

实验原理:太阳能电池是一种将太阳光能转化为电能的设备,其性能直接影响着电能转化的效率。

通过对太阳能电池的性能进行测试,可以更好地了解其工作特性和适用情况。

实验材料:实验所需材料包括太阳能电池板、太阳能光源、电流表、电压表、连接线等。

实验步骤:1. 将太阳能电池板置于太阳能光源下,确保光线充足。

2. 通过连接线将太阳能电池板与电流表、电压表连接。

3. 测量太阳能电池板产生的电流和电压数值,记录下来。

4. 根据记录的数据,计算太阳能电池板的输出功率。

5. 重复多次实验,取平均值以提高实验结果的准确性。

实验数据与结果:经过多次实验测试,得出如下数据:电流值:2.5A、2.3A、2.4A、2.3A、2.5A电压值:5.8V、5.6V、5.9V、5.7V、5.8V通过计算,得出太阳能电池板的平均输出功率为11.65W。

实验结论:根据实验结果可以得出结论:该太阳能电池板的输出功率稳定,适用于户外太阳能电力系统、太阳能充电宝等领域。

同时,通过对太阳能电池板性能的测试,可以帮助我们更好地了解其在不同环境条件下的适用范围,为太阳能电力系统的设计和应用提供参考依据。

实验中遇到的问题及解决方法:在实验过程中,可能会遇到太阳能光源不足、环境温度变化等问题,影响实验结果的准确性。

针对这些问题,可以选择在阳光充足的日子进行实验,控制环境温度,保证实验过程的稳定性。

总结:通过本次太阳能电池性能测试实验,我们对太阳能电池的输出功率和适用范围有了更清晰的认识。

实验结果为太阳能电力系统的设计和应用提供了参考依据,对推动太阳能技术的发展具有一定的意义。

希望未来能够进一步深入研究,不断提高太阳能电池的性能,为可再生能源领域的发展作出贡献。

太阳能电池实验报告

太阳能电池实验报告

太阳能电池实验报告一、引言本次实验旨在探究太阳能电池在生活中的应用及其优势。

通过对太阳能电池的原理和性质进行分析,探究最佳的制作方法并测试其效果。

二、实验原理太阳能电池是一种利用半导体材料将光能转化为电能的装置。

其原理是基于半导体中的光电效应,即光子击打在半导体表面后形成电子-空穴对,从而产生电流。

本次实验主要研究太阳能电池的性能参数和制作方法。

三、实验材料与方法材料:太阳能电池片、导电银浆、铝背板、手套、实验手册设备:电压表、电流表、热风枪、铁钳、实验装置箱方法:1. 阅读实验手册,了解太阳能电池性能参数及测试方法。

2. 准备实验装置箱,分别连接太阳能电池、电压表和电流表。

3. 将太阳能电池放置于阳光下,调整角度以获取最大功率输出。

4. 记录电压和电流,计算太阳能电池的功率。

5. 改变光照强度和温度,重复上述步骤,得出不同条件下的性能参数。

四、实验过程1. 清洗太阳能电池片,去除表面的污垢和灰尘。

2. 用导电银浆将太阳能电池片正反两面分别涂覆一层。

3. 将太阳能电池片粘贴在铝背板上,并固定好支架。

4. 将太阳能电池装置插入实验装置箱,连接电压表和电流表。

5. 调整太阳能电池装置的角度,使其垂直于阳光,以获取最大功率输出。

6. 在不同光照强度和温度下,记录电压和电流,并计算功率。

7. 分析实验数据,得出太阳能电池的性能参数。

五、实验结果与分析1. 实验结果如下表所示:2. 根据实验结果,可以得到以下结论:(1)太阳能电池的电压和电流随着光照强度的增加而增加,而功率也随着光照强度的增加而增加。

(2)当光照强度相同时,太阳能电池的电压随温度的升高而减小,而电流则基本不变。

(3)太阳能电池的输出功率随着光照强度和温度的改变而发生变化,因此在设计和使用时应考虑这些因素对性能的影响。

六、结论通过本次实验,我们深入了解了太阳能电池的原理、性能参数及制作方法。

实验结果表明,太阳能电池在阳光充足的环境下能够输出较大的功率,具有广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验62 太阳能电池特性研究
根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。

其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。

本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。

【实验目的】
1. 太阳能电池的暗伏安特性测量
2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量
【实验原理】
太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。

P 型半导体中有相当数量的空穴,几乎没有自由
电子。

N 型半导体中有相当数量的自由电子,几乎没有空穴。

当两种半导体结合在一起形成P-N 结时,N
区的电子(带负电)向P 区扩散, P 区的空穴(带正
电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。

势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。

在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。

当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。

在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。

负载电阻为零时测得的最大电流I SC 称为短路电流。

负载断开时测得的最大电压V OC 称为开路电压。

太阳能电池的输出功率为输出电压与输
出电流的乘积。

同样的电池及光照条件,负载电
阻大小不一样时,输出的功率是不一样的。

若以
输出电压为横坐标,输出功率为纵坐标,绘出的
P-V 曲线如图2点划线所示。

输出电压与输出电流的最大乘积值称为最大
输出功率P max 。

填充因子F.F 定义为:
sc
oc I V P F F ⨯=⋅max (1)
空间电荷区
图1 半导体P-N 结示意图
I
V
填充因子是表征太阳电池性能优劣的重要参数,其值越大,电池的光电转换效率越高,一般的硅光电池FF 值在0.75~0.8之间。

转换效率ηs 定义为:
%100(%)
m a x
⨯=in
s P P η (2) Pin 为入射到太阳能电池表面的光功率。

理论分析及实验表明,在不同的光照条件下,
短路电流随入射光功率线性增长,而开路电压在入射光功率增加时只略微增加,如图3所示。

硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。

单晶硅太阳能电池转换效率最高,技术也最为成熟。

在实验室里最高的转换效率为24.7%,规模生产时的效率可达到15%。

在大规模应用和工业生产中仍占据主导地位。

但由于单晶硅价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。

多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率可达到10%。

因此,多晶硅薄膜电池可能在未来的太阳能电池市场上占据主导地位。

非晶硅薄膜太阳能电池成本低,重量轻,便于大规模生产,有极大的潜力。

如果能进一步解决稳定性及提高转换率,无疑是太阳能电池的主要发展方向之一。

【实验仪器】
太阳能电池实验装置如图4所示,电源面板如图5所示。

I
V
图4 太阳能电池实验装置
光源采用碘钨灯,它的输出光谱接近太阳光谱。

调节光源与太阳能电池之间的距离可以改变照射到太阳能电池上的光功率,具体数值由光功率计测量。

测试仪为实验提供电源,同时可以测量并显示电流、电压、以及光功率的数值。

电压源:可以输出0~8V连续可调的直流电压。

为太阳能电池伏安特性测量提供电压。

电压/光功率表:通过“测量转换”按键,可以测量输入“电压输入”接口的电压,或接入“光功率输入”接口的光功率计探头测量到的光功率数值。

表头下方的指示灯确定当前的显示状态。

通过“电压量程”或“光功率量程”,可以选择适当的显示范围。

电流表:可以测量并显示0~200mA的电流,通过“电流量程”选择适当的显示范围。

图5 太阳能电池特性实验仪
【实验内容与步骤】
1.硅太阳能电池的暗伏安特性测量
暗伏安特性是指无光照射时,流经太阳能电池的电流与外加电压之间的关系。

太阳能电池的基本结构是一个大面积平面P-N结,单个太阳能电池单元的P-N结面积已远大于普通的二极管。

在实际应用中,为得到所需的输出电流,通常将若干电池单元并联。

为得到所需输出电压,通常将若干已并联的电池组串连。

因此,它的伏安特性虽类似于普通二极管,但取决于太阳能电池的材料,结构及组成组件时的串并连关系。

本实验提供的组件是将若干单元并联。

要求测试并画出单晶硅, 多晶硅,非晶硅太阳能电池组件在无光照时的暗伏安特性曲线。

用遮光罩罩住太阳能电池。

测试原理图如图6所示。

将待测的太阳能电池接到测试仪上的“电压输出”接口,电阻箱调至50Ω后串连进电路起保护作用,用电压表测量太阳能电池两端电压,电流表测量回路中的电流。

图6 伏安特性测量接线原理图
将电压源调到0V,然后逐渐增大输出电压,每间隔0.1V记一次电流值。

记录到表1中。

将电压输入调到0V。

然后将“电压输出”接口的两根连线互换,即给太阳能电池加上反向的电压。

逐渐增大反向电压,记录电流随电压变换的数据于表1中。

以电压作横坐标,电流作纵坐标,根据表1画出三种太阳能电池的伏安特性曲线。

讨论太阳能电池的暗伏安特性与一般二级管的伏安特性有何异同。

2.开路电压,短路电流与光强关系测量
打开光源开关,预热5分钟。

打开遮光罩。

将光功率探头装在太阳能电池板位置,探头输出线连接到太阳能电池特性测试仪的“光功率输入”接口上。

测试仪设置为“光功率测量”。

由近及远移动滑动支架,测量距光源一定距离的光强I=P/S,P为测量到的光功率,S=0.2cm2为探头采光面积。

将测量到的光强记入表2。

将光功率探头换成单晶硅太阳能电池,测试仪设置为“电压表”状态。

按图7A接线,按测量光强时的距离值(光强已知),记录开路电压值于表2中。

按图7B接线,记录短路电流值于表2中。

将单晶硅太阳能电池更换为多晶硅太阳能电池,重复测量步骤,并记录数据。

将多晶硅太阳能电池更换为非晶硅太阳能电池,重复测量步骤,并记录数据。

根据表2数据,画出三种太阳能电池的短路电流随光强变化的关系曲线。

3.太阳能电池输出特性实验
按图8接线,以电阻箱作为太阳能电池负载。

在一定光照强度下(将滑动支架固定在导轨上某一个位置),分别将三种太阳能电池板安装到支架上,通过改变电阻箱的电阻值,记录太阳能电池的输出电压V和电流I,并计算输出功率P O=V×I,填于表3中。

2
根据表3数据作3种太阳能电池的输出伏安特性曲线及功率曲线,并与图2比较。

找出最大功率点,对应的电阻值即为最佳匹配负载。

由(1)式计算填充因子。

由(2)式计算转换效率。

入射到太阳能电池板上的光功率P in=I×S1,S1为太阳能电池板面积。

若时间允许,可改变光照强度(改变滑动支架的位置),重复前面的实验。

【注意事项】
1.在预热光源的时候,需用遮光罩罩住太阳能电池,以降低太阳能电池的温度,减小实验误差;
2.光源工作及关闭后的约1小时期间,灯罩表面的温度都很高,请不要触摸;
3.可变负载只能适用于本实验,否则可能烧坏可变负载;
4.220V电源需可靠接地。

相关文档
最新文档