高效液相色谱
高效液相色谱

二、 进样系统
将样品溶液准确送入色谱柱的装置 ——手动方式、自动方式
进样器要求
密封性好、死体积小、重复性好、进样时 引起色谱系统的压力和流量波动要很小。
常用手动进样器——六通阀进样器,
二、 进样系统
六通阀进样
Load
Inject
分析对象及范围 能气化、热稳定性好、 G 且沸点较低的样品,占 C 有机物的20% 流动相的选择 操作条件
流动相为有限的几种 加温常压 “惰性”气体,只起运 操作 载作用,对组分作用小
溶解后能制成溶液的样 H 流动相为液体或各种液 品,高沸点、高分子量、 P 体的混合。它除了起运 室温、高 难气化、离子型的稳定 L 载作用外,还可通过溶 压下进行 或不稳定化合物,占有 C 剂来控制和改进分离。 机物的80%
经典LC HPLC
固定相颗粒>100μm,不均匀 固定相颗粒<10μm,均匀 常压下输送流动相 柱效较低(H↑,n↓) 高压下输送流动相 柱效较高(H↓,n↑)
分析周期长 无法在线检测
分析周期短 可以在线检测
2. HPLC与GC的比较
相同:均为高效、高速、高选择性的色谱方法,兼
具分离和分析功能,均可以在线检测
高分子多孔微球:YSG
一、固定相
3. 常用固定相
化学键合固定相
以硅胶为载体,借化学反应方法将有机分子
以共价键连接在硅醇基上
(硅酯化) Si OH R OH Si O R
SOCl 2
(酰氯化) Si OH SOCl2 Si Cl RLi 或RMgCl Si R (硅烷化) Si OH R3 SiCl Si O SiR3 HCl
高效液相色谱法

2.高效液相色谱法与气相色谱法的比较
(l)气相色谱法:分析对象仅占有机物总数的20%。 高效液相色谱法:分离和分析占有机物总数近80%的那些 高沸点、热稳定性差、离子型化合物及摩尔质量大的物质。
(2)气相色谱:流动相与组分不产生相互作用力,仅起运 载作用。 高效液相色谱法:流动相对组分可产生一定亲和力,并参与 固定相对组分作用的剧烈竞争,流动相对分离起很大作用, 相当于增加了一个控制和改进分离条件的参数;
高压输液泵应符合下列要求:密封性好,输出 流量恒定,压力平稳,可调范围宽,便于迅速 更换溶剂及耐腐蚀。
高压输液泵
常用的输液泵分为恒流泵和恒压泵两种。 恒流泵特点是在一定操作条件下,输出流量保持恒定而与色谱 柱引起阻力变化无关; 恒压泵是指能保持输出压力恒定,但其流量则随色谱系统阻力 而变化,故保留时间的重视性差。 目前主要使用恒流泵,又称机械泵,它又分机械注射泵和机械 往复泵两种,应用最多的是机械往复泵。
(四)检测系统
两种基本类型的检测器: 溶质型检测器:它仅对被分离组分的物理或化学特性有响应, 属于这类检测器的有紫外、荧光、安培检测器等。 总体检测器:它对试样和洗脱液总的物理或化学性质有响应, 属于这类检测器的有示差折光,电导检测器等。 (l)紫外检测器 (2)荧光检测器 (3)示差折光率检测器 (4)电化学检测器
高效液相色谱法
High Performance Liquid Chromatography,HPLC
§1
概 述
Introduction
一、高效液相色谱法概述
高效液相色谱法(HPLC)吸取了气相色谱与经典液相色谱优 点,并用现代化手段加以改进。
引入了气相色谱的理论;
在技术上采用了高压泵、高效固定相和高灵敏度检测器; 具备速度快、效率高、灵敏度高、操作自动化的特点;
hplc高效液相色谱

hplc高效液相色谱HPLC高效液相色谱简介高效液相色谱(High Performance Liquid Chromatography,HPLC),也被称为液相色谱法(Liquid Chromatography),是一种广泛应用于药物分析、环境监测、食品检测等领域的分离技术。
HPLC色谱技术通过物质在液体流动相和固定相之间的相互作用,实现对分子化合物的分离、检测和定量。
相对于传统的柱层析技术,HPLC具有分离效率高、分析灵敏度高、分析速度快等特点,被广泛应用于科学研究和工业生产。
HPLC的基本原理HPLC色谱技术是建立在分配系数理论的基础上。
它通过固定填料上溶解物质与流动相中溶解物质之间的分配与再分配,实现目标化合物在固定相中的分离。
HPLC色谱法的基本步骤包括:样品制备、装柱、选择流动相、进样、洗脱分离、检测及数据处理等。
HPLC的主要组成部分HPLC主要由一系列组成部分组成,包括:溶剂输送系统、无菌进样器、色谱柱、检测器和数据处理系统等。
其中,溶剂输送系统用于控制流动相的输送速率和压力,确保流动相以一定速率通过色谱柱;无菌进样器用来将样品进样并转送到色谱柱中;色谱柱是分离目标化合物的关键组成部分,根据所分离物质的化学性质和目标要求选择合适的色谱柱;检测器用来检测溶质的浓度,并将信号转换为电信号输出;数据处理系统用来处理和分析检测到的信号,得出结果。
HPLC的种类和应用领域根据不同的分离机制和柱填料,HPLC可以分为很多不同的类型,包括:反相色谱、离子交换色谱、分子筛色谱等。
反相色谱是最常用的一种HPLC技术,其应用领域非常广泛。
例如,在药物研究领域,HPLC被广泛应用于药物分析、药代动力学研究、质量控制等方面。
在环境监测领域,HPLC被用来检测土壤和水体中的有机污染物、重金属和农药等化学物质。
在食品安全检测领域,HPLC被用来检测食品中的添加剂、农药残留和重金属等有害物质。
HPLC的发展和进展自HPLC技术在20世纪60年代首次提出以来,随着科学技术的不断发展,HPLC技术也在不断进步和改进。
什么是高效液相色谱(HPLC)

(高效液相色谱)?
1
什么是超高效液相色谱(UPLC技术)?
• 2004年,液相色谱的仪器和 色谱柱技术取得了进一步发 展,在分离度、速度和灵敏 度方面实现了显著提升。需 要具有更小颗粒[1.7微米]的 色谱柱和具有专门功能的仪 器,提供15,000 psi [1,000 bar]的流动相,以达到更高 的性能水平。必须从整体上 创建一套新系统来执行超高 效液相色谱(现在称为 UPLC技术)。
2
简史和一些定义
• 液相色谱(LC)是俄国植物学家Mikhail S. Tswett在20世纪初 定义的概念。他当时专注于使用填充有颗粒的柱子分离用溶 剂从植物中提取的化合物[叶色素],这是液相色谱史上的先 驱性研究。
• Tswett用颗粒填充开放式玻璃柱。他发现粉状白垩[碳酸钙] 和氧化铝这两种特殊材料对分离有用。他将样品[均质化植物 叶子的溶剂提取物]倒入柱中,使样品通过颗粒床。然后使纯 溶剂通过。当样品在重力作用下穿过柱子时,可以观察到样 品分成了不同颜色的谱带,这是因为某些组分的移动速度快 于其他组分。
• 高效液相色谱法现在是分析化学领域的一种强大的工具。它能够 分离、鉴定和定量存在于任何可溶于液体的样品中的化合物。目 前,可以轻松鉴定出浓度低至万亿分之一[ppt]级的痕量化合物。 HPLC可以并且已经应用于几乎任何样品,例如药品、食品、保健 品、化妆品、环境基质、法医学样品和工业化学品。
6
3
什么是超高效液相色谱(UPLC技术)?
• 目前,科学家们正在使用颗粒直径甚至 小于1微米的色谱柱以及能够在100,000 psi [6,800 bar]下运行的仪器来从事 基础研究。这让我们可以一窥这项技术 的未来。
• 图:HPLC色谱柱
高效液相色谱法 HPLC

1)硅胶: <>无定型硅胶 最早使用,传质慢、柱效低 <>薄壳型硅胶 直径为30~40μm的玻璃珠表面涂布一层1~2μm 厚的硅胶微粒,孔径均一、渗透性好、传质 快,但柱容量有限。 <>全多孔球型硅胶 粒度一般为5~10μm,颗粒和孔径的均一性都比 前两种好,柱容量大,为当今液固色谱固定相 的主体,也是键合固定相的主要基质。
2.进样系统 a 隔膜进样(高分子有机硅胶垫→进样室) >GC系统压力较小,可以 >HPLC系统压力太大,须停泵进样(早期) b 阀进样:不必停泵,六通阀
3.分离系统-色谱柱 >直径4~6mm,柱长10~30cm,多为不锈钢材料 >柱效评价:色谱系统适应性试验 R,n,fs(拖尾因子) >色谱柱维护 >预柱和预饱和柱
(二)反相键合相固定相
1.分离机制:疏溶剂理论 正相——流动相与溶质排斥力强, 作用时间↑, k↑,组分tR↑ 反相——流动相与溶质排斥力弱, 作用时间↓, k↓,组分tR↓
二、HPLC与GC差别
1.分析对象的区别 GC:
适于能气化、热稳定性好、且沸点较低的样品; 但对高沸点、挥发性差、热稳定性差、离子型 及高聚物的样品,尤其对大多数生化样品不可 检测。(占有机物的20%)
HPLC: 适于溶解后能制成溶液的样品(包括有机介质溶 液),不受样品挥发性和热稳定性的限制,对分 子量大、难气化、热稳定性差的生化样品及高分 子和离子型样品均可检测用途广泛。(占有机物 的80%)
20-高效液相色谱

5. 离子色谱
其分离原理与离子交换色谱原理一样, 电导检测器检测。 问题:由于流动相都是强电解质,其电导率比 待测离子约高 2 个数量级,这种强背景电导会完
全掩盖待测离子信号。
1975年Small提出,在离子交换柱之后,再串结一根
抑制柱。该柱装填与分离柱电荷完全相反的离子交 换树脂。通过分离柱后的样品再经过抑制柱,使具 有高背景电导的流动相转变为低背景电导的流动相, 从而可用电导检测器检测各种离子的含量。
在反相色谱法中,通过调节流动相的pH,抑制样品组 分的解离,增加它在固定相中的溶解度,以达到分离 有机弱酸、弱碱的目的,称为离子抑制色谱法(ISC)
(1)适用范围 弱酸 3.0≤pKa≤ 7.0 弱碱 7.0≤pKa≤ 8.0
(2)抑制剂 弱酸(乙酸)、弱碱(氨水)或缓冲盐 (3)影响k的因素 a.与流动相的极性有关(同反相色谱) b.与流动相pH有关:弱酸 pH≤pKa k↑, tR↑ 弱碱 反之
由苯乙烯与二乙烯苯交联而成
21
20.4.2 化学键合相
化学键合固定相: 目前应用最广、性能最佳的固定相; 一般的键合相用硅胶为载体: a. 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C (ODS)
1. 非极性键合相 键合相表面基团为非极性烃基, 如C18 、C8、 C1 和苯基等。一般用于反相色谱
33
选择流动相时应注意的几个问题
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期累 积损坏色谱柱和使检测器噪声增加。 (2)使用前需要用微孔滤膜过滤,除去固体颗粒。
(3)流动相使用前最好脱气。
34
20.6 高效液相色谱仪
35
记录系统
输液系统
高效液相色谱法

第八章高效液相色谱法(High Performance Liquid Chromatograph)第一节概述(Generalization)以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。
HPLC是20世纪70年代初发展起来的一种新的色谱分离分析技术。
具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)的特点,适用于高沸点、热不稳定有机及生化试样的分离分析。
HPLC基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、或数据处理系统记录色谱信号再进行数据处理而得到分析结果。
高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。
目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。
将固定液的官能团键合在载体上,形成的固定相称为化学键合相,具有固定液不易流失的特点,一般认为有分配与吸附两种功能,常以分配作用为主。
C18(ODS)是最常使用的化学键合相。
根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。
《中国药典》中有50种中成药的定量分析采用HPLC法,在中药制剂分析中,大多采用反相键合相色谱法。
一、高效液相色谱法的特点目前经典LC主要用于制备,若用于分析则采用脱机或非连续检测。
经典LC填料缺陷,通常是填料粒度大、范围宽、不规则,不易填充均匀,扩散和传质阻力大,谱带展宽加大。
它存在致命弱点:速度慢、效率低和灵敏度低。
HPLC填料(高效固定相)颗粒细、直径范围窄、能承受高压。
高效液相色谱

高效液相色谱高效液相色谱,又称高压液相色谱(HPLC,High Performance Liquid Chromatography),是一种重要的色谱技术,广泛应用于药物分析、食品安全检测、环境监测等领域。
相较于传统液相色谱,高效液相色谱具有分离效果好、分析速度快、灵敏度高等优势,因此成为现代分析实验的核心技术之一。
高效液相色谱的原理基于物质在不同相互作用力下的差异,通过样品在固定相上的分配行为,实现对不同成分的分离和分析。
其核心部分是色谱柱,包括固定相、流动相和样品分子。
其中,固定相是一种特定的固体或液体材料,具有一定的孔隙结构和表面特性,用于捕获和分离样品成分。
流动相则由溶剂组成,可以通过与固定相的相互作用调节分离效果。
而样品分子则根据其在固定相上的亲疏性,相继被吸附、扩散和解吸,最终实现分离。
高效液相色谱的分离过程包括样品进样、柱温控制、流速调节等步骤,每个步骤都需要严格控制,以保证分离效果和结果准确性。
在样品进样之前,通常需要采用样品前处理方法,如固相萃取、溶剂萃取等,以去除杂质和提高分析物的浓度。
然后,样品通过进样器进入色谱柱,通过控制流速和柱温,使样品成分在固定相上发生分配行为,从而实现分离。
最后,通过采集柱洗脱出来的物质,并通过检测器检测其浓度变化,得到分析结果。
高效液相色谱的关键是选择适当的固定相和流动相。
不同的样品性质和分析要求需要选择不同的固定相。
常见的固定相包括疏水相、离子交换相、亲水相等。
此外,流动相的选择也非常重要,常见的流动相溶剂有水、有机溶剂(如甲醇、乙腈)等。
合理选择固定相和流动相能提高分离效果,提高检测灵敏度。
高效液相色谱有多种检测器可供选择,常用的有紫外-可见光谱检测器(UV-Vis)、荧光检测器、质谱检测器等。
通过检测器的信号,可以得到样品的浓度信息,从而进行定量分析。
高效液相色谱在药物分析中的应用广泛。
例如,针对不同药物的检测需求,可以选择不同的色谱柱和流动相,在合适的检测器下进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效液相色谱二、定义色谱法(Chromatography):利用组分在两相间分配系数不同而进行分离的技术。
*经验性学科色谱法的分离原理利用样品混合物中各组分理、化性质的不同以及在两相间分配系数的差异,当两相相对移动时各组分在两相中反复多次重新分配结果使混合物得到分离。
两相中固定不动的一相称固定相(Stationaryphase)移动的一相称流动相(Mobilephase)携带样品流过整个系统的流体。
色谱发展史◆年前俄国的植物学家Tswett创立了色谱法。
由Tswett创立的色谱法分离效率低分离时间长根据样品的不同一般分离需要几小时至几天。
◆世纪年代至年代初先后出现了纸色谱(paperchromatography,PC)和薄膜色谱法(thinlayerchromatography,TLC)。
特点:较经典色谱法简单、分离时间短样品量要求小。
◆年James和Martin提出了气相色谱法(gaschromatography,GC)特点:以气体作为流动相。
应用范围广泛受到人们重视。
但对不易气化和热不稳定性差的化合物难以分离。
◆世纪年代后期由于新型色谱柱填料的高压输液泵和高灵敏度的检测器的出现发展出了高效液相色谱(Highperformanceliquidchromatography,HPLC)。
液相色谱:以液体作为流动相的色谱分离方法适用于高沸点、大分子、强极性和热稳定性差的化合物的分析流动相具有运载样品分子和选择性分离的双重作用*LCGCCE:泳毛细管电泳(capillaryelectrophoresis,CE)又叫高效毛细管电泳(HPCE),是近年来发展最快的分析方法之一。
SFC:supercriticalfluidchromatography超临界流体色谱。
一、液固吸附色谱(一)分离原理(二)常用吸附剂(三)吸附剂和流动相的选择经典液相色谱(一)分离原理各组分与流动相分子争夺吸附剂表面活性中心利用吸附剂表面的活性吸附中心对不同组分的吸附能力差异而实现分离(二)常用吸附剂:多孔、微粒状物质硅胶氧化铝聚酰胺硅胶结构:内部硅氧交联结构→多孔结构表面有硅醇基→氢键作用→吸附活性中心特性:)与极性物质或不饱和化合物形成氢键物质极性↑吸附能力↑→强极性吸附中心不易洗脱)吸水→失活→~OC烘干分钟(可逆失水)→吸附力最大→OC烘干(不可逆失水)→活性丧失无吸附力适用:分析酸性或中性物质氧化铝碱性氧化铝pH~适于分析碱性、中性物质中性氧化铝pH>适于分析酸性碱性和中性物质酸性氧化铝pH~适于分析酸性、中性物质聚酰胺氢键作用氢键能力↑强组分越后出柱(三)吸附剂和流动相的选择:依据被测组分、吸附剂和流动相的性质被测组分性质(极性大小):烃<<羧酸醇吸附剂的活性:吸附剂的活性↑大对被测组分的吸附能力↑强强极性物质选择弱吸附剂弱极性物质选择强吸附剂流动相的极性:流动相极性↑大对被测组分的洗脱能力↑大“相似相溶”原则:根据组分性质、吸附剂的活性选择适当极性的流动相三者关系图示:组分吸附剂流动相极性活性小极性非(弱)极性活性大非极性或弱极性二、薄层色谱法(一)概述(二)定性参数(三)吸附剂的选择(四)展开剂的选择(五)薄层板的制备(六)定性与定量分析(一)概述.定义:将固定相均匀涂布在表面光滑的平板上形成薄层而进行色谱分离和分析的方法.操作过程:铺板→活化→点样→展开→定位(定性)洗脱(定量).分离机制:吸附(分配离子交换空间排阻).特点:分析快速、灵敏、显色方便.应用:药物杂质检查、纯度测定LLL(二)定性参数比移值Rf讨论Rf与组分性质(溶解度)以及薄层板和展开剂的性质有关色谱条件一定Rf只与组分性质有关是薄层色谱基本定性参数说明组分的色谱保留行为)K↑大Rf↓小)薄层板一定对于极性组分展开剂极性↑大Rf↑大(容易洗脱)展开剂极性↓小Rf↓小(不容易洗脱))Rf范围:Rf(组分迁移速度和距离小于展开剂迁移速度和距离)Rf=(常用)(最佳)相对比移值Rs参考物与被测组分在完全相同条件下展开可以消除系统误差大大提高重现性和可靠性参考物可以是后加入纯物质也可为样品中已知组分相对比移值Rs与组分、参考物性质及色谱条件有关范围可以大于或小于(三)吸附剂的选择根据被测物极性和吸附剂的吸附能力被测物极性强弱极性吸附剂被测物极性弱强极性吸附剂(四)展开剂的选择(同液固吸附色谱流动相的选择)根据被测组分、吸附剂和展开剂本身的极性(五)薄层板的制备(六)定性与定量分析定性分析日光紫外光显色定量分析洗脱法薄层扫描法三、纸色谱法将固定相放在纸上以纸做载体进行点样、展开、定性、和定量的液液分配色谱法固定相:纸纤维吸附的水流动相:与水不互溶的有机溶剂(饱和正丁醇)分离机制:同液液分配色谱定性参数:RfRf与组分性质、流动相及溶解度有关极性组分→易保留Rf小(流动相极性↑Rf↑)非极性组分→易流出Rf大(流动相极性↑Rf↓)高效液相色谱知识经典LC与HPLC比较HPLC特点:高压、高速、高效、高灵敏度、样品回收方便HPLC:采用高压输液泵高效微粒固定相和高灵敏度检测器GC与HPLC比较分析对象高沸点、不稳定的天然产物、生物大分子、高分子化合物高效液相色谱的固定相和流动相(-)固定相高效液相色谱固定相依据承受高压能力来分类可分为刚性固体和硬胶两大类。
刚性固体以二氧化硅为基质可承受O×~O×Pa的高压可制成直径、形状、孔隙度不同的颗粒。
如果在二氧化硅表面键合各种官能团就是键合固定相是目前最广泛使用的一种固定相。
硬胶主要用于离子交换和尺寸排阻色谱中它由聚苯乙烯与二乙烯苯基交联而成。
可承受压力上限为×Pa。
固定相按孔隙深度分类可分为表面多孔型和全多孔型固定相两类。
*表面多孔型固定相基体是实心玻璃珠在玻璃球外面覆盖一层多孔活性材料如硅胶、氧化铝、离子交换剂、分子筛、聚酰胺等。
表面活性材料为硅胶的固定相如国外的ZpaxCorasilI和IIVydacPellosil以及上海试剂一厂的薄壳玻璃珠等表面活性材料为氧化铝的固定相如Pellumina为聚酰胺的如Pellion。
特点:多孔层厚度小、孔浅相对死体积小出峰迅速、柱效亦高颗粒较大渗透性好装柱容易梯度淋洗时能迅速达平衡较适合做常规分析。
由于多孔层厚度薄最大允许量受限制。
.全多孔型固定相由直径为nm的硅胶微粒凝聚而成。
如国外的PorasilZobbex、Lichrosorb系列上海试剂一厂的堆积硅珠青岛海洋化工厂的YWG系列天津试剂二厂的DG系列等。
由氧化铝微粒凝聚成全多孔型固定相如国外的LichrosorbALOXT。
特点:颗粒很细(μm)孔仍然较浅传质速率快易实现高效、高速。
特别适合复杂混合物分离及痕量分析*(二)流动相高效液相色谱中流动相是液体它对组分有亲和力并参与固定相对组分的竞争。
对流动相溶剂的要求是:()溶剂对于待测样品须具有合适的极性和好的选择性。
()溶剂要与检测器匹配。
对于紫外吸收检测器应注意选用检测器波长比溶剂的紫外截止波长要长。
所谓溶剂的紫外截止波长指当小于截止波长的辐射通过溶剂时溶剂对此辐射产生强烈吸收此时溶剂被看作是光学不透明的它严重干扰组分的吸收测量。
表列出了一些常用溶剂的紫外截止波长。
对于折光率检测器要求选择与组分折光率有较大差别的溶剂作流动相以达最高灵敏度。
()高纯度。
由于高效液相灵敏度高对流动相溶剂的纯度也要求高。
不纯的溶剂会引起基线不稳或产生“伪峰”。
痕量杂质的存在将使截止波长值增加~OOnm。
()化学稳定性好。
不能选与样品发生反应或聚合的溶剂。
()低粘度。
若使用高粘度溶剂势必增高压力不利于分离。
常用的低粘度溶剂有丙酮、甲醇、乙腈等。
但粘度过于低的溶剂也不宜采用例戊烷、乙醚等它们易在色谱柱或检测器内形成气泡影响分离。
高效液相色谱法分类及分离机理分配色谱样品组分在吸附于惰性载体上的固定液和流动相之间分配系数不同键合相色谱样品组分在键合于惰性载体上的固定液和流动相之间的分配系数不同吸附色谱样品组分对固定相表面吸附力不同体积排阻色谱利用固定相孔径不同把样品组分按分子大小分开离子交换色谱不同离子与固定相上相反电荷间的作用力大小不同亲和色谱利用生物大分子和固定相表面存在某种特异性亲和力进行选择性分离的一种方法(一)分配色谱(partitionchromatography)原理:固定液吸附在惰性载体上样品分子依据他们在流动相和固定相间的溶解度不同分别进入两相分配而实现分离。
适用于各种样品类型的分离和分析无论是极性的和非极性的水溶性和油溶性的离子型的和非离子型的化合物。
固定相:将一种极性或非极性固定液吸附在惰性固相载体上。
由于液液色谱中流动相参与选择竞争因此对固定相选择较简单。
只需使用几种极性不同的固定液即可解决分离问题。
例如最常用的强极性固定液ββ′一氧二丙睛中等极性的聚乙二醇非极性的角鲨烷等。
流动相在液液色谱中为了避免固定液的流失。
对流动相的一个基本要求是流动相尽可能不与固定相互溶而且流动相与固定相的极性差别越显著越好。
根据所使用的流动相和固定相的极性程度将其分为正相分配色谱和反相分配色谱。
如果采用流动相的极性小于固定相的极性称为正相分配色谱它适用于极性化合物的分离。
其流出顺序是极性小的先流出极性大的后流出。
如果采用流动相的极性大于固定相的极性称为反相分配色谱。
它适用于非极性化合物的分离其流出顺序与正相色谱恰好相反。
反相色谱最常用的流动相:水、甲醇、乙腈、四氢呋喃、异丙醇等。
水-甲醇体系:大约%水的时候粘度最大水-乙腈体系:%水的时候粘度最大。
(二)键合相色谱(Covalent-stationaryphasechromatography)为了更好解决固定液在载体上流失问题。
产生了化学键合固定相。
将各种不同有机基团通过化学反应键合到载体表面的一种方法。
它代替了固定液的机械涂渍因此对液相色谱法迅速发展起着重大作用可以认为它的出现是液相色谱法的一个重大突破。
目前应用最广泛的一种固定相约有以上的分离问题是在化学键合固定相上进行的。
键合固定相优点:对极性有机溶剂有良好的化学稳定性使色谱柱的柱效高、寿命长实验重现性好几乎适于各种有机化合物的分离可以梯度洗脱。
缺点是不能用于酸、碱度过大或存在氧化剂的缓冲溶液作流动相的体系。
.键合固定相类型用来制备键合固定相的载体几乎都用硅胶。
利用硅胶表面的硅醇基(Si一OH)反应成键,可得到各种性能的固定相。
一般可分三类()疏水基团如不同链长的烷烃(C和C)和苯基等()极性基团如氨丙基氰乙基、醚和醇等。
()离子交换基团如作为阴离子交换基团的胺基季铵盐作为阳离子交换基团的磺酸等.键合固定相的制备(l)硅酸酯(≡Si一OR)键合固定相,它是最先用于液相色谱的键合固定相。
用醇与硅醇基发生酯化反应:≡Si-H+ROH→≡Si-OR+H由于这类键合固定相的有机表面是一些单体具有良好的传质特性,但这些酯化过的硅胶填料易水解且受热不稳定因此仅适用于不含水或醇的流动相。