水泥与减水剂相容性试验方法行业标准介绍
水泥与减水剂相容性的检验与探索

关于水泥与减水剂的相容性,发改委于2008年颁布并实施了行业标准JC/T1083《水泥与减水剂相容性试验方法》,使水泥行业对水泥与减水剂相容性的检验、评价有了标准依据。
我国水泥厂重视和控制水泥流变性能的历史较短,对水泥流变性的研究处于初级阶段。
修订与颁布《水泥与减水剂相容性试验方法》标准时,国内减水剂市场还是蔡系减水剂的天下,现在减水剂市场呈多元化状态,聚竣酸系减水剂成为市场主角。
减水剂市场的变化使得《水泥与减水剂相容性试验方法》在某些方面存在滞后的情况。
1水泥与减水剂相容性的现象特征关于水泥与减水剂相容性的现象特征,《水泥与减水剂相容性试验方法》对水泥与减水剂相容性的定义包含了初始流动性、流动性经时损失和减水剂用量三个要素。
实际上,在饱和掺量(或接近饱和掺量,下同)下的保水性也是水泥与减水剂相容性的一个重要方面。
要全面表征水泥与减水剂相容性,至少应包括以下指标:减水剂的饱和掺量、减水剂推荐掺量下的净浆初始流动度、减水剂推荐掺量下的净浆60min(30min)经时流动度、一定减水剂掺量下净浆的保水性。
《水泥与减水剂相容性试验方法》中定义的水泥与减水剂相容性未包含保水性,也未包含保水性检验方法。
某些减水剂和水泥虽然可以得到很大的净浆流动度,但如果已经产生明显泌水,则净浆流动度再大也是没有应用意义的。
上述表征水泥与减水剂相容性的指标,对应着混凝土性能的不同方面,全部被水泥的使用者所关注。
水泥厂对水泥与减水剂相容性的控制,应该至少包括上述4项指标。
水泥与减水剂相容性良好,应包括以下现象特征:饱和掺量点明确;饱和掺量不高,初始流动度较大;经时流动度损失较小;一定减水剂掺量时净浆没有明显泌水。
上述任何一个方面存在问题,均视为水泥与减水剂相容性不好。
某种与减水剂相容性不好的水泥,可能存在其中一个问题,也可能同时存在多个问题。
问题不同,给混凝土带来的影响不同,在水泥厂的质量控制方法、纠正措施也不同。
减水剂的饱和掺量是随减水剂掺量增加、净浆初始流动度不再明显增加的掺量,也可以是经时流动度损失不再明显减小的掺量。
混凝土减水剂密度、 与水泥相容性快速测定方法

DB53/T XXXXX—202030附录A(资料性附录)混凝土减水剂密度、与水泥相容性快速测定方法A.1试验材料、仪器A.1.1试验材料本方法所使用的材料为实际工程所用的水泥、减水剂、细集料和水,对各种材料的要求如下:a)测试前水泥、减水剂、细集料和水应提前放置在A.2要求的环境中直至恒温;b)细集料性能应满足本标准规定的连续级配以及有害物质含量要求;c)减水剂密度测试时应保证其温度为(20±1)℃,如有沉淀应滤去。
A.1.2仪器仪器要求如下:a)波美比重计,量程1.000 g/cm3~2.000 g/cm3,1支,精度为0.001 g/cm3;b)精密密度计,量程分别为1.000 g/cm3~1.100 g/cm3、1.100 g/cm3~1.200 g/cm3、1.200 g/cm3~1.300 g/cm3、1.300 g/cm3~1.400 g/cm3、1.400 g/cm3~1.500 g/cm3各1支,精度为0.001 g/cm3;c)超级恒温器或同等条件的恒温设备;d)水泥净浆搅拌机,其性能参数应符合《水泥净浆搅拌机》JC/T729的要求;e)净浆流动度试模,为深60 mm、顶内径Ф36 mm、底内径Ф60 mm的截顶圆锥体。
试模由耐腐蚀的、有足够硬度的、内壁光滑无暗缝的金属制成;f)玻璃板,边长为400 mm、厚度5 mm的平板玻璃,稠度试验每个试模应配备一个边长或直径约100 mm、厚度4 mm~5 mm的平板玻璃底板;g)刮刀;h)直尺,量程300 mm,分度值1 mm;i)天平,量程100 g,分度值0.01 g;量程1000 g,分度值1 g;j)烧杯,容量400 mL;k)量筒,容量250 mL,分度值1 mL;l)抹刀。
A.2环境条件A.2.1试验室的温度应保持在(20±2)℃,相对湿度应不低于50 %。
A.2.2水泥试样、拌合水、仪器和用具的温度应与试验室一致。
混凝土减水剂质量标准和试验方法

精心整理中华人民共和国城乡建设环境保护部标准混凝土减水剂质量标准和试验方法WaterReducingAdmixtureUsedforConcrete——QualityRequirementsandTestingMethods1.1.11.22.2.12.22.33.验方法3.13.2泌水率3.3含气量(气压法)3.4含气量(水压法)3.5凝结时间(贯入阻力法)3.6立方体抗压强度3.7收缩附录A减水剂匀质性试验方法(参考件)A.1固体含量或含水量A.2PH值A.3比重A.4密度A.5A.6A.7A.8A.9A.10A.11A.12A.13A.14A.15A.16A.17钢筋锈蚀快速试验(钢筋在新拌砂浆中阳极极化电位的测定)A.18钢筋锈蚀快速试验(钢筋在硬化砂浆中阳极极化电位的测定)附录B掺减水剂的净浆及砂浆试验方法(参考件)B.1水泥净浆流动度B.2净浆减水率B.3砂浆减水率B.4砂浆含气量附录C掺减水剂的混凝土试验方法(参考件)C.1塌落度及塌落度损失C.2C.31.1.2.11.2.21.2.3早强型减水剂兼有早强作用的减水剂。
1.2.4缓凝型减水剂兼有缓凝作用的减水剂。
1.2.5引气型减水剂兼有引气作用的减水剂。
2.混凝土减水剂质量标准2.1混凝土减水剂质量标准鉴定任何一种减水剂均需测定掺减水剂混凝土的性能,并应满足表21混凝土减水剂质量标准之要求。
2.2混凝土试验条件2.2.12.2.1.1号普通硅总量的2.2.1.22.2.1.32.2.22.2.2.32.2.3试验混凝土2.2.3.1水泥、砂子和石子用量与基准混凝土相同。
掺引气型减水剂的混凝土的砂率应比基准混凝土的砂率减少1~3%。
2.2.3.2坍落度6±1cm。
2.2.3.3减水剂掺量,按研制单位或生产厂推荐的掺量。
2.2.4试块制作及养护2.2.4.1搅拌方法:试验混凝土应与基准混凝土在相同条件下搅拌,试验采用机械搅拌,将全部材料及减水剂倒入搅拌机后,搅拌三分钟,出料后在铁板上用人工翻拌二次,拌和量应不少于搅拌机额定搅拌量的四分之一。
混凝土减水剂质量标准和试验方法

部标准混凝土减水剂质量标准和试验方法中华人民共和国城乡建设环境保护部部标准混凝土减水剂质量标准和试验方法中华人民共和国城乡建设环境保护部批准发布实施目录总则适用范围定义及分类混凝土减水剂质量标准混凝土减水剂质量标准混凝土试验条件混凝土减水剂试验项目减水率泌水率立方体抗压强度收缩附录固体含量或含水量值比重密度松散容重全还原物含量附录净浆减水率砂浆含气量附录塌落度及塌落度损失混凝土中钢筋锈蚀试验总则适用范围定义及分类减水剂是在不影响混凝土和易性条件下具有减水及增按其作用分为普通型减水剂高效型减水普通型减水剂高效型减水剂早强型减水剂缓凝型减水剂引气型减水剂混凝土减水剂质量标准鉴定任何一种减水剂均需测定掺减水剂混凝土的性能并应满足表混凝土试验条件列规定材料水泥含量在二水石膏作调凝剂的号或量不宜超过调凝剂总量的石子采用粒径为的卵石或碎石水基准混凝土水泥用量砂率通过试拌坍落度试验混凝土掺坍落度按研制单位或生产厂推荐的掺试块制作及养护搅拌方法试验混凝土应与基准混凝土在相同条件下搅拌试块制作及养护试块的成型振捣方法应与含秒用以防止水分蒸发在室温为混凝土减水剂试验项目泌水率松散容重钢掺减水剂的混凝土性能除按表要求的项目减水率仪器设备坍落度筒试验步骤测定基准混凝土的塌落度记录达到该塌落度试验结果处理式中泌水率仪器设备容重筒升注表中所列数据为试验混凝土与基准混凝土的差值或比值自本标准实施之日起原国家基本建设委员会年批准的的第七条作废带盖称量感量试验步骤称重然后用抹刀将顶面轻轻抹平试样表面比筒口边低称出筒及试样的总重自抹面开始计算时间前分钟每隔分钟用吸液管吸出泌水一次以后每隔直至连读出每次吸出水每次吸出泌水前厘米取出泌水后仍将筒轻轻放试验结果处理泌水率按下式计算式中如其中一个与平均值之差大于平均值的泌水率比按下式计算掺减水剂的混凝土泌水率含气量参照国标混凝土基本性能试验拌合物性能试注检测减水剂成型时装料和振捣方法与国标不同应按下列规定混凝土试样一次装满容器并略高于容器成型棒头沿试样中心插入厘米含气量参照国标混凝土基本性能试验拌合物性能试注检测减水剂成型时装料和振捣方法与国标不同应按下列规定混凝土试样一次装满容器并略高于容器成型棒头沿试样中心插入厘米凝结时间仪器设备最大负荷为精度附有可度试针两其断面积分别为和无油渍截面为圆形或方形直径或边长为高度为筛子孔径为试验步骤试样制备将混凝土拌合物通过筛振动筛出的砂浆装在充分拌匀筛出砂浆在震动台上震秒钟置于贯入阻力测试然后先用断面为将试针的秒钟内缓慢而均匀地垂直压入砂浆内部深度记录所需的压力和时间贯入阻力值达以换用断面为每次测点应避开前一次的测试孔其净距为试针直径的至少不小于试针距容器边缘不小于在普通混凝土贯入阻力初次测试一般在成型后以后每隔小时测定一次掺早小时开始以掺缓凝型减水剂的混凝土初测可小时或更多以后每隔小时进行一次直试验结果处理贯入阻力按式计算式中时所需的净压力绘以和直线与曲线交点试验精度凝结时间取三个试样的平均值试验误差立方体抗压强度参照国标混凝土基本性能试验收缩参照国标混凝土基本性能试验附录减水剂匀质性试验方法固体含量或含水量仪器设备扁平式称量瓶或电热鼓风干燥箱分析天平感量干燥器试验步骤称取样品置于洁净恒重的扁平式称量瓶中在烘箱中以试验结果处理固体含量按下式计算固体含量含水量按下式计算含水量式中取三个试样测定数据的平均值为试验结果精值仪器设备试验步骤电极安装然后将已在蒸馏水中浸泡小时的玻璃电极和浸在饱和氯化钾溶液中的甘汞电极夹将两以便紧固在校正将两支电极浸入溶将温度补偿器调至在被测缓冲液的实际温度位置使电表指针指在标准溶液的使其处在放开位置电表指针应退回以蒸馏水冲洗电极校正后切勿再旋测量用滤纸将附于电极上的剩余溶液吸干或用被测溶液洗涤电极电复按读数开关使电表指针退回位精度精确至试验在比重仪器设备试验步骤天平的安装和调整将测锤和玻璃量筒用纯水或酒精洗净再将支柱紧定螺钉旋松托架横梁置于托架之玛瑙刀座用等重砝码挂于横梁右端之小钩上调整水平调节螺钉使横梁上的指针与托架指针尖成水平线以示平衡如无法调整平衡时首先将平衡调节器上的定位小螺钉松开然后略微转动平衡调节器直至平衡止仍将中间定位螺钉旋紧严防松动将等重砝码取下但则将重心调节器反之测试步骤图液体比重天平示意图托架横梁玛瑙刀座支柱紧固螺钉测锤玻璃量筒等重砝码水平调节螺钉平衡调节器重心调节器在横即是测得液读数方法横梁上注意事项部件及横精度精确到试验在密度仪器设备比重瓶或分析天平感量干燥器或试验步骤校正比重瓶的容积乙醚洗净比重瓶放入装有硅胶的称量空瓶重量将它置于小时后称量比重瓶装水后的重量计算比重瓶的校正容积式中比重瓶的校正容积烧杯中或装入容再加少许蒸小时后称量比重瓶装入减水剂溶液后的重量试验结果处理减水剂溶液的密度按下式或计算或式中或精度精确至试验在松散容重仪器设备容重筒内径高药物天平感量试验步骤容重筒容积校正用盖住筒口容重筒的校正容积式中玻璃板及水总重松散容重测定称量干燥的空容重筒的重量处装入容重筒内直用直尺沿筒口中心向两侧方向轻轻刮平然后称其重量试验结果处理松散容重按下式或计算或式中松散容重或取三个试样测定数据的平均值为试验结果精确表面张力仪器设备界面张力仪比重瓶或感量试样制备试验步骤配制试样用质量法对仪器进行校正调节微调使并使铂金环浸入液体内同时下降样品座使向上与向下的二个力保持平衡试验结果处理溶液表面张力按下式或计算或校正因子按下式计算式中表面张力或或铂金丝半径铂环等须保持相同试验需在铂环必须保持清洁不得铂环在液面上要保持水平在接近分离点时如果被测样品内有沉淀物必须过滤去除沉表面张力仪器设备电热鼓风干燥箱比重瓶或分析天平感量试样制备减水剂按在混凝土中推荐掺量的两倍定为被测溶液的百试验步骤配制试样将清洗过的干燥的毛细管垂直固定于溶液开始时毛细管放得比实验位置低并且在此位稳测量毛细管中液面上升高度反复试验两读数之差不应大于试验结果处理溶液的表面张力按或式计算或式中表面张力或起泡性仪器设备摇泡机具塞量筒容量瓶移液管试样制备减水剂按在混凝土中推荐掺量的两倍定为被测溶液的百瓶配制所需浓度的减水剂溶图摇泡机示意图主架升降机具塞量筒曲臂减速箱电动机底座在具塞量筒沿壁装入一定浓度的减水将具塞量筒固定开动摇泡机静置立即迅记录从停机开始到泡沫消退至刚试验结果处理发泡体积等于起始体积消泡时间为从停机开始到泡沫消退至刚露出起泡性仪器设备具塞量筒容量瓶移液管试样制备试验步骤容量瓶配制所需浓度的减水剂溶在具塞量筒中沿壁装入一定浓度的减水剂溶立即迅速量出泡沫记录从静置开始到泡沫消退至刚露出水面的试验结果处理起始体积消泡时间为从停机开始到泡沫消退至刚露出氯化物含量仪器设备电位测量仪直流数字电压表或自动电位滴定计或酸度计自动滴定管自动滴定管试剂分析纯摇匀干小此溶液即为硝酸银溶液分析纯用蒸馏水溶解放入一升棕色容量瓶中稀释至摇匀标准溶液对硝酸银溶液进行标硝酸银溶液加蒸馏水用电位法滴定终点按下式计算式中标液体积分析纯分析纯饱和高纯试剂试验步骤放入烧杯中搅拌至全部插入银电极和相连接电磁搅记录电势故要定量加入得到第一个终点时按上述方法继续用得到溶液消耗的体积试验结果处理或用差示滴定曲线来计算以记录所上升的毫伏数然后以此数作纵坐标曲线峰尖的横坐标值即为滴定终点所需的两次加入标准减水剂中氯离子所消耗的按下式计算减水剂中氯离子百分含量按下式计算式中试样溶液加标准溶液所消耗标准溶液所消耗浓标浓标即获得减水剂中等当量的无水按下式进行计算注意事项要用蒸馏以便使用后用蒸馏水清洗甘汞电极应经常添加饱和及更换盐桥内的保证碳酸盐含量仪器设备高温炉分析天平瓷坩埚其它烧杯紧密定量滤纸试剂溶液水溶液溶液溶液试验步骤烧蒸馏水搅拌溶解基红在在上部直至无更多沉淀生成时取下烧杯置于加热板控制置小或烧杯中的沉淀用热蒸再洗至无氯离子将沉淀和滤纸移入已灼烧恒重的瓷坩埚中然后在干燥器中冷却至室温称量至恒重试验结果处理硫酸根离子含量按下式计算硫酸钠含量按下式计算式中硫酸盐含量仪器设备离心沉淀机离心试管分析天平容量瓶试剂氢氧化钠碳酸钠溶液硫酸试验步骤溶于少量蒸馏水摇匀备注入放在水浴中加热滴加氯化钡溶液边滴边搅取出试管趁热离心沉淀若无白色沉淀则表明硫酸钡离子存在加入洗离心沉淀取清左右则有白色沉淀生成重新在沉淀检若溶液透明则表明硫酸钡已全部转换成碳酸钡用蒸馏水若没有白色沉淀出经溶解碳酸钡水浴加热驱走二氧化碳加经标定的氢记试验结果处理硫酸钠含量按下式计算式中注意事项移取溶液弃去清液等操作应配制减水剂测定蒽系减水剂时洗涤硫酸钡沉淀时除用全还原物含量仪器设备磨口具塞量筒三角烧瓶移液管试剂醋酸铅溶液称量中性溶于水酸磷酸氢二钠混合液称取硫酸铜溶稀称取酒石酸钾钠次甲基蓝在玛瑙研钵中加少量水研溶后试验步骤具塞量筒中加将量筒颠倒数使之混匀放置澄取上层清液作为试吸取斐林溶液三角烧置于三角烧瓶中在电炉上加热待继续用保持沸腾状态直到最试验结果处理全还原物含量按式计算全还原物力价力价葡萄糖溶液消耗毫升数注意事废液加醋酸铅溶液脱色是为了使还原物等磷酸氢二钠溶液是为了除去溶液中的铅若过量也会影使沸腾后木质素含量仪器设备分析天平抽滤瓶真空泵移液管烧杯试验步骤样品溶液溶于趁热用用热水洗涤至无酸性为止试验结果处理木质素沉淀的木质素重量木质素含量仪器设备分析天平移液管水浴锅试剂盐酸若不溶解可略加热待溶试验步骤盐酸调节分搅拌均匀逐渐形成细粒黄色沉淀知重量的在试验结果处理木质素磺酸钙的含量按下式计算因在用时钢锈蚀快速试验仪器设备恒电位仪铂金电极甘汞电极烧杯塑料桶或广口玻璃瓶试剂与材料氢氧化钙或氧化钙硝酸钾琼脂铜芯塑料线绝缘涂料试验步骤光洁并在钢使钢筋中间暴露长度为制备盐桥灌入型玻璃管内冷凝后即可使用制备电解质溶液化学纯氢氧化钙试剂溶于常温蒸馏水中搅拌至充分溶解稍静置后呈微浑浊状便将减水剂按推荐掺量按照图分钟记录阳极极化电位试验结果处理以三个试验电极测量结果的平均值作为钢3o p y c l i p z阳极极化电位绘制电位时间曲线根据电位阳极极化电位测试装置图恒电位仪饱和氢氧化钙溶液有机玻璃盖板铂金电极或钢筋阴极钢筋阳极饱和氯化钾溶液烧杯烧杯电极通电后并在电位值无明显表明阳极钢筋表面钝化膜完好无损通电后说明钢筋表面钝化膜已部分受损说明钢筋出现上述非钝化曲线状态时则需再以进一步判别减水剂对钢钢筋锈蚀快速试验仪器设备恒电位仪铂金电极甘汞电极定时钟铜芯塑料线绝缘涂料试模用木模或塑料有底活动模试验步骤制作钢筋电极将光并的导线再用乙醇仔细擦去焊油使钢筋中间暴露长度拌制新鲜砂浆在无特定要求时水为蒸馏水水泥品种为普通硅酸盐砂浆及电极入模入试模中先浇一半左将两根处理好的钢筋电极平行放在砂浆表面间拉出导线然后灌满砂浆抹平并轻敲几下侧板连接试验仪器按图与另一根钢筋为阴极接仪器的接线孔再将甘汞电极或硫酸铜电极测试试验结果处理作为钢阳极极化电位绘制电位时间曲线根据电位减水AV 123465*63600400+200-200-400辅参研比助究*参比研究电位(m V电位时间曲线分析图新鲜砂浆极化电位测试装置图恒电位仪木模或硬塑料模甘汞电极或硫酸铜电极新拌砂浆钢筋阴极钢筋阳极并在电位值无明显完好无所测减水剂对钢筋是无害通电后说明钢筋表面钝化膜已部分受说明钢筋钝化膜破验砂浆中所含的水泥减水剂对钢筋锈蚀的影响仍不能作出明确的判断以钢筋锈蚀快速试验仪器设备恒电位仪铂金电极甘汞电极定时钟铜芯塑料线绝缘涂料试模的棱柱体模板两端中心带有固定钢筋的凹孔半通孔塑料试验步骤制备埋有钢筋的砂浆电极光丙酮依次浸擦除去油脂放入干燥器中备用成型砂浆电极软练标准蒸馏水减置砂浆电极的养护及处理移入标准养护室养护后脱模继续标准养护仔细擦净外露钢筋头用乙醇擦去焊油使试件中间如图进行测试将处理好的硬化砂浆电极置于饱和氢氧化钙溶液中并注意不同类型或不同掺量减水剂的试件不得放置同一容器内浸把一个浸泡后的砂浆电极移入盛有饱和氢氧化钙溶液的玻璃缸内以它作为阳1567234AV45辅助参比*研究以甘汞电极极作为参按图求接好试验线钢筋砂浆电极导线石蜡砂浆筋硬化砂浆极化电位测试装置图烧杯有机玻璃盖铂金电极或钢筋阴极甘汞电极或硫酸铜电极硬化砂浆电极饱和氢氧化钙溶液未通外加电流前的自然电位接通外加电流表到需要值同时开始计算时间依分别记试验结果处理取一组三个埋有钢筋的硬化砂浆电极极化绘制阳极极化电位根据电位减电极通电后并在电位值无明显表面钝化膜完好无损通电后说明钢筋表面钝化膜已部分受说明钢筋钝化膜破所测减水剂附录掺减水剂的净浆及砂浆试验方法水泥净浆流动度仪器设备软练水泥净浆搅拌机截锥圆模高内壁光滑无接缝的金属制品药物天平药物天平试验步骤将锥模置于水平玻璃板上锥模和玻璃板均用湿布擦过倒入用湿布擦过的搅拌锅搅迅速注入截锥模内刮平将锥三十秒钟时量取互相垂直的两直径试验结果处理表达净浆流动度净浆减水率仪器设备软练水泥净浆搅拌机跳桌截锥圆模捣棒和游标卡尺或钢直尺试验步骤加水搅拌搅拌三分钟并抹平表面以每秒一次的速度使跳桌跳动三十次取两个数的平均时的用水量为基准水泥净浆用水量以同样的方法测定掺减水时的用水量即为减水后水泥净浆用水量试验结果处理净浆减水率按下式计算净浆减水率式中时的用水量时的用水量砂浆减水率仪器设备胶砂搅拌机捣棒由金属材料制直长约上模套须与截锥圆模配合直尺抹刀台秤试验步骤测出基准砂浆的用水量开动搅拌机截锥圆模和模套内壁并把它们置于玻璃板中盖上湿第一层装至圆锥模高约三分之二同样用圆柱棒捣以免产生移捣好后取下模套用抹刀将高出截锥圆模的砂浆刮以跳动完毕取互相垂直的两个直径的平均值为该用水量时的砂浆扩散度用。
浅谈水泥与减水剂的相容性

浅谈 水泥与减 水剂 的相 容性
席 鹏 飞
( 中铁 十八局 集团第一工程有限公司 , 河北 涿 州 0 7 2 7 5 0 ) 摘 要: 随着现代混凝土技术的持 续提 高, 高效减水剂成 为增强混凝土功效的重要 成分之 一。 减水剂使 用不 当, 会 严重影响施 工质量 , 延 长施 工时问, 甚至会造成重大施工事故。不同的水 泥和 高效减水剂之 间相 容性 差别很 大, 这是现代混凝土生产和施 5 - 中常遇到的 问题 。 主要探讨 了影响水泥与高效减 水剂相容性的 因素与相 应的提 高措施 。 关键词 : 减水 剂; 相容性; 因素 研究表明,同种高效减水剂与不同厂家的硅酸盐水泥之间的相容 活性掺合料和外加剂是两个必要的条件。偏岭高土, 硅灰 , 矿渣等是经 性差异较大 ;相同厂家的水泥产品与不 同高效减水剂之间的相容性差 常使用的掺合材料 。 各种掺合材料的化学 眭质不同, 对混凝土产生的作 异也较大。 在生产实践中发现, 有些水泥与高效减水剂之间相容 陛较差, 用也不同,同时也深刻影响着外加剂作用的发挥。在当今的水泥生产 有些水泥掺人高效减水剂后, 流动度严重减弱需 要掺入非常多 的附加 中, 煤矿粉和矿渣是最受欢迎的掺合材料 。煤矿粉外形是球状 , 表层是 材料才能使流动度有所改善洧 的水泥掺人某些高效减水剂流动度不存 经过熔融过程而形成的琉体, 内部是多孔的球状材料。 煤矿粉对减水剂 而且可 以改变水泥的流变性能 , 从而改善水泥与减水 在, 而且掺入其它高效减水剂流动度增加也很少。因此 , 解决水泥与减 的吸附比水泥弱, 水剂的相容性问题迫在眉睫。要解决这一问题既要从水泥的生产过程 剂的相容陛。普通的煤矿粉又叫煤灰粉 , 一般含碳量偏大。当减水剂存 掺杂煤矿粉在水泥浆体初始流动初时作用十分明显 , 后期作用减 人手 , 也应该从实际施工过程中寻找途径 , 从减水剂方面人手 , 寻找合 在时 , 适 的减 水剂 弱。粒化高炉矿渣具有胶凝陛, 火山灰性和微填充效应。粉磨成颗粒以 1影响水泥与减水剂相容性的因素 后形状不佳 , 一般属 于多角型。高炉矿渣与水泥颗粒的接触点小 , 当掺 1 . 1 水泥熟料中的矿物含量 。 水泥熟料中四大矿物质对外加剂的吸 入水泥中取代部分水泥后置换出其中的水分 ,由于矿渣的需水量较水 附能力 由小 到大 的排序是 : C 2 S < C 3 S < C . A F < C  ̄ A 。c 和C , A F特别是 泥的少 , 这就使用于浆体流动的水相对较 多, 因此可以提高流动性 , 提 C A与 ̄ 3 - J K 剂的相容『 生 最差。 由于不同地 区的土质不同, 土壤中的各种 高水泥与减水剂的相容性。此外 , 矿渣粉颗粒排斥水 , 对减水剂的吸附 矿物含量差别较大 ,由此就导致不同地区的厂家生产的高效减水剂与 作用小, 因此用矿渣代替部分水泥能够改善浆体的流动效果。 2 改善高 效减 水剂与 水泥 相容 性可 采取 的措施 水泥的相容性不同。不同 C A含量的硅酸盐水泥对减水剂的吸附量也 证 明这一点华 北的水泥厂与华南水泥厂以及珠江流域水泥厂水泥中的 2 1 减小水泥比表面积。 一般来说 比表面积较小的水泥与减水剂的 水化速度会大大加快 , 水化产物也会 C A含量分别为 1 0 A 5 %、 5 . O O %和 2 . 8 2 %, 其A F和 N F 减水剂 的表观 : 吸 相容性较好 。水泥比表面积过大 , 附量的顺序为华 北 >华南 >珠江 。 水泥中某种元素含量过高时 , 则水泥 被包裹在没有水化的水泥颗粒与减水剂表面 ,同时也会增强水泥颗粒 吸附咸水剂 的能力会严重发生变化 , 影响施工作业。 对减水剂的吸附能力, 减弱减水剂的分散效果。 减小水泥表面积的方法 不同的厂家由于选取的生产材料不 同, 对水 假如水泥中主要矿物硅酸盐含量不足,那么则会形成非常多的絮 在于选择颗粒较小的水泥。 凝结构 , 从而降低水泥与减水剂的相容性。 泥颗粒大小的控制也不同, 在选择施工所用的水泥材料时 , 应该尽量选 1 _ 2 水泥含碱量的大小。 水泥 中的碱主要来 自烧制石灰时所用的页 择小颗粒水泥。 岩、 石灰石以及混凝土等材料。碱含量的高低主要是根据 N a = O和 K 2 0 2 . 2 改变高效减水剂的掺加方法。减水剂的掺加方法一般包括先掺 含量的高低来判断。在水泥生产过程中碱的主要作用是通过一系列化 法 、 同掺法 、 后掺法与滞水法等几种经常使用的方法 。不同的掺加方法 学反应表现出来的。 碱能够改变水泥标准需水程度。 使水泥吸水量增大 对其与水泥 的相容 陛作用不 同。因此 , 选择合适的掺加方法非常重要。 或者是减。 但是, 水泥成分不同, 矿物质与碱的化学反应速度也不同, 即 掺加方法的选择收到施工地点, 施工季节和施工方法的影响。不同的掺 碱的可涪陛不同。影响水泥与减水剂相容性 的直接因素是可洛 『 生 碱的 合方法也都有优势和局限陛。例如 , 高效减水剂后掺法能够克服浆体在 含量。 每一种水泥都存在可溶性碱含量的最佳值。 把握好最佳值是合理 运输过程中的分层效果 , 较小运输损耗, 塑化效果好 。同掺法能够使游 使得水泥的分散作用减弱。 滞水法能显著提 使用水泥的关键因素。另外, 碱在影响水泥的同时也会影响减水剂作用 离的高效减水剂数量减少 , 的发挥。碱在使用中与减水剂发生化学反应 , 改变减水剂性能 , 从而降 高减水剂的塑化作用效果, 提高减水剂对水泥的适应性 。后掺法不仅可 低或者提高水泥与减水剂的可溶 f 作 用。 以克服拌合物在运输过程中的分层离析和塌落度损失, 减水剂的塑化作 1 . 3 石膏的含量。 在水泥的生产中, 必须加入石膏作为调节剂 。 作为 用效果及对水泥的适应陛也较好 。 原料 , 石膏是石膏矿渣水泥 、 石膏铝矾土膨胀水泥等的必备原料 , 在水 2 . 3掺加两种以上高效减水剂。 多种表面活性剂掺合后 , 会产生许多 泥生产 中 占有举 足轻 重 的地位 。 种不 同的作用 , 包括协和作用 、 负面协和作用以及不协和作用。掺加多 作为矿化剂 , 在生产水泥过程中, 石膏能够降低煅烧的温度 , 从而 种不 同的减水剂后 , 会产生许多种不 同的作用 , 比单独掺加任何一种减 保证生产的质量 , 并且节省煤的使用量。此外, 石膏还起到急凝剂的作 水剂的效果要好 。前提是要控制量的作用,将负面协调作用减小到最 适 当的参数控制 , 能够使减水剂的正 用, 使水泥凝结时间符合国标和用户要求 ; 在水泥生产 中加入一定成分 少。选取适当的高效减水剂品种 , 的石膏能够从强度 、 腐蚀f 生 等几个方面改善水泥的陛能。 石膏在水泥加 面协调作用发挥到最大 , 从而实现工程建筑质量更加标准 , 减少施工危 入水后 , 也就是水泥用到实际施工时 , 会 与水发生化学反应 , 生成碳酸 险 系数 。 结 束语 钙, 在这个过程 中伴随着放热的过程 , 并且在冷却以后 固化水泥浆体 , 也就是所谓的急凝。 急凝剂使新拌混凝土失去可塑性 , 严重降低混凝土 高性能混凝土中, 高效减水剂 已成 了极其重要 的—个组成部允 它可 的质量, 因此应该加入适量的石膏。 石膏具有调节水泥凝结时间 , 提高早 以改善新拌混凝土的工作性能, 提高硬化混凝土的物理力学和耐久性性 期强度的作用 。 当水泥中未掺石膏时, 水泥中铝酸三钙( c ) 会与水迅速 能。但是在生产实践中发现 些水泥与高效减水剂之间相容性存在较 反应, 硅酸三钙( C 3 S ) 也会有显著的水化作用。 当水泥中石膏含量过多时, 大的差别。由于现代建筑技术的发展 , 对施工的要求提高 , 因此对水泥 则会导致冷凝作用过于强烈 , 类似于在混凝土中掺人过多石灰粉 , 严重 与Ne g  ̄ ! 的系数 日益严格。水泥与减水剂相容性这一环节的质量在将 如何改善水泥与减水剂的相容性 , 也将成 导致混凝土不能与石灰相融合 , 此时, 水泥与减水剂的融合性不存在 , 来的建筑施工中将更加重要。 施工无法进行。 当水泥中石膏含量太少的时候 , 则石灰 中的矿物质原料 为未来研究施工质量的一 — 个十分重要的课题。 参 考文 献 不足 , 无法与减水剂发生化学作用, 石灰质量下降 , 减水剂作用不明显 , 仍然会严重影响水泥与减水剂的相容性。因此石膏在水泥的生产过程 [ 1 传煊. 表面物理化学 . 北赢 科学技术文献 出版社, 2 0 1 3 . 中占有非常
混凝土减水剂质量标准和试验方法

中华人民共与国城乡建设环境保护部标准混凝土减水剂质量标准与试验方法Water Reducing Admixture UsedforConcrete——Quality Requirements andTestingMethodsJGJ56—84中华人民共与国城乡建设环境保护部批准1984—12—25发布1985—07—01实施目录1、总则1、1 适用范围1、2 定义及分类2、混凝土减水剂质量标准2、1 混凝土减水剂质量标准2、2 混凝土试验条件2、3 混凝土减水剂试验项目3、混凝土减水剂试验方法3、1 减水率3、2泌水率3、3 含气量(气压法)3、4 含气量(水压法)3、5凝结时间(贯入阻力法)3、6 立方体抗压强度3、7 收缩附录A减水剂匀质性试验方法(参考件)A、1 固体含量或含水量A、2PH值A、3 比重A、4 密度A、5松散容重A、6 表面张力(铂环法)A、7 表面张力(毛细管法)A、8 起泡性(机摇法)A、9 起泡性(手摇法)A、10氯化物含量A、11硫酸盐含量(重量法)A、12 硫酸盐含量(转换法)A、13 全还原物含量A、14木质素含量(盐酸法)A、15木质素含量(β—萘胺法)A、16钢筋锈蚀快速试验(钢筋在饱与氢氧化钙溶液中阳极极化电位得测定)A、17 钢筋锈蚀快速试验(钢筋在新拌砂浆中阳极极化电位得测定)A、18钢筋锈蚀快速试验(钢筋在硬化砂浆中阳极极化电位得测定)附录B掺减水剂得净浆及砂浆试验方法(参考件)B、1水泥净浆流动度B、2 净浆减水率B、3 砂浆减水率B、4砂浆含气量附录C 掺减水剂得混凝土试验方法(参考件)C、1塌落度及塌落度损失C、2 抗冻融性C、3 混凝土中钢筋锈蚀试验1、总则1、1 适用范围本标准适用于工业、民用建筑及构筑物混凝土用减水剂质量得鉴定。
工程选用减水剂时,可参照本标准(试验时可采用该工程所用得材料)。
1、2定义及分类减水剂就是在不影响混凝土与易性条件下,具有减水及增强作用得外加剂。
《水泥与减水剂相容性试验方法》行业标准介绍

《水泥与减水剂相容性试验方法》行业标准介绍0 引言为了改善水泥与减水剂的相容性或进行水泥质量稳定性的考核, 水泥用户和部分水泥企业引用GB8076《混凝土外加剂》中的净浆流动度试验方法进行水泥与减水剂相容性试验, 从而进行生产控制和指导水泥的使用。
这样做, 虽然解决了试验方法的问题,但由于没有统一的评价基准, 导致结果没有可比性。
同时, 当出现相容性问题时, 没有评判依据。
为此,2006 年国家改革与发展委员会下达了《水泥与减水剂相容性试验方法》行业标准制定工作计划。
经过大量的工作, 该标准于2007 年8 月通过了水泥标准化技术委员会的审议,并建议2008 年6 月1 日实施。
为了便于标准的实施, 现将该标准简要介绍如下。
1 关于标准中相容性术语问题综观现有的文献资料, 就水泥与减水剂两者的关系问题, 出现两个术语: 适应性和相容性。
根据词典的解释, 适应性指的是两个独立的个体之间的关系, 最终的结果是一方被征服或逃避, 而另一方丝毫没有变化; 而相容性指的是两个独立的个体形成一个整体之后的关系, 最终的结果是一损俱损、一荣俱荣。
当水泥和减水剂加水搅拌后, 两者就形成了一个不可分割的整体, 两者相互努力的结果就是拌和物的性能好还是坏, 没有哪一方被征服, 也没有哪一方逃避。
因此, 两者的关系应该叫相容性, 而非适应性。
2 关于水泥与减水剂相容性的定义问题什么叫水泥与减水剂相容性, 至今没有一个明确的定义。
许多文献中, 都有关于水泥与减水剂相容性/适应性的描述, 其基本意思如下: 由于水泥矿物组成、细度、所掺加的混合材的品种和掺量的不同, 以及减水剂的匀质性、稳定性等原因, 会导致人们常说的水泥与减水剂相容性差的问题, 具体表现为经时坍落度损失快、要达到规定的流动度或坍落度时的减水剂用量大等, 有的甚至出现急凝、缓凝等现象。
因此, 从广义上来讲, 水泥与减水剂相容性应包括水泥浆体的流动性能、力学性能、凝结行为和泌水现象等。
混凝土减水剂质量标准和试验方法(JGJ 56-84)

中华人民共和国城乡建设环境保护部标准混凝土减水剂质量标准和试验方法Water Reducing Admixture Used forConcrete——Quality Requirements andTesting MethodsJGJ 56—84中华人民共和国城乡建设环境保护部批准1984—12—25发布1985—07—01实施目录1.总则1.1 适用范围1.2 定义及分类2.混凝土减水剂质量标准2.1 混凝土减水剂质量标准2.2 混凝土试验条件2.3 混凝土减水剂试验项目3.混凝土减水剂试验方法3.1 减水率3.2 泌水率3.3 含气量(气压法)3.4 含气量(水压法)3.5 凝结时间(贯入阻力法)3.6 立方体抗压强度3.7 收缩附录A 减水剂匀质性试验方法(参考件)A.1 固体含量或含水量A.2 PH值A.3 比重A.4 密度A.5 松散容重A.6 表面张力(铂环法)水利水电工程监理适用规范全文数据库A.7 表面张力(毛细管法)A.8 起泡性(机摇法)A.9 起泡性(手摇法)A.10 氯化物含量A.11 硫酸盐含量(重量法)A.12 硫酸盐含量(转换法)A.13 全还原物含量A.14 木质素含量(盐酸法)A.15 木质素含量(β—萘胺法)A.16 钢筋锈蚀快速试验(钢筋在饱和氢氧化钙溶液中阳极极化电位的测定)A.17 钢筋锈蚀快速试验(钢筋在新拌砂浆中阳极极化电位的测定)A.18 钢筋锈蚀快速试验(钢筋在硬化砂浆中阳极极化电位的测定)附录B 掺减水剂的净浆及砂浆试验方法(参考件)B.1 水泥净浆流动度B.2 净浆减水率B.3 砂浆减水率B.4 砂浆含气量附录C 掺减水剂的混凝土试验方法(参考件)C.1 塌落度及塌落度损失C.2 抗冻融性C.3 混凝土中钢筋锈蚀试验1.总则1.1 适用范围本标准适用于工业、民用建筑及构筑物混凝土用减水剂质量的鉴定。
工程选用减水剂时,可参照本标准(试验时可采用该工程所用的材料)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泥与减水剂相容性试
验方法行业标准介绍 Hessen was revised in January 2021
《水泥与减水剂相容性试验方法》行业标准介绍
0 引言
为了改善水泥与减水剂的相容性或进行水泥质量稳定性的考核, 水泥用户和部分水泥企业引用GB807 6《混凝土外加剂》中的净浆流动度试验方法进行水泥与减水剂相容性试验, 从而进行生产控制和指导水
泥的使用。
这样做, 虽然解决了试验方法的问题,但由于没有统一的评价基准, 导致结果没有可比性。
同时, 当出现相容性问题时, 没有评判依据。
为此,2006 年国家改革与发展委员会下达了《水泥与减水剂相容性试验方法》行业标准制定工作计划。
经过大量的工作, 该标准于2007 年8 月通过了水泥标准化技术委员会的审议,并建议2008 年6 月1 日实施。
为了便于标准的实施, 现将该标准简要介绍如下。
1 关于标准中相容性术语问题
综观现有的文献资料, 就水泥与减水剂两者的关系问题, 出现两个术语: 适应性和相容性。
根据词典的解释, 适应性指的是两个独立的个体之间的关系, 最终的结果是一方被征服或逃避, 而另一方丝毫没有变化; 而相容性指的是两个独立的个体形成一个整体之后的关系, 最终的结果是一损俱损、一荣俱荣。
当水泥和减水剂加水搅拌后, 两者就形成了一个不可分割的整体, 两者相互努力的结果就是拌和物的性能好还是坏, 没有哪一方被征服, 也没有哪一方逃避。
因此, 两者的关系应该叫相容性, 而非适应性。
2 关于水泥与减水剂相容性的定义问题
什么叫水泥与减水剂相容性, 至今没有一个明确的定义。
许多文献中, 都有关于水泥与减水剂相容性/适应性的描述, 其基本意思如下: 由于水泥矿物组成、细度、所掺加的混合材的品种和掺量的不同, 以及减水剂的匀质性、稳定性等原因, 会导致人们常说的水泥与减水剂相容性差的问题, 具体表现为经时坍落度损失快、要达到规定的流动度或坍落度时的减水剂用量大等, 有的甚至出现急凝、缓凝等现象。
因此,从广义上来讲, 水泥与减水剂相容性应包括水泥浆体的流动性能、力学性能、凝结行为和泌水现象等。
同时, GB8076《混凝土外加剂》对泌水率比、凝结时间变化幅度和强度比进行了规定, GB8077《混凝土外加剂匀质性试验方法》对试验方法进行了规定。
因此本标准将水泥与减水剂相容性定义为水泥浆体流动性的变化, 具体为“使用相同减水剂或水泥时, 由于水泥或减水剂质量的变化而引起水泥浆体流动性、经时损失的变化程度, 以及为获得相同的流动性而导致减水剂掺量的变化程度”。
3 关于水泥与减水剂相容性的评价参数及基准点
经过试验研究表明( 见表1) : 不同的水泥具有不同的饱和掺量点; 不同的水泥在饱和掺量点时的Ma rsh 时间和经时损失不同; 不同的水泥在减水剂掺量相同时Marsh 时间和经时损失不同。
另外, 水泥中加入减水剂所追求的是: 1) 获得尽可能高的流动性, 利于混凝土的搅拌、成型; 2) 保证混凝土的可施工性, 在保证一定的流动性时, 还要求混凝土坍落度( 流动性) 损失不要太快, 即经时损失率要小; 3) 以尽量少的减水剂用量获得最大的技术效果,以降低混凝土的生产成本。
因此, 作为评价水泥与减水剂相容性的参数不应是这些参数中的某一个, 而应是流动性、饱和掺量和经时损失3 个参数, 这样才能客观、公正地评价某一水泥与减水剂的相容性。
在3 个评价参数中, 对于一个水泥而言, 只有饱和掺量点是固定不变的, 而流动性和经时损失率在减水剂掺量不同时的结果不同( 见图1) , 因此应确定流动性和经时损失率的评价基准点, 才能建立一个统一的评价体系。
经过研究, 水泥浆体的流动性和经时损失率在减水剂饱和掺量点之后趋于稳定。
经试验, 大多数水泥的饱和掺量点小于%, 个别的大于%, 因此选择了%的减水剂掺量作为水泥浆体的流动性和经时损失率的评价基准点。
4 关于方法问题
根据资料[1~4], 水泥与减水剂相容性试验方法有净浆流动度法、Marsh 筒法和胶砂坍落度法几种, 而且不同的文献对这几种方法给出了不同的评价。
考虑经济因素, 排除了胶砂坍落度法, 并对净浆流动度法和Marsh 筒法进行了对比研究, 结果表明:
1) 两者的原理有所侧重, 但基本一致, 特别是Marsh 筒法的高水灰比与混凝土的实际情况接近;
2) 用Marsh 筒法测定饱和掺量点较净浆流动度法更为直观、便捷、可靠;
3) 用Marsh 筒法测定经时损失率比净浆流动度法敏感;
4)Marsh 时间随水泥中混合材掺量的变化与水泥标准稠度用水量和胶砂流动性的变化规律一致, 较净浆流动度法具有更好的相关性;
5)Marsh 时间与混凝土坍落度具有较好的相关性( 见图2) ;
6)Marsh 筒法试验误差影响因素少, 重复性误差小于净浆流动度法。
考虑到净浆流动度法的应用历史和普遍性, 以及与GB8076 的兼容性, 本标准将两个方法并列, 供标准使用方选择。
但有争议时, 以Marsh 筒法为准。
同时, 作为标准起草单位, 为了方便试验操作、减小试验误差, 和河北科析仪器设备有限公司联合开发了自动Marsh 时间测定仪, 供大家选择。
5 关于基准减水剂问题
在GB8076 中规定了基准水泥, 用以评价减水剂的质量。
同理, 要评价水泥, 必须固定减水剂, 确定评价基准和尺度, 才能进行横向比较。
基于减水剂的技术、生产和使用现状, 选择了占市场80%以上的萘系减水剂作为基准减水剂, 并于20 06 年研制成功, 向社会提供。
在规定基准减水剂的同时, 为了提高标准的可操作性和降低试验成本, 本标准不排除标准使用方自己选择评价基准( 但必须均匀、稳定) , 用以控制和考核水泥质量的稳定性。
但进行横向对比和处理质量纠纷时, 必须采用标准规定的基准减水剂。
6 关于初始和60min 的时间问题
本标准规定的初始时间指的是自加水搅拌算起,经过搅拌、装料步骤, 开始测试的时间。
根据标准规定的试验步骤, 此时间在~5min。
本标准规定的60min 时间指的是自加水搅拌算起, 经过60min 后重新搅拌、装料, 开始测试的时间,根据标准规定的试验步骤, 此时间在~65min。
7 关于搅拌机的问题
在测试完初始流动性后, 水泥浆体要在密封的容器中静置近1h 的时间, 在此期间, 浆体中的固体颗粒发生沉降, 形成上稀下稠的浆体分布。
虽然另配容器进行装盛前尽量将浆体重新返回搅拌锅, 但总会有部分浆体遗留在容器底部和内壁上, 从而改变浆体的水灰比。
为了减小此步骤造成的试验误差, 本标准规定搅拌机配6 只搅拌锅, 使浆体自始至终全部在锅内,
避免浆体损失对试验结果造成影响。
8 关于Mar sh 漏斗的问题
在本标准的方法中, 影响试验结果最大的因素是Marsh 漏斗。
其机械尺寸、加工精度, 特别是下料
管部分, 都对试验结果有影响。
因此, 为了保证试验结果具有可比性, 在此次标准制定过程中, 吸取原先的经验教训, Marsh 漏斗的加工生产只由一家单位进行, 并开发了自动Marsh 时间测定仪。
同时, 为了
保证产品质量, 生产的测定仪必须经过建筑材料工业水泥检验专用仪器设备质量监督检验测试中心的检验,合格后方能出厂。
9 关于基准减水剂掺量点的问题
本标准在水泥浆体的配合比中给出了基准减水剂的掺量点, 同时在备注中又提示“根据水泥和减水剂的实际情况, 可以增加或减少基准减水剂的掺量点”。
这是因为不同的水泥的饱和掺量点不同, 进行大的减水剂掺量试验没有意义。
但无论如何调整, %的掺量点必须做, 以进行流动性和经时损失率的评价。
10 关于水泥企业检测频率的问题
对于水泥企业而言, 本标准的制定有两个作用:
一是对本单位水泥产品质量的了解、掌握以及控制、调整; 二是应对发生的质量纠纷。
因此, 建议水泥企业首先进行一次全面的质量情况摸底, 进行饱和掺量点、流动性和经时损失的试验测试。
然后根据用户的要求进行调整, 使水泥与减水剂的相容性达到一个理想的水平。
在正常情况下, 每周进行1~2 次的流动性和经时损失测试, 以考察水泥质量的稳定性即可。
参考文献:
[1] 吴笑梅, 樊粤明, 简运康.用Marsh 筒法研究水泥与减水剂的相容性问题[J].水泥, 2002, (12): 8- 11.
[2] 徐海军.对制约当前商品( 预拌) 混凝土质量的关键技术问题的研究[D].广州: 华南理工大学,20 01.
[3] 覃维祖.水泥- 高效减水剂相容性及其检测研究[J].混凝土, 1996,(2):11- 17.
[4] 徐永模,彭杰,赵昕南.评价减水剂的新方法———砂浆坍落扩展度[J].硅酸盐学报, 2002, (增刊):124- 130.
[5] 肖忠明,郭俊萍, 席劲松, 等.Marsh 筒法和净浆流动度法用于水泥与减水剂适应性测试的比较[J].水泥, 2006,(8):1- 4.。