误差理论与数据处理和运算规则

合集下载

误差理论及实验数据处理

误差理论及实验数据处理

可以设法减小或排除掉的,如对试验机和应变仪等定期校准和检验。又如单向拉伸时由于夹
具装置等原因而引起的偏心问题,可以用试样安装双表或者两对面贴电阻应变片来减少这种
误差。系统误差越小,表明测量的准确度越高,也就是接近真值的程度越好。
偶然误差是由一些偶然因素所引起的,它的出现常常包含很多未知因素在内。无论怎样
差出现的可能性小。
3)随着测量次数的增加,偶然误差的平均值趋向于零。
4)偶然误差的平均值不超过某一限度。
根据以上特性,可以假定偶然误差Δ 遵循母体平均值为零
的高斯正态分布,如图Ⅰ-1 所示。
f (Δ) =
1
− Δ2
e 2σ 2
σ 2π
图Ⅰ-1 偶然误差的正态频率曲线
·97·
材料力学实验指导与实验基本训练
Δ ≤ Δ1 + Δ2 [注]:上述法则对于两个相差甚大的数在相减时是正确的。但是对两个相互十分接近的 数,在相减时有效位数大大减少,上述结论就不适用。在建立运算步骤时要尽量避免两个接 近相等的数进行相减。 2)如果经过多次连乘除后要达到 n 个有效位数,则参加运算的数字的有效位数至少要 有 (n + 1) 个或 (n + 2) 个。例如,两个 4 位有效数的数字经过两次相乘或相除后,一般只能 保证 3 位有效数。 3)如果被测的量 N 是许多独立的可以直接测量的量 x1, x2,", xn 的函数,则一个普遍的 误差公式可表示为下列形式,即
控制实验条件的一致,也不可避免偶然误差的产生,如对同一试样的尺寸多次量测其结果的
分散性即起源于偶然误差。偶然误差小,表明测量的精度高,也就是数据再现性好。
实验表明,在反复多次的观测中,偶然误差具有以下特性:

分析化学中的常见的误差及数据处理(推荐完整)

分析化学中的常见的误差及数据处理(推荐完整)
三、消除测定过程中的系统误差
对照试验、空白试验、仪器校正、方法校正
四、减少测定过程中的随机误差
控制实验条件、增加平行测定次数
18
5.2 有效数字及运算规则
1、定义
指在分析工作中能实际测量到的数字。由所有准确数字和一位 估读数字(不确定数字、可疑数字)。反映测量的准确程度。 例: 滴定管:20.25 mL 20.2准确值 5可疑值(4位)
第一份样品称量的误差小,准确度高。
9
精密度:在相同的条件下,用同一方法,对同一试
样进行多次平行测量所得的各测量值之间互相接近的 程度。
重复性:同一人,同一实验室,同一套仪器,同一样品 反复测量所得精密度。
再现性:不同人,不同实验室,不同仪器,同一样品反 复测量所得精密度。
10
偏差——精密度的量度
5
特点 ①单峰性:误差有明显的集中趋势, 小误差出现的次数多,大误差出现的 少; ②对称性:在试验次数足够多时,绝 对值相等的正负误差出现的次数大致 相等,因此可能部分或者完全抵消; ③有界性:对于一定条件下的测量, 误差的绝对值不会超过一定的界限。
减小随机误差的方法
①严格控制实验条件,按操作规程正确进行操作; ②适当增加平行测量次数,实际工作中3~5次;用平均值表示结果。
7
2 准确度和精密度
准确度: 测定结果与真值接近的程度,用误差衡量。
绝对误差: 测量值与真值间的差值, 用 E表示
误差
E = x - xT 有单位,有正负。
相对误差: 绝对误差占真值的百分比,用Er表示
Er =E/xT = x - xT /xT×100%
无单位,有正负,较常用。
误差越小,测量值的准确度越高。
3

误差理论与数据处理

误差理论与数据处理

nx
×100%
◆ (4)方差(Variance) 方差( 度量随机变量和其数学期望之间的偏离程度。 度量随机变量和其数学期望之间的偏离程度。
σ2 =
就是和中心偏离的程度。 就是和中心偏离的程度。在样本容 量相同的情况下,方差越大, 量相同的情况下,方差越大,说明 数据的波动越大, 数据的波动越大,越不稳定
2 数据处理
2.1 有效数字定义、运算规则
2.1.2 运算规则 (2)运算 ) ):结果的末位数字所在的位置应按各量中存 ◆加(减):结果的末位数字所在的位置应按各量中存 疑数字所在数位最少的一个为准来决定。 疑数字所在数位最少的一个为准来决定。
a. 30.4 + 4.325 = 34.725 → 34.7 b. 26.65 -3.905 = 22.745 → 22.74
106.25=1778279.41→1.8×106; pH=10.28→[H+]=5.2×10-11
2 数据处理
2.1 有效数字定义、运算规则
2.1.2 运算规则 (2)运算 ) 对数: ◆对数: lgx的有效数字位数由 的位数决定。 的有效数字位数由x的位数决定 的有效数字位数由 的位数决定。
1 误差理论
1.2 分类
1.2.2 系统误差、随机误差、过失误差
◆(3)过失误差 又称粗大误差和疏忽误差。 又称粗大误差和疏忽误差。是由过程中 的非随机事件如工艺泄漏、测量仪表失灵、 的非随机事件如工艺泄漏、测量仪表失灵、设备故障等引发的 测量数据严重失真现象, 测量数据严重失真现象,致使测量数据的真实值与测量值之间 出现显著差异的误差。 出现显著差异的误差。
2.1 有效数字定义、运算规则
2.1.1 定义
在一个近似数中,从左边第一个不是 的数字起 的数字起, 在一个近似数中,从左边第一个不是0的数字起,到精确到 的位数止,这中间所有的数字都叫这个近似数字的有效数字。 的位数止,这中间所有的数字都叫这个近似数字的有效数字。

大学物理实验—误差及数据处理

大学物理实验—误差及数据处理

误差及数据处理物理实验离不开测量,数据测完后不进行处理,就难以判断实验效果,所以实验数据处理是物理实验非常重要的环节。

这节课我们学习误差及数据处理的知识。

数据处理及误差分析的内容很多,不可能在一两次学习中就完全掌握,因此希望大家首先对其基本内容做初步了解,然后在具体实验中通过实际运用加以掌握。

一、测量与误差1. 测量概念:将待测量与被选作为标准单位的物理量进行比较,其倍数即为物理量的测量值。

测量值:数值+单位。

分类:按方法可分为直接测量和间接测量;按条件可分为等精度测量和非等精度测量。

直接测量:可以用量具或仪表直接读出测量值的测量,如测量长度、时间等。

间接测量:利用直接测量的物理量与待测量之间的已知函数关系,通过计算而得到待测量的结果。

例如,要测量长方体的体积,可先直接测出长方体的长、宽和高的值,然后通过计算得出长方体的体积。

等精度测量:是指在测量条件完全相同(即同一观察者、同一仪器、同一方法和同一环境)情况下的重复测量。

非等精度测量:在测量条件不同(如观察者不同、或仪器改变、或方法改变,或环境变化)的情况下对同一物理量的重复测量。

2.误差真值A:我们把待测物理量的客观真实数值称为真值。

一般来说,真值仅是一个理想的概念。

实际测量中,一般只能根据测量值确定测量的最佳值,通常取多次重复测量的平均值作为最佳值。

误差ε:测量值与真值之间的差异。

误差可用绝对误差表示,也可用相对误差表示。

绝对误差=测量值-真值,反应了测量值偏离真值的大小和方向。

为了全面评价测量的优劣, 还需考虑被测量本身的大小。

绝对误差有时不能完全体现测量的优劣, 常用“相对误差”来表征测量优劣。

相对误差=绝对误差/测量的最佳值×100%分类:误差产生的原因是多方面的,根据误差的来源和性质的不同,可将其分为系统误差和随机误差两类。

(1)系统误差在相同条件下,多次测量同一物理量时,误差的大小和符号保持恒定,或按规律变化,这类误差称为系统误差。

对实验数值误差理论和数据处理

对实验数值误差理论和数据处理

9 平均值的有效数字位数,通常和测量值相同。 当样本容量较大,在运算过程中,为减少舍 入误差,平均值可比单次测量值多保留一位 数。
3.3实验数据的初步整理
3.3.1实验数据的列表整理
1.数据的归类整理 2.数据的分组整理
3.3.2 分布规律判断的基本方法— —统计直方图
1.统计直方图 为了对某个随机变量的分布规律作出判断,
如0.0121×25.64×1.05782,其0.0121为三 位有效数字,故计算结果宜记0.328
5 在所有计算式中,常数π ,e的数值,以及,1/2等 系数的有效数字位数,可以认为无限制,需要几位 就可以取几位。
6 在对数计算中,所取对数位数,应与真数的有效数 字位数相等。例如,pH12.25 和 [H+]=5.6×10-13M;
3.误差与数据处理
3.1 误差及其表示方法
误差来源
设备误差 环境误差 人员误差 方法误差
误差分类
系统误差、 随机误差、 过失误差
(1)系统误差
系统误差是由某种确定的因素造成的,使测定 结果系统偏高或偏低;当造成误差的因素不存 在时,系统误差自然会消失。
当进行重复测量时,它会重复出现。系统误差 的大小,正负是可以测定的,至少在理论上说 是可以测定的,系统误差的最重要特性是它具 有‘‘单向性” 。
对于舍去的数据,在试验报告中应注明舍去的原因或所 选用的统计方法。
1).4d 法检验
根据测量值的正态分布可知,偏差大于3σ的测量 值出现的概率约为0.3%,此为小概率事件,而 小概率事件在有限次实验中是不可能发生的,如 果发生了则是不正常的。
即偏差大于3σ的测量值在有限次检验中是不可能 的,如果出现则为异常值,为过失所致应舍弃。 (概率不超过5%的事件称为小概率事件)。

误差理论与数据处理知识总结

误差理论与数据处理知识总结

1.1.1 研究误差的意义为:1)正确认识误差的性质,分析误差产生的愿意,以消除或者减小误差2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据3)正确组织实验过程,合理设计仪器或者选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

1.2.1 误差的定义:误差是测得值与被测量的真值之间的差。

1.2.2 绝对误差:某量值的测得值之差。

1.2.3 相对误差:绝对误差与被测量的真值之比值。

1.2.4 引用误差:以仪器仪表某一刻度点的示值误差为份子,以测量范围上限值或者全量程为分母,所得比值为引用误差。

1.2.5 误差来源: 1)测量装置误差 2)环境误差 3)方法误差 4)人员误差1.2.6 误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。

1.2.7 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或者在条件改变时,按一定规律变化的误差为系统误差。

1.2.8 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。

1.2.9 粗大误差:超出在规定条件下预期的误差称为粗大误差。

1.3.1 精度:反映测量结果与真值接近程度的量,成为精度。

1.3.2 精度可分为:1)准确度:反映测量结果中系统误差的影响程度2)精密度:反映测量结果中随机误差的影响程度3) 精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。

1.4.1 有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那末从这个近似数左方起的第一个非零的数字,称为第一位有效数字。

从第一位有效数字起到最末一位数字止的所有数字,不管是零或者非零的数字,都叫有效数字。

1.4.2 测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。

1.4.3 数字舍入规则:保留的有效数字最末一位数字应按下面的舍入规则进行凑整:1)若舍去部份的数值,大于保留部份的末位的半个单位,则末位加一2)若舍去部份的数值,小于保留部份的末位的半个单位,则末位不变3)若舍去部份的数值,等于保留部份的末位的半个单位,则末位凑成偶数。

误差理论与数据处理

误差理论与数据处理

误差理论与数据处理1. 绪论1.1 数据测量的基本概念1.1.1 基本概念(1)物理量物理量是反映物理现象的状态及其过程特征的数值量。

一般物理量都是有因次的量,即它们都有相应的单位,数值为1的物理量称为单位物理量,或称为单位;同一物理量可以用不同的物理单位来描述,如能量可以用焦耳、千瓦小时等不同单位来表述。

(2)量值一般由一个数乘以测量单位所表示的特定量的大小。

无量纲的SI单位是“1”。

(3)测量以确定量值为目的的一组操作,操作的结果可以得到真值,即得到数据,这组操作称为测量。

例如:用米尺测得桌子的长度为1.2米。

(4)测量结果测量结果就是根据已有的信息和条件对被测物理量进行的最佳估计,即是物理量真值的最佳估计。

在测量结果的完整表述中,应包括测量误差,必要时还应给出自由度及置信概率。

测量结果还具有重复性和重现性。

重复性是指在相同的测量条件下,对同一被测物理量进行连续多次测量所得结果之间的一致性。

相同的测量条件即称之为“重复性条件”,主要包括:相同的测量程序、相同的测量仪器、相同的观测者、相同的地点、在短期内的重复测量、相同的测量环境。

若每次的测量条件都相同,则在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量服从同一分布。

重现性是指在改变测量条件下,对被测物理量进行多次测量时,每一次测量结果之间的一致性,即在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量值服从同一分布。

(4)测量方法测量方法是指根据给定的测量原理,在测量中所用的并按类别描述的一组操作逻辑次序和划分方法,常见的有替代法、微差法、零位法、异号法等。

总之,数据测量就是用单位物理量去描述或表示某一未知的同类物理量的大小。

1.1.2 数据测量的分类数据测量的方法很多,下面介绍常见的三种分类方法,即按计量的性质、测量的目的和测量值的获得方法分类。

(1)按计量的性质分可分为:检定、检测和校准。

检定:由法定计量部门(或其他法定授权组织),为确定和证实计量器是否完全满足检定规程的要求而进行的全部工作。

误差理论与数据处理总结

误差理论与数据处理总结

误差理论与数据处理总结三、误差分类三、数据运算规则在有效数据后多保留一位参考(安全)数字。

第一章绪论 (1)近似加减运算。

结果应与小数位数最少的数据小数位数按误差的特点和性质,误差可分为系统误差、随机误差(也相同。

称偶然误差)和粗大误差三类。

第一节研究误差的意义 (2)近似乘除运算。

运算以有效位最少的数据位数多取一 (一)系统误差一、研究误差的意义位,结果位数相同。

在相同条件下,多次测量同一量值时,该误差的绝对值和符号保 1、正确认识误差的性质,分析误差产生的原因,以消除或减少(3)近似平方或开方运算。

按乘除运算处理。

持不变,或者在条件改变时,按某一确定规律变化的误差—系统误差。

(4)对数运算。

n位有效数字的数据该用n 位对数表,或误差。

如标准量值不准、一起刻度不准确引起的误差。

2、正确处理测量和实验数据,合理计算所得结果,以便在一定—曲线上拐点A的横坐标—曲线右半部面积重,(n+1)位对数表。

, 系统误差又可按下列分类: ''''''''条件下得到更接近于真值的数据。

(5)三角函数。

角度误差 10.10.01101、按对误差掌握的程度分心B的横坐标 3、正确组织实验过程,合理设计仪器或选用仪器和测量方法,(1)已定系统误差:指误差的绝对值和符号已确定函数值位数 5 6 78 ,—右半部面积的平分线的横坐标。

以便在最经济条件下,得到最理想结果。

(2)未定系统误差:指误差的绝对值和符号未确定,但可的出4、研究误差可促进理论发展。

(如雷莱研究:化学方法、空气误差范围。

第二章误差的基本性质与处理三、算术平均值分离方法。

制氮气时,密度不同,导致后人发现惰性气体。

) 2、按误差出现规律分(1)不变系统误差:(指绝对值和符号一定)相当于以定系统误第一节随机误差第二节误差基本概念 ,,,lLL1、公理:一系列等精度测量,则。

—真值差。

ii00nnn(2)变化系统误差:(指绝对值和符号为变化)相当于未定系统随机误差的代数和 ,,,,,lLlnL,,,,,iii00定义:在相同条件下多次重复测量同一量时,以不可预定的一、误差定义及表示方法误差,但变化规律可知,如线性、周期性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③组合测量:通过测量所有被测量的各种组合,通过列方程来求解被测量的方法; 例如:用万用表测电阻R1、R2串联后的阻值和并联后的阻值,
R R1 R2 R R1R2
R1 R2
21
六、测量的分类
2、按测量条件分类: ①等精度测量:在相同的测量精度条件下,对同一待测量进
行的重复性测量; 对于等精度测量所获得的数据,它们的等位 精度是相同的,按同等原则来对待。 ②不等精度测量(非等精度测量):在测量过程中倘若有任 何一个环节产生了变化,即在不同的测量精度条件下,只要变 化其中的某一因素,对同一待测量进行的测量; 对于不等精度测量所获得的数据,应区别对待。

16
二、测量的历史
为什么要有测量?
人的感官出现了问题!
测量的目的:为了获得更为准确的信息。
举例说明:
长度
步(英 尺)—米原器(铂铱合金)—光速的多少分之

测量的历史说明了什么?
17
三、测量的定义
测量是将被测量与一个作为测量单位的标准 量进行比较得出比值的过程。
测量过程:对测量进行的一系列操作
9
钱学森(1911-2009 )
信息技术包括测量 技术、计算机技术 和通信技术,测量 技术是信息技术的 关键和基础。
钱学森
10
王大珩(1915-2011 )
仪器仪表是工业生产 的“倍增器”,是高 新技术和科研的“催 化剂”,在军事上体 现的是“战斗力”。
王大珩等
11
第二节 测量的基本概念
➢测量的意义 ➢测量的历史 ➢测量的定义 ➢测量与测试 ➢测量的实现 ➢测量的分类 ➢单位制与基准
六、测量的分类
1、按获取测量结果的方法分类: ①直接测量:被测量由测量装置或测量仪器可以直接读出测量结果的测量方法;
用 yx表示,其中 x表示被测量的实际测量结果;y表示被测量
的值。例:尺子测长度、温度计测温度、天平测质量等。 ②间接测量:先测量一个或多个直接测量的值,然后利用已知的函数关系运算
得到被测量;用 yfx 1 ,x 2,,xn表示,其中 y表示被测量的值, x1,x2,,xn表示可以直接测量的量值;例:密度、飞机的高度。
照片,克里克尔带头向伦琴欢呼三次,建议将 这种射线命名为伦琴射线。
1901年诺贝尔奖
13
一、测量的意义
2009年诺贝尔物理学奖
英国华裔科学家高锟 美国科学家威拉德·博伊尔和乔治·史密斯
光纤之父
博伊尔和史密斯发明了半导体成像器件—电 荷耦合器件(CCD)图像传感器
14
一、测量的意义
2012诺贝尔物理学奖 获奖理由是“发现测量 和操控单个量子系统的 突破性实验方法”
美国科学家大卫·维因兰德 法国科学家塞尔日·
(David Wineland)
阿罗什(Serge
Haroche)
15
一、测量的意义
✓ 日常生活中离不开测量 ✓ 科学进步与发展离不开测量
没有望远镜就没 有天文学,没有 显微镜就没有细 胞学,没有指南 针就没有航海事
测量方法可以 理解为测量原 理、测量器具 和测量条件的
总和
完整的测量过程包括:被测量、测量单位、测量方法、测量精度
测量结果:测量数值+单位+对测量结果的精度评定(测量的不确定度)
18
四、测量与测试的区别
测试的概念 – 带有试验性质的测量
测试的目的 – 获取被测对象的信息
测试的过程 – 借助专门的设备、仪器或测试系统,通过适当的实验方 法与必需的信号分析及数据处理,由测得信号获取与研 究对象有关信息量值的过程。
12
一、测量的意义
✓ 日常生活中离不开测量 ✓ 科学进步与发展离不开测量(诺贝尔物理奖的例子)
威廉·康拉德·伦琴 Wilhelm
Conrad Röntgen (1845.3.27-1923.2.10)
1895年11月8日,伦琴在进行阴极射线的实验 时发现了X射线。 1896年1月23日,伦琴在自己的研究所里作了 第一次报告,报告结束时,用X射线拍摄了维 尔茨堡大学著名解剖学教授克里克尔一只手的
问题:四方面内 容的内在关系是
什么?
6
第一节 研究误差的意义 正确认识误差的性质,分析误差产生的原因 从根本上,消除或减小误差 正确处理测量和实验数据,合理计算所得结果 通过计算得到更接近真值的数据 正确组织实验过程,合理设计、选用仪器或测量方法 根据目标确定最佳系统
7
门捷列夫 (1834-1907)
本课程计划总学时为56学时,其中授课46学时,上机8学时,考 试2学时。授课学时计划安排如下:
4
几个问题
为什么学习这门课程? – 误差分析与数据处理的作用?
这门课程能够学习到什么? – 误差分析的含义? – 数据处理的含义?
这门课程在将来的工作当中能起到什么作用? – 科研工作当中? – 日常生活当中?
误差理论与数据处理 和运算规则
教材及参考书
2
课程学习要求
①出勤 ②听课、笔记 ③作业 ④上机编程
▪ 考试形式? – 闭卷考试
▪ 成绩比例? – 10%的作业; 10%的上机编程; 10%的课堂表现、出 勤;70%卷面成绩
▪ 答疑安排? – 日常答疑——机械楼1-312, – 考前不安排答疑
3
教学安排
科学始于测量,没有测量, 便没有精密的科学。
门捷列夫
8
开尔文(1824-1907 )
当你能够测量你所关注的事物, 而且能够用数量来描述他的时候, 你就对其有所认识;当你不能测 量他,也不能将其量化的时候, 你对他的了解就是贫乏和不深入 的。
开尔文
为了纪念他在科学上的功绩,国际 计量大会把热力学温标(即绝对温 标)称为开尔文(开氏)温标,热 力学温度以开尔文为单位,是现在 国际单位制中七个基本单位之一。
落脚点: – 测量与测试的关系
19
五、测量的实测 ①量 被现的 测要 对素 象:
②测量手段(测量方法、测量仪器)
③测量条件(环境)
原理
④测量结果(数值+单位+精度)
方法
测量策
对象
略、算法
属性
选择
决定
仪器
方法
被测信息 被测 对象
激励信号
仪器
参数命令
测量
系统
人员
数据状态
影 响
影响
影响
测量 环境
图 1-3 测 量 的 基 本 要 素 20
这门课程考研主要用到的知识?
5
第一章 绪论
教学目标: ➢本章阐述测量误差的基本概念、误差的表达形式、误差分类、 误差来源; ➢给出描述误差大小的精度概念及其与误差类型之间的关系; ➢给出测量中的有效数字概念及其在数据处理中的基本方法。
重点与难点: ➢ 误差定义及表达形式 ➢ 测量误差来源的分析 ➢ 测量误差按误差性质的分类处理 ➢ 有效数字定义及选取 ,数值运算
相关文档
最新文档