二次函数知识精讲与拓展训练
(完整版)二次函数知识点及经典例题详解最终

二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y =ax2 +bx +c (a ,b,c是常数,a ≠ 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a ≠ 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y =ax2 +bx +c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y =ax2 的性质:a 的绝对值越大,抛物线的开口越小。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,0)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值0 .a < 0向下(0,0)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值0 .2.y =ax2 +c 的性质:上加下减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,c)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值c .a < 0向下(0,c)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值c .3.y = a (x - h )2的性质:左加右减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,0)X=hx > h 时, y 随 x 的增大而增大; x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值0 .a < 0向下(h ,0)X=hx > h 时, y 随 x 的增大而减小; x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值0 .4.y = a (x - h )2+ k 的性质:a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,k )X=h x > h 时, y 随 x 的增大而增大;x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值 k .a < 0向下(h ,k )X=hx > h 时, y 随 x 的增大而减小;x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值 k .三、二次函数图象的平移1.平移步骤:⑴ 将抛物线解析式转化成顶点式 y = a (x - h )2+ k ,确定其顶点坐标(h ,k );⑵ 保持抛物线 y = ax 2 的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.四、二次函数 y = a (x - h )2+ k 与 y = ax 2 + bx + c 的比较从解析式上看, y = a (x - h )2+ k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得到前者,即 y = a +,其中h= - ,k=(b2a )24ac - b 24ab2a 4ac - b 24a 五、二次函数 y = ax 2 + bx + c 的性质当 a > 0 时,抛物线开口向上,对称轴为,顶点坐标为.b2a (‒b 2a ,4ac ‒ b 24a)当x < - 时,y 随x 的增大而减小;b2a当x > - 时,y 随x 的增大而增大;b2a 当x =- 时,y 有最小值 .b 2a 4ac ‒ b 24a 2. 当α<0时,抛物线开口向下,对称轴为x =- , 顶点坐标为.当b2a(‒b 2a ,4ac ‒ b 24a)x < -时, y 随 x 的大而增大y;当随 x > - 时,y 随 x 的增大而减小;当x =- 时 , y 有最大值.b2ab 2a b 2a 4ac ‒ b 24a六、二次函数解析式的表示方法1.一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );2.顶点式: y = a (x - h )2 + k ( a , h , k 为常数, a ≠ 0 );3.两根式(交点式): y = a (x - x 1 )(x - x 2 ) ( a ≠ 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式, 只有抛物线与 x 轴有交点,即b 2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数 a ⑴ 当 a > 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵ 当 a < 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.2.一次项系数b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.(同左异右b 为 0 对称轴为 y 轴)3.常数项c⑴ 当c > 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正;⑵ 当c = 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为0 ;⑶ 当c < 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负. 总结起来, c 决定了抛物线与 y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况. 图象与 x 轴的交点个数:① 当 ∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x 1 ,0),B (x 2 ,0 ) (x 1 ≠ x 2 ) ,其中的 x 1 ,x 2是一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的两根.②当∆= 0 时,图象与x 轴只有一个交点;③当∆< 0 时,图象与x 轴没有交点.1' 当a > 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y > 0 ;2 ' 当a < 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y < 0 .2.抛物线y =ax2 +bx +c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;中考题型例析1.二次函数解析式的确定例 1求满足下列条件的二次函数的解析式(1)图象经过 A(-1,3)、B(1,3)、C(2,6);(2)图象经过 A(-1,0)、B(3,0),函数有最小值-8;(3)图象顶点坐标是(-1,9),与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为 y=ax 2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得解得 {3=a ‒b +c 3=a +b +c 6=4a +2b +c {a =1b =0c =2∴解析式为 y=x 2+2.(2)解法1:由 A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8). 设解析式为 y=a(x-h)2+k,即 y=a(x-1)2-8.把 x=-1,y=0 代入上式得 0=a(-2)2-8,∴a=2. 即解析式为 y=2(x-1)2-8,即 y=2x 2-4x-6.解法2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把 x=1,y=-8 代入上式得-8=a(1+1)(1-3).解得 a=2,∴解析式为 y=2x 2-4x-6.解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a.∵函数有最小值-8.∴ =-8.4a (‒3a )‒(2a)24a又∵a≠0,∴a=2.⎬∴解析式为 y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6.由抛物线的对称性可得 A 、B 两点坐标分别为 A(-4,0),B(2,0), 设出两根式 y=a(x-x 1)·(x-x 2),将 A(-4,0),B(2,0)代入上式求得函数解析式为 y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意 3 对 x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=a(x-h)2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=a(x-x 1)(x-x 2).2.二次函数的图象例 2y=ax 2+bx+c(a≠0)的图象如图所示,则点 M(a,bc)在().A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知:抛物线开口向上⇒ a>0.抛物线与y 轴负半轴相交 ⇒ c < 0b ⇒ bc>0.对称轴x = - 2a 在y 轴右侧 ⇒ b < 0∴点 M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+c(a≠0),它们在同一坐标o系中的大致图象是().分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+c(a≠0)来讲:⎧开口上下决定a 的正负⎪左同右异(即对称轴在y 轴左侧,b 的符号⎪⎨与a 的符号相同;)来判别b 的符号⎪抛物线与y 轴的正半轴或负半轴相交确定⎪⎩c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.3.二次函数的性质例 4对于反比例函数 y=-与二次函数 y=-x 2+3, 请说出他们的两个相同点:2x ①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函2数开放性题目是近几年命题的热点.4.二次函数的应用例 5 已知抛物线 y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与 x 轴总有两个不同的交点.(2)设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足 x 12+x 2=-2k 2+2k+1.①求抛物线的解析式.②设点 P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:(1)欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2得 m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0 可求得 m 1+m 2= - 1.解:(1)证明:△=(2k+1)2-4(-k 2+k)=4k 2+4k+1+4k 2-4k=8k 2+1.∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.(2) ①由题意得 x 1+x 2=-(2k+1), x 1· x 2=-k 2+k.∵x 1 2+x 2 2=-2k 2+2k+1,∴(x 1+x 2)2-2x 1x 2=- 2k 2+2k+1, 即(2k+1)2-2(-k 2+k)=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1.∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.22②∵点 P 、Q 关于此抛物线的对称轴对称,∴n 1=n 2.又 n 1=m 12+m 1,n 2=m 2+m 2.∴m 12+m 1=m 2+m 2,即(m 1-m 2)(m 1+m 2+1)=0.∵P 、Q 是抛物上不同的点,∴m 1≠m 2,即 m 1-m 2≠0.∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象(即抛物线)与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1.二次函数 y = x 2- 4x - 7 的顶点坐标是()A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把抛物线 y = -2x 2 向上平移 1 个单位,得到的抛物线是()A. y = -2(x +1)2B. y = -2(x -1)2C. y = -2x 2+1D. y = -2x 2-13.函数 y = kx 2- k 和 y = k(k ≠ 0) 在同一直角坐标系中图象可能是图中的()x4.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的图象如图所示,则下列结论: ①a,b同号;② 当 x = 1和 x = 3时,函数值相等;③ 4a + b = 0 ④当 y = -2时, x 的值只能取0.其中正确的个数是( )A.1 个B.2 个C. 3 个D.4 个5.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于 x 的一元二次方程ax 2+ bx + c = 0 的两个根分别是 x 1 = 1.3和x 2 =()A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数 y = ax 2 + bx + c 的图象如图所示,则点(ac , bc ) 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.方程 2x - x 2= 的正根的个数为()2xA.0 个B.1 个C.2 个.3个08.已知抛物线过点 A(2,0),B(-1,0),与 y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y = x 2 - x - 2B. y = -x 2+ x + 2C. y = x 2- x - 2 或 y = -x 2+ x + 2 D. y = -x 2- x - 2 或 y = x 2+ x + 2二、填空题9.二次函数 y = x 2+ bx + 3 的对称轴是 x = 2 ,则b = 。
二次函数知识点梳理及经典练习(超详细)

⼆次函数知识点梳理及经典练习(超详细)⼆次函数知识点梳理及经典练习【知识点梳理】⼀、基本概念:1.⼆次函数的概念:⼀般地,形如2y ax bx c=++(a b ca≠)的函数,叫做,,是常数,0⼆次函数。
这⾥需要强调:和⼀元⼆次⽅程类似,⼆次项系数0a≠,⽽b c,可以为零.⼆次函数的定义域是全体实数.2. ⼆次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于⾃变量x的⼆次式,x的最⾼次数是2.⑵a b c,,是常数,a是⼆次项系数,b是⼀次项系数,c是常数项.⼆、⼆次函数基本形式1. ⼆次函数基本形式:2=的性质:y axa 的绝对值越⼤,抛物线的开⼝越⼩y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4.()2y a x h k =-+的性质:三、⼆次函数图象的平移 1. 平移步骤:⽅法1:⑴将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移⽅法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位⽅法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位, c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)2. 平移规律: “h 值正右移,负左移;k 值正上移,负下移”.即“左加右减,上加下减”.四、⼆次函数()2y a x h k =-+与2y ax bx c =++的⽐较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配⽅可以得到前者,即22424b ac b y a x a a -?=++,其中2424b ac b h k a a -=-=,.五、⼆次函数2y ax bx c =++图象的画法五点绘图法:利⽤配⽅法将⼆次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开⼝⽅向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.⼀般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,、()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下⼏点:开⼝⽅向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、⼆次函数2y ax bx c =++的性质1. 当0a >时,抛物线开⼝向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2bx a<-时,y 随x 的增⼤⽽减⼩;当2bx a>-时,y 随x 的增⼤⽽增⼤;当2bx a=-时,y 有最⼩值244ac b a -.2. 当0a <时,抛物线开⼝向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2bx a<-时,y 随x 的增⼤⽽增⼤;当2bx a>-时,y 随x 的增⼤⽽减⼩;当2bx a=-时,y 有最⼤值244ac b a -.七、⼆次函数解析式的表⽰⽅法 1.⼆次函数解析式表⽰⽅法:(1)⼀般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何⼆次函数的解析式都可以化成⼀般式或顶点式,但并⾮所有的⼆次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以⽤交点式表⽰.⼆次函数解析式的这三种形式可以互化. 2.⼆次函数解析式的确定:根据已知条件确定⼆次函数解析式,通常利⽤待定系数法.⽤待定系数法求⼆次函数的解析式必须根据题⽬的特点,选择适当的形式,才能使解题简便.⼀般有如下⼏种情况:(1)已知抛物线上三点的坐标,⼀般选⽤⼀般式;(2)已知抛物线顶点或对称轴或最⼤(⼩)值,⼀般选⽤顶点式;(3)已知抛物线与x 轴的两个交点的横坐标,⼀般选⽤两根式;(4)已知抛物线上纵坐标相同的两点,常选⽤顶点式.⼋、⼆次函数的图象与各项系数之间的关系 1. ⼆次项系数a : 0a ≠.⑴当0a >时,抛物线开⼝向上,a 的值越⼤,开⼝越⼩,反之a 的值越⼩,开⼝越⼤;⑵当0a <时,抛物线开⼝向下,a 的值越⼩,开⼝越⼩,反之a 的值越⼤,开⼝越⼤.总结:a 决定了抛物线开⼝的⼤⼩和⽅向,a 的正负决定开⼝⽅向,a 的⼤⼩决定开⼝⼤⼩. 2. ⼀次项系数b : 在⼆次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结:在a 确定的前提下,b 决定了抛物线对称轴的位置.▲ab 符号判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则03. 常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上⽅,即抛物线与y 轴交点的纵坐标为正;⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当0c <时,抛物线与y 轴的交点在x 轴下⽅,即抛物线与y 轴交点的纵坐标为负.总结:c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯⼀确定的.九、⼆次函数图象的对称⼆次函数图象的对称⼀般有五种情况,可以⽤⼀般式或顶点式表达 1. 关于x 轴对称:2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称:2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称:2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称:(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称: ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然⽆论作何种对称变换,抛物线的形状⼀定不会发⽣变化,因此永远不变.求抛物线的对称抛物线的表达式时,习惯上先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开⼝⽅向,再确定其对称抛物线的顶点坐标及开⼝⽅向,然后再写出其对称抛物线的表达式.⼗、⼆次函数与⼀元⼆次⽅程:1.⼆次函数与⼀元⼆次⽅程的关系(⼆次函数与x 轴交点情况):⼀元⼆次⽅程20ax bx c ++=是⼆次函数2y ax bx c =++当函数值0y =时的特殊情况. 图像与x 轴的交点个数:(1)当240b ac ?=->时,图像与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是⼀元⼆次⽅程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.(2)当0?=时,图像与x 轴只有⼀个交点;(3)当0?<时,图像与x 轴没有交点.①当0a >时,图像落在x 轴的上⽅,⽆论x 为任何实数,都有0y >;②当0a <时,图像落在x 轴的下⽅,⽆论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图像与y 轴⼀定相交,交点坐标为(0,)c ;3. ⼆次函数常⽤解题⽅法总结:⑴求⼆次函数的图像与x 轴的交点坐标,需转化为⼀元⼆次⽅程;⑵求⼆次函数的最⼤(⼩)值需要利⽤配⽅法将⼆次函数由⼀般式转化为顶点式;⑶根据图像的位置判断⼆次函数2y ax bxc =++中a ,b ,c 的符号,或由⼆次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷⼆次函数的图像关于对称轴对称,可利⽤这⼀性质,求和已知⼀点对称的点坐标,或已知与x 轴的⼀个交点坐标,可由对称性求出另⼀个交点坐标.⑸与⼆次函数有关的还有⼆次三项式,⼆次三项式2(0)ax bx c a ++≠本⾝就是所含字母x 的⼆次函数;下⾯以0a >时为例,揭⽰⼆次函数、⼆次三项式和⼀元⼆次⽅程之间的内在联系:【基础题型概览】⼀、⼆次函数的基本概念 1、y=mx m2+3m+2是⼆次函数,则m 的值为()A 、0,-3B 、0,3C 、0D 、-32、关于⼆次函数y=ax 2+b ,命题正确的是() A 、若a>0,则y 随x 增⼤⽽增⼤ B 、x>0时y 随x 增⼤⽽增⼤。
二次函数培优专题

二次函数培优专题一、二次函数的基本概念1. 二次函数的定义- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
- 例如y = 2x^2+3x - 1,这里a = 2,b = 3,c=-1。
- 题目解析:判断一个函数是否为二次函数,关键看其是否符合y = ax^2+bx + c(a≠0)的形式。
比如y=3x + 2就不是二次函数,因为它不符合二次函数的定义形式,其中x的最高次数是1;而y=(1)/(x^2)也不是二次函数,因为它不是整式函数。
2. 二次函数的图象- 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,对于二次函数y = x^2,a = 1>0,其图象开口向上;对于y=-2x^2,a=-2 < 0,其图象开口向下。
- 题目解析:给定二次函数,判断其图象开口方向是常见题型。
如y = 3x^2-2x + 1,因为a = 3>0,所以图象开口向上。
对于二次函数图象开口方向的理解,可以从二次函数的增减性角度来看,当a>0时,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大;当a < 0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小。
3. 二次函数的对称轴和顶点坐标- 对于二次函数y = ax^2+bx + c(a≠0),其对称轴公式为x =-(b)/(2a),顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y = 2x^2-4x + 3,a = 2,b=-4,c = 3。
对称轴x=-(-4)/(2×2)=1,顶点纵坐标y=frac{4×2×3-(-4)^2}{4×2}=(24 - 16)/(8)=1,所以顶点坐标为(1,1)。
考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。
而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。
当x =–2b a 时,y 最大值=244ac b a-。
最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。
《二次函数》知识讲解(基础)

《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)(轴)当(轴)(,)2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a=++≠中,,,a b c的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根; (3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.二次函数2y ax bx c =++的图象如图1所示,反比例函数ay x=与正比例函数y =(b+c)x 在同一坐标系中的大致图象可能是( ).【答案】B ;【解析】由2y ax bx c =++的图象开口向上得a >0,又02ba->,∴ b <0. 由抛物线与y 轴负半轴相交得c <0. ∵ a >0,∴ ay x=的图象在第一、三象限. ∵ b+c <0,∴ y =(b+c)x 的图象在第二、四象限. 同时满足ay x=和()y b c x =+图象的只有B . 【点评】由图1得到a 、b 、c 的符号及其相互关系,去判断选项的正误.类型三、数形结合3.如图所示是二次函数2y ax bx c =++图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为(3,0),则由图象可知,不等式20ax bx c ++>的解集是________.【思路点拨】根据抛物线的对称性和抛物线与x 轴的交点A 的坐标可知,抛物线与x 轴的另一个交点的坐标,观察图象可得不等式20ax bx c ++>的解集.【答案】x >3或x <-1;【解析】根据抛物线的对称性和抛物线与x 轴的交点A(3,0)知,抛物线与x 轴的另一个交点为(-1,0),观察图象可知,不等式20ax bx c ++>的解集就是2y ax bx c =++函数值,y >0时,x 的取值范围.当x >3或x <-1时,y >0,因此不等式20ax bx c ++>的解集为x >3或x <-1.【点评】弄清20ax bx c ++>与2y ax bx c =++的关系,利用数形结合在图象上找出不等式20ax bx c ++>的解集.类型四、函数与方程4.已知抛物线c x x y ++=221与x 轴没有交点. ①求c 的取值范围; ②试确定直线1+=cx y 经过的象限,并说明理由.【答案与解析】(1)∵抛物线与x 轴没有交点,∴⊿<0,即1-2c <0,解得c >12(2)∵c >12,∴直线y=12x +1随x 的增大而增大, ∵b=1,∴直线y=12x +1经过第一、二、三象限.【点评】抛物线c x x y ++=221与x 轴没有交点,⊿<0,可求c 的取值范围.举一反三:【变式1】无论x 为何实数,二次函数的图象永远在x 轴的下方的条件是( )A .B .C .D .【答案】二次函数的图象与x 轴无交点,则说明y=0时,方程无解,即.又图象永远在x 轴下方,则. 答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x 叫做这个函数的零点, 则二次函数(m 为实数)的零点的个数是( )A .1B .2C .0D .不能确定 【答案】当y=0时,,,即二次函数的零点个数是2.故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足图1所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增大,但每台彩电的收益z(元)会相应降低且z 与x 之间也大致满足图2所示的一次函数关系.(1)在政府出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益z 与政府补贴款额x 之间的函数关系式;(3)要使该商场销售彩电的总收益ω(元)最大,政府应将每台补贴款额x 定为多少?并求出总收益ω的最大值. 【思路点拨】(2)依题意设y =k 1x+800,z =k 2x+200.分别将(400,1200)和(200,160)代入两式求出k 1、k 2; (3)由题意ω=yz . 【答案与解析】(1)在政府出台补贴措施前,该商场销售家电的总收益为800×200=160 000(元).(2)依题意可设y =k 1x+800,z =k 2x+200,则有 400k 1+800=1200,200k 2+200=160, 解得k 1=1,215k =-,所以y =x+800,12005z x =-+. (3)211(800)200(100)16200055yz x x x ω⎛⎫==+-+=--+ ⎪⎝⎭.政府应将每台补贴款额x 定为100元,总收益有最大值,其最大值为162000元.【点评】求最大值问题一般需列出二次函数关系式.《二次函数》全章复习与巩固—巩固练习(基础)【巩固练习】 一、选择题1.将二次函数2y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ). A .2(1)2y x =-+ B .2(1)2y x =++ C .2(1)2y x =-- D .2(1)2y x =+- 2.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++= 在同一坐标系内的图象大致为( ).3.抛物线2y x bx c =++图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为223y x x =--,则b 、c 的值为( ).A .b =2,c =2B .b =2,c =0C .b =-2,c =-1D .b =-3,c =2 4. 抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .22y x x =-- B .211122y x x =-++ C .211122y x x =--+ D .22y x x =-++ 5.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①240b ac ->;②abc >0;③8a+c >0;④9a+3b+c <0.其中,正确结论的个数是( ). A .1 B .2 C .3 D .4第4题 第5题6.已知点(1x ,1y ),(2x ,2y )(两点不重合)均在抛物线21y x =-上,则下列说法正确的是( ). A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y > 7.在反比例函数ay x=中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是图中的( ).8.已知二次函数2y ax bx c =++(其中0a >,0b >,0c <),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的有( ).A .0个B .1个C .2个D .3个二、填空题9.已知抛物线2(0)y ax bx c a =++>的对称轴为直线1x =,且经过点1(1,)y -,2(2,)y ,试比较1y 和2y 的大小:1y ________2y (填“>”,“<”或“=”).10.抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为___ _____.11.抛物线22(2)6y x =--的顶点为C ,已知y =-kx+3的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为________.12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为________.第10题 第12题 第13题13.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是________.14.烟花厂为扬州“4·18”烟花三月经贸旅游节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为________.15.已知抛物线2y ax bx c =++经过点A(-1,4),B(5,4),C(3,-6),则该抛物线上纵坐标为-6的另一个点的坐标是________.16.若二次函数26y x x c =-+的图象过A(-1,y 1)、B(2,y 2)、C(3,y 3)三点,则y 1、y 2、y 3大小关系是 .三、解答题17.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体运动(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.18. 如图所示,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上、下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上、下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.(1)用含x 的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?19.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元.--- (1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?20. 王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用了30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量)y 的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益量y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求王亮解题的学习收益量y 与用于解题的时间x 之间的函数关系式,并写出自变量x 的取值范围;(2)求王亮回顾反思的学习收益量y 与用于回顾反思的时间x 之间的函数关系式;(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?(注:学习收益总量=解题的学习收益量+回顾反思的学习收益量)【答案与解析】一、选择题1.【答案】A ;【解析】2y x =向右平移1个单位后,顶点为(1,0),再向上平移2个单位后,顶点为(1,2),开口方向及大小不变,所以1a =,即2(1)2y x =-=. 2.【答案】D ;【解析】由上图可知0a >,0c <,02b a->,∴ 0b <.0a b c ++<.240b ac ->, ∴ 反比例函数图象在第二、四象限内,一次函数图象经过第一、二、四象限,因此选D .3.【答案】B ;【解析】2223(1)4y x x x =--=--,把抛物线2(1)4y x =--向左平移2个单位长度,再向上平移3个单位长度后得抛物线2(1)1y x =+-,∴ 222(1)12y x bx c x x x =++=+-=+,∴ b =2,c =0.因此选B .4.【答案】D ;【解析】由图象知,抛物线与x 轴两交点是(-1,0),(2,0),又开口方向向下,所以0a <,抛物线与y 轴交点纵坐标大于1.显然A 、B 、C 不合题意,故选D .5.【答案】D ;【解析】抛物线与x 轴交于两点,则0b <.由图象可知a >0,c <0,则b <0,故abc >0.当x =-2时,y =4a-2b+c >0.∵ 12b x a=-=,∴ b =-2a ,---∴ 4a-(-2a)×2+c >0,即8a+c >0.当x =3时,y =9a+3b+c <0,故4个结论都正确.6.【答案】D ;【解析】画出21y x =-的图象,对称轴为0x =,若12y y =,则12x x =-;若12x x =-,则12y y =;若120x x <<,则21y y >;若120x x <<,则12y y >.7.【答案】A ; 【解析】因为a y x=,当0x >时,y 随x 增大而减小,所以a >0,因此抛物线2(1)y ax ax a x x =-=- 开口向上,且与x 轴相交于(0,0)和(1,0).8.【答案】C ;【解析】∵ 0a >,0b >,∴ 抛物线开口向上,02b x a=-<,因此抛物线顶点在y 轴的左侧, 不可能在第四象限;又0c <, 120c x x a=<·,抛物线与x 轴交于原点的两侧, 因此①③是正确的.二、填空题9.【答案】>; 【解析】根据题意画出抛物线大致图象,找出x =-1,x =2时的函数值,比较其大小,易如12y y >.10.【答案】223y x x =-++;【解析】由题意和图象知抛物线与x 轴两交点为(3,0)、(-1,0),∴ 抛物线解析式为(3)(1)y x x =--+,即223y x x =-++.11.【答案】1;【解析】92k =,932y x =-+,与坐标轴交点为(0,3),2,03⎛⎫ ⎪⎝⎭. 12.【答案】 x 1=3或x 2=-1 ;【解析】由二次函数22y x x m =-++部分图象知,与x 轴的一个交点为(3,0).代入方程得m =3,解方程得x 1=3或x 2=-1.13.【答案】-1;【解析】因为抛物线过原点,所以210a -=,即1a =±,又抛物线开口向下,所以a =-1.14.【答案】4s ; 【解析】204(s)522t =-=⎛⎫⨯- ⎪⎝⎭. 15.【答案】(1,-6);【解析】常规解法是先求出关系式,然后再求点的坐标,但此方法繁琐耗时易出错,仔细分析就会注意到:A 、B 两点纵坐标相同,它们关于抛物线对称轴对称,由A(-1,4),B(5,4)得,对称轴1522x -+==,而抛物线上纵坐标为-6的一点是(3,-6),所以它关于x =2的对称点是(1,-6).故抛物线上纵坐--- 标为-6的另一点的坐标是(1,-6).16.【答案】y 1>y 3>y 2. 【解析】因为抛物线的对称轴为6323x -==⨯.而A 、B 在对称轴左侧,且y 随x 的增大而减小, ∵ -1<2,∴ y 1>y 2,又C 在对称轴右侧,且A 、B 、C 三点到对称轴的距离分别为2,1y 1>y 3>y 2.三、解答题17.【答案与解析】 (1)2233519315524y x x x ⎛⎫=-++=--+ ⎪⎝⎭. ∵ 305-<,∴ 函数的最大值是194. ∴ 演员弹跳离地面的最大高度是194米. (2)当x =4时,234341 3.45y BC =-⨯+⨯+==. ∴ 这次表演成功.18.【答案与解析】(1)横向甬道的面积为1201801502x +=(m 2). (2)依题意:2112018028015028082x x x +⨯+-=⨯⨯, 整理得21557500x x -+=,解得x 1=5,x 2=150(不合题意,舍去).∴ 甬道的宽为5米. (3)设建花坛的总费用为y 万元,则21201800.0280(1601502) 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦. ∴ y =0.04x 2-0.5x+240.当0.5 6.25220.04b x a =-==⨯时,y 的值最小. ∵ 根据设计的要求,甬道的宽不能超过6 m .∴ 当x =6m 时,总费用最少,为0.04×62-0.5×6+240=238.44(万元).19.【答案与解析】(1)由题意可知,当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以5000350010025010x -≤+=,即100≤x ≤250时,购买一个需5000-10(x-100)元. 故y 1=6000x-10x 2;当x >250时,购买一个需3500元.故y 1=3500x .所以215000(0100),600010(100250),3500(250),x x y x xx x x ≤≤⎧⎪=-<≤⎨⎪>⎩--- y 2=5000×80%x =4000x .(2)当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x-10x 2=-10(x-300)2+900000<1400000;所以,由3500x =1400000,得x =400.由4000x =1400000,得x =350.故选择甲商家,最多能购买400个路灯.20.【答案与解析】(1)设y =kx ,把(2,4)代入,得k =2,所以y =2x ,自变量x 的取值范围是:0≤x ≤30.(2)当0≤x <5时,设y =a(x-5)2+25,把(0,0)代入,得25a+25=0,a =-1,所以22(5)2510y x x x =--+=-+.当5≤x ≤15时,y =25.即210(05),25(515).x x x y x ⎧-+≤<=⎨≤≤⎩(3)设王亮用于回顾反思的时间为x(0≤x <5)分钟,学习收益总量为Z ,则他用于解题的时间为(30-x)分钟.当0≤x <5时,222102(30)860(4)76Z x x x x x x =-++-=-++=--+.所以当x =4时,76Z =最大.当5≤x ≤15时,Z =25+2(30-x)=-2x+85.因为Z 随x 的增大而减小,所以当x =5时,75Z =最大.综合所述,当x =4时,76Z =最大,此时30-x =26.即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时.学习收益总量最大.。
初中数学《二次函数》知识点归纳及相关练习题

九上数学二次函数知识点归纳及相关练习题(一)定义:一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.【名师推荐你做】1.判断下列函数是否为二次函数,如果是,指出其二次项系数、一次项系数和常数项:(1)d =12n 2-32n ;(2)2y x =-;(3)y =1-x 2.2.判断①y =5x -4,②t =23x 2-6x ,③y =2x 3-8x 2+3,④y =38x 2-1,⑤y =2312x x-+是否为二次函数,如果是,指出其二次项系数、一次项系数和常数项.3.已知2(1)31k ky k x x +=-++是关于x 的二次函数,求k 的值.【答案与解析】1.【解析】(1)d =12n 2-32n 是二次函数,二次项系数、一次项系数和常数项分别为12、32-、0;(2)2y x =-是一次函数,不是二次函数;(3)y =1-x 2是二次函数,二次项系数、一次项系数和常数项分别为-1、0、1.2.【解析】①y =5x -4,③y =2x 3-8x 2+3,⑤y =2312x x-+不符合二次函数解析式,②t =23x 2-6x ,④y =38x 2-1符合二次函数解析式,②t =23x 2-6x 的二次项系数、一次项系数和常数项分别为23、-6、0,④y =38x 2-1的二次项系数、一次项系数和常数项分别为38、0、-1.3.【答案】-2.【解析】∵函数2(1)31k ky k xx +=-++是关于x 的二次函数,∴2102k k k -≠⎧⎨+⎩=,解得k =-2.(二)二次函数y =ax 2的性质(1)抛物线y =ax 2的顶点是坐标原点,对称轴是y 轴.(2)函数y =ax 2的图像与a 的符号关系.①当a >0时⇔抛物线开口向上⇔顶点为其最低点;②当a <0时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为y =ax 2(a ≠0).【名师推荐你做】1.观察函数y =3x 2与y =-3x 2的图像,回答:抛物线的开口方向,对称轴,顶点坐标及函数的单调性.【解析】(1)抛物线y =3x 2的开口方向是向上,对称轴是y 轴,顶点坐标是(0,0),当x ≠0时,抛物线上的点都在x 轴上方;当x >0时,曲线自左向右逐渐上升,当x <0时,曲线自左向右逐渐下降;二次函数y =-3x 2的开口方向是向下,对称轴是y 轴,顶点坐标是(0,0),当x ≠0时,抛物线上的点都在x 轴下方;当x >0时,曲线自左向右逐渐下降,当x <0时,曲线自左向右逐渐上升.(三)二次函数c bx ax y ++=2、k ax y +=2、()2h x a y -=、()kh x a y +-=2A.二次函数c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.B.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中a b ac k abh 4422-=-=,.C.二次函数由特殊到一般,可分为以下几种形式:①y =ax 2;②y =ax 2+k ;③y =a (x -h )2;④y =a (x -h )2+k ;⑤y =ax 2+bx +c .【名师推荐你做】1.将抛物线y =-2x 2向右平移3个单位,再向上平移5个单位,得到的抛物线解析式是()A.y =-2(x -3)2-5B.y =-2(x +3)2-5C.y =-2(x +3)2+5D.y =-2(x-3)2+5【答案与解析】1.【答案】D【解析】由“左加右减”的原则将函数y =-2x 2的图象向右平移3个单位,所得二次函数的解析式为:y =-2(x -3)2;由“上加下减”的原则将函数y =-2(x-3)2的图象向上平移5个单位,所得二次函数的解析式为:D.y =-2(x -3)2+5.所以选D.(四)抛物线A.抛物线的三要素:开口方向、对称轴、顶点.(1)a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
数学二次函数的概念—知识讲解(提高)

二次函数的概念—知识讲解(提高)[学习目标]1.理解函数的定义、函数值、自变量、因变量等基本概念;2.了解表示函数的三种方法——解析法、列表法和图像法;3.会根据实际问题列出函数的关系式,并写出自变量的取值围;4.理解二次函数的概念,能够表示简单变量之间的二次函数关系.[要点梳理]要点一、函数的概念一般地,在一个变化过程中,如果有两个变量x,y,对于自变量x在某一围的每一个确定值,y都有惟一确定的值与它对应,那么就说y是x的函数.对于自变量x在可以取值围的一个确定的值a,函数y有惟一确定的对应值,这个对应值叫做当x=a 时函数的值,简称函数值.要点诠释:对于函数的概念,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有惟一确定的值与它相对应;(3)函数自变量的取值围,应要使函数表达式有意义,在解决实际问题时,还必须考虑使实际问题有意义.要点二、函数的三种表示方法表示函数的方法,常见的有以下三种:(1)解析法:用来表示函数关系的数学式子叫做函数的表达式,(或解析式),用数学式子表示函数的方法称为解析法.(2)列表法:用一个表格表达函数关系的方法.(3)图象法:用图象表达两个变量之间的关系的方法.要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.对照表如下:列表法×∨∨×解析式法∨∨××图象法××∨∨一般地,形如y=ax2+bx+c(a, b, c是常数,a≠0)的函数叫做x的二次函数.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式.在二次函数的一般式y=ax2+bx+c(a≠0)中,ax2叫函数的二次项,bx叫函数的一次项,c叫常数项;a叫二次项系数,b叫一次项系数,c叫常数项.要点诠释:(1)如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.(2)判断系数时,首先要将二次函数化成一般式,再对照定义写出,特别要注意的是系数要包含其前面的符号.[典型例题]类型一、函数的相关概念1、下列说确的是()A.变量满足,则是的函数;B.变量满足,则是的函数;C.变量满足,则是的函数;D.变量满足,则是的函数.[思路点拨]严格依照函数的概念进行判断.[答案]A;[解析]B、C、D三个选项,对于一个确定的的值,都有两个值和它对应,不满足单值对应的条件,所以不是函数.[总结升华]理解函数的概念,关键是函数与自变量之间是单值对应关系,自变量的值确定后,函数值是惟一确定的.举一反三:[变式]如图的四个图象中,不表示某一函数图象的是()[答案]B.2、求函数的自变量的取值围.[思路点拨]要使函数有意义,需或解这个不等式组即可.[答案与解析]解:要使函数有意义,则需要即或解方程组得,自变量取值是或.[总结升华]自变量的取值围是使函数有意义的x 的值.3、如图所示,用一段长30米的篱笆围成一个一边靠墙(墙的长度为15米)的矩形菜园ABCD ,设AB 的长为x 米,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为________(写自变量的取值围).[思路点拨]根据矩形的周长和一边AB 的长表示出另一临边AD 的长,再根据矩形的面积公式来求解.[答案]21152y x x =-+(0<x ≤15) [解析]解:∵矩形的周长为30米,边AB 长x 米,∴AD=302x -米, ∴矩形的面积y=x ⨯302x -=21152x x -+(0<x ≤15) [总结升华]考虑到实际情况,对于自变量x 来说,一定不能超过墙的长度.举一反三:[变式]圆的半径是1cm ,假设半径增加xcm ,圆的面积增加ycm 2,则y 与x 的关系式为:________.[答案]22y x x ππ=+类型二、函数的三种表示方法4、问题情境已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少? 数学模型设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x =+>.探索研究⑴我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x=+>的图象性质. ①填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax 2+bx +c (a ≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x=+(x >0)的最小值. 解决问题⑵用上述方法解决“问题情境”中的问题,直接写出答案.[思路点拨]本题告诉我们一种研究问题的方法,从最基本的函数研究起,慢慢到较复杂的函数.所以一定要跟着题目教给我们的思路走.[答案与解析] 解⑴①y 的值依次是:174,103,52,2,52,103,174. 函数1y x x=+(0)x >的图象如图.②本题答案不唯一,下列解法供参考.当01x <<时,y 随x 增大而减小;当1x >时,y 随x 增大而增大;当1x =时函数1y x x =+(0)x >的最小值为2.③1y x x=+ =221()()x x+ =22111()()22x x x x x x +-=21()2x x+ 1x x=0,即1x =时,函数1y x x =+(0)x >的最小值为2.⑵[总结升华]本题属于阅读理解型问题,要好好阅读材料,根据题目的提示一步步往下进行.综合考察了列表法、图形法和解析法三种函数的表示方法.类型三、二次函数的概念5、(2015秋·校级月考)一个二次函数234(1)21k k y k x x -+=-+-.(1)求k 的值.(2)求当x=3时,y 的值?[思路点拨]关键要考虑两点:一是自变量的最高次数为2,二是最高次项系数不能为0.[答案与解析]解(1)依题意有234210k k k ⎧-+=⎨-⎩≠,解之得,k=2.(2)把k=2代入函数解析式中得: y=x 2+2x-1,当x=3时,y=14.[总结升华]此题考察二次函数的定义和函数值.举一反三:[变式1]函数||1(3)31m y m x x -=-+-是二次函数,则m 的值是( ).A .3B .-3C .±2D .±3[答案]B.[变式2](2015秋·校级月考)已知函数2(1)2mm y m x x m +=-+-是二次函数,求m 的值,并指出二次项系数,一次项系数与常数项.[答案与解析] 解:由题意得2210m m m ⎧+=⎨-⎩≠∴211m m m =-=⎧⎨⎩或≠, ∴m = -2.∴函数为y=-3x 2+2x+2∴二次项系数为-3,一次项系数为2,常数项为2.。
人教版九年级数学上册第22章二次函数拓展训练(一)(含答案)

人教版九年级数学上册第22章二次函数拓展训练(一)(含答案)一.选择题(共10小题)1.下列函数中,y是x的二次函数的是()A.y=x2﹣x(x+2)B.y=x2﹣C.x=y2 D.y=(x﹣1)(x+3)2.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④当m<﹣2时,am2+bm>0.其中正确的个数是()A.4B.3C.2D.14.已知点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x上的三点,则a,b,c的大小关系为()A.b>c>a B.b>a>c C.c>a>b D.a>c>b5.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+36.抛物线y=ax2+(1﹣2a)x+3(a>0)过点A(1,m),点A到抛物线对称轴的距离记为d,满足0<d≤,则实数m的取值范围是()A.m≥3B.m≤2C.2<m<3D.m≤37.如果二次函数y=(x﹣m)2+n的图象如图所示,那么一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限8.抛物线y=﹣(x﹣2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,﹣3)C.开口向下,顶点坐标(﹣2,3)D.开口向上,顶点坐标(2,﹣3)9.已知点A(x1,y1),B(x2,y2)是抛物线y=ax2﹣2ax+c(a>0)上两点,若x1<x2且x1+x2=2﹣a.则()A.y1>y2B.y1=y2C.y1<y2D.y1与y2大小不能确定10.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.二.填空题(共5小题)11.点P1(﹣2,y1),P2(0,y2),P3(1,y3)均在二次函数y=﹣x2﹣2x+c的图象上,则y1,y2,y3的大小关系是.12.二次函数y=(a﹣1)x2+2x﹣1的图象与x轴有2个交点,则a的取值范围是.13.抛物线y=2x2﹣ax+b与x轴相交于不同两点A(x1,0),B(x2,0),若存在整数a,b使得1<x1<3和1<x2<3同时成立,则ab=.14.在平面直角坐标系中,将抛物线y=(x+1)2先向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式是.15.已知二次函数y=mx2+nx与y=nx2+mx(其中m,n为常数),若这两个函数图象的顶点关于x轴对称,则m和n满足的关系为.三.解答题(共5小题)16.已知二次函数y=(x﹣1)2﹣3.(1)写出二次函数图象的开口方向和对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值.17.如图,已知二次函数y=﹣x+3的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求线段BC的长;(2)当0≤y≤3时,请直接写出x的范围;(3)点P是抛物线上位于第一象限的一个动点,连接CP,当∠BCP=90°时,求点P的坐标.18.某酒店试销售某种套餐,试销一段时间后发现,每份套餐的成本为7元,该店每天固定支出费用为200元(不含套餐成本).若每份售价不超过10元,每天可销售300份;若每份售价超过10元,每提高1元,每天的销售量就减少30份,设该店每份套餐的售价为x元(x为正整数),每天的销售量为y份,每天的利润为w元.(1)直接写出y与x的函数关系式;(2)求出w与x的函数关系式;并求出利润w的最大值.19.已知二次函数y=ax2+10x+c(a≠0)的顶点坐标为(5,9).(1)求a,c的值;(2)二次函数y=ax2+10x+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,求△ABC的面积.20.已知抛物线C:y=x2+mx+n(m,n为常数).(1)如图,若抛物线C的顶点坐标为P(1,2),求m,n的值;(2)在(1)的条件下,设点Q(a,b)在抛物线C上,且点Q离y轴的距离不大于2,直接写出b的取值范围;(3)将抛物线C向左平移2个单位得到抛物线C1,将抛物线C向右平移2个单位得到抛物线C2,若C1与C2的交点坐标为(1,3),求抛物线C的函数解析式.参考答案一.选择题(共10小题)1.解:A、y=x2﹣x(x+2)=﹣2x为一次函数;B、y=x2﹣不是二次函数;C、x=y2 不是函数;D、y=(x﹣1)(x+3)=x2+2x﹣3为二次函数.故选:D.2.解:∵二次函数y=mx2+(1﹣m)x,∴当x=0时,y=0,即该函数的图象过点(0,0),故选项A错误;该函数的顶点的横坐标为﹣=﹣,当m>0时,该函数图象开口向上,顶点的横坐标小于,故选项B正确,选项C错误;当m<0时,该函数图象开口向下,顶点的横坐标大于,故选项D错误;故选:B.3.解:∵抛物线经过原点,∴c=0,所以①正确;∵抛物线与x轴的交点坐标为(0,0),(﹣2,0),∴抛物线的对称轴为直线x=﹣1,所以②正确;即x=﹣=﹣1,∴b=2a,∴当x=1时,y=a+b+c=a+2a+0=3a,所以③错误;当x<﹣2或x>0时,y>0,∴m<﹣2时,am2+bm>0.所以④正确.故选:B.4.解:∵抛物线y=x2﹣4x=(x﹣2)2﹣4,∴该抛物线的对称轴是直线x=2,当x>2时,y随x的增大而增大,当x<2时,y随x的增大而减小,∵点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x的三点,∵2﹣(﹣2)=4,2﹣2=0,4﹣2=2,∴a>c>b,故选:D.5.解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.6.解:∵抛物线y=ax2+(1﹣2a)x+3(a>0),∴对称轴为直线x=﹣,∵点A(1,m)到抛物线对称轴的距离记为d,满足0<d≤,∴0<|1+|≤,∴0<≤,∴a≥1,把A(1,m)代入y=ax2+(1﹣2a)x+3(a>0)得:a+1﹣2a+3=m,∴4﹣a=m,∴a=4﹣m,∴4﹣m≥1,∴m≤3,故选:D.7.解:根据题意得:抛物线的顶点坐标为(m,n),且在第四象限,∴m>0,n<0,则一次函数y=mx+n经过第一、三、四象限.故选:B.8.解:∵抛物线y=﹣(x﹣2)2+3中a=﹣1<0,∴抛物线的开口向下,顶点为(2,3)故选:A.9.解:∵抛物线y=ax2﹣2ax+c(a>0),∴抛物线的开口向上,对称轴为直线x=﹣=1,∵x1<x2且x1+x2=2﹣a,∴=1﹣a<1,∴点A(x1,y1)到对称轴的距离大于点B(x2,y2)的距离,∴y1>y2,故选:A.10.解:∵y=ax2+bx+c的图象的开口向下,∴a<0,∵对称轴在y轴的左侧,∴b<0,∴一次函数y=ax+b的图象经过二,三,四象限.故选:C.二.填空题(共5小题)11.解:二次函数y=﹣x2﹣2x+c的二次项系数a=﹣1,∴函数图象开口向下又∵对称轴为x=﹣1,∴y1=y2>y3点故答案为:y1=y2>y3.12.解:令y=(a﹣1)x2+2x﹣1=0,∵y=(a﹣1)x2+2x﹣1是二次函数,∴a﹣1≠0,∴a≠1,∵二次函数y=(a﹣1)x2+2x﹣1的图象与x轴有两个交点,∴△=4+4(a﹣1)>0,∴a>0,∴a的取值范围是a>0且a≠1,故答案为:a>0且a≠1.13.解:∵抛物线y=2x2﹣ax+b,∴抛物线开口向上,∵1<x1<3和1<x2<3同时成立,∴当x=1时,y>0;当x=3时,y>0;1<对称轴x<3;判别式△≥0.∴∴4<a<12,∵a是整数,则a=5,6,7,8,9,10,11当a=5时,无整数解;当a=6时,无整数解;当a=7时,b=6;当a=8时,b=7;当a=9时,无整数解;当a=10时,b=9;当a=11时,无整数解,综上所述,整数a=7,b=6或a=8,b=7或a=10,b=9时,使得1<x1<3和1<x2<3同时成立.故答案为:42或56或90.14.解:将抛物线y=(x+1)2先向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式是y =(x+1﹣2)2+3,即y=(x﹣1)2+3.故答案为:y=(x﹣1)2+3.15.解:函数y=mx2+nx=m(x+)2﹣的顶点坐标为(,﹣),y=nx2+mx=n(x+)2﹣的顶点坐标为(,﹣),∵这两个函数图象的顶点关于x轴对称,∴,解得,m=﹣n,故答案为:m=﹣n.三.解答题(共5小题)16.解:(1)在y=(x﹣1)2﹣3中,∵a=>0,∴二次函数图象开口向上,且对称轴为x=1;(2)∵二次函数开口向上,∴函数y有最小值,∵其顶点坐标为(1,﹣3),∴y的最小值为﹣3.17.解:(1)当x=0时,y=3,∴C(0,3),∴OC=3,当y=0时,∴x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,OB=4,在Rt△BOC中,BC==5,(2)由(1)可知y=0时,x=﹣1或4,当y=3时,x=0或3,观察图象可得当0≤y≤3时,x的取值范围是:﹣1≤x≤0或3≤x≤4.(3)过点P作PD⊥y轴,设点P坐标为(x,),则点D坐标为(0,),∴PD=x,CD=﹣3=,∵∠BCP=90°,∴∠PCD+∠BCO=90°,∵∠PCD+∠CPD=90°,∴∠BCO=∠CPD,∵∠PDC=∠BOC=90°,∴△PDC∽△COB,∴,∴,∴x=或x=0(舍去),当x=时,y=,∴点P坐标为(,).18.解:(1)∵每份售价超过10元且每天的销售量不为负数,∴y=300﹣30(x﹣10)=﹣30x+600,∵﹣30x+600≥0,∴x≤20.(2)当7≤x≤10时,w=300(x﹣7)﹣200=300x﹣2300;当10<x≤20时,w=(﹣30x+600)(x﹣7)﹣200=﹣30x2+810x﹣4400.∴w=,∵当7≤x≤10时,∵k=300>0,y随x增大而增大,∴当x=10时,w最大值=700元;∵当10<x≤20时,∵a=﹣30<0,w有最大值,∴当时,∵x取整数,∴x应取13或14,w最大,∴x=13时,w取最大值:元.∵700<1060,∴每份套餐的售价应定为13元,此时,最大利润为1060元.19.解:(1)根题意,得,,解得;故a=﹣1,c=﹣16;(2)由(1)可知该二次函数的解析式为y=﹣x2+10x﹣16,今x=0,则y=﹣16.∴点C的坐标为(0,﹣16),令y=0,则﹣x2+10x+16=0,解得x1=2,x2=8,AB=8﹣2=6.∴S△ABC=AB•OC=×6×16=48.20.解:(1)∵抛物线C:y=x2+mx+n(m,n为常数)顶点坐标为P(1,2),∴﹣=1,=2,解得m=﹣2,n=3;(2)在(1)的条件下,抛物线C为:y=x2﹣2x+3,∵点Q(a,b)在抛物线C上,且离y轴的距离不大于2,∴﹣2≤x Q≤2,由图象可知,2≤y Q≤11即2≤b≤11.(3)将抛物线C向左平移2个单位得到抛物线C1为y=(x+2)2+m(x+2)+n;将抛物线C向右平移2个单位得到抛物线C2为y=(x﹣2)2+m(x﹣2)+n;由(x+2)2+m(x+2)+n=(x﹣2)2+m(x﹣2)+n,解得x=﹣m,∴若C1与C2的交点坐标为(1,3),∴﹣m=1,解得m=﹣2,把点(1,3)代入y=(x+2)2﹣2(x+2)+n得3=9﹣6+n,∴n=0,∴抛物线C的函数解析式为y=x2﹣2x.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数知识精讲与拓展训练【知识精讲】1.二次函数:形如 的函数叫做二次函数.2.二次函数的图像性质:(1)二次函数的图像是 ;(2)二次函数),,,0(2为常数c b a a c bx ax y ≠++=通过配方可得c b a a a b ac a b x a y ,,,0(44)2(22≠-++=为常数),其顶点坐标为 。
(3)当0>a 时,抛物线开口 ,并向上无限延伸;在对称轴左侧)2(abx -<即时,y 随x 的增大而减小;在对称轴右侧)2(ab x ->即时,y 随x 的增大而增大;当a bx 2-=时,函数有 .当0<a 时,抛物线开口 ,并向下无限延伸;在对称轴左侧)2(abx -<即时,y 随着x 的增大而增大;在对称轴右侧)2(ab x ->即时,y 随着x 的增大而减小;当,2时a bx -=函数有 。
3.二次函数的图像平移:(1)二次函数k h x a y h x a y ax y +-=-==222)(,)(,的图像都是抛物线,并且形状相同,只是位置不同(a 的取值决定抛物线的形状).将2ax y =的图像向右(h>0)、向左(h<0)平移h 个单位,就得到函数2)(h x a y -=的图像;再将此抛物线向上(k>0)、向下(k<0)平移k 个单位得到函数k h x a y +-=2)(的图像.上述平移的规律是:“h 值正、负、右、左移;k 值正、负、上、下移.” 4.抛物线与坐标轴的交点:(1)抛物线).,0(2c y c bx ax y 轴交于点与++=(2)若方)0,)(0,(,,0212212x x x c bx ax y x x c bx ax 轴点交则抛物线有两根++==++ 考点㈠二次函数的图像性质例1定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ]的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点.其中正确的结论有 A. ①②③④ B. ①②④ C. ①③④ D. ②④ 变式训练1.已知二次函数2y ax bx c =++的图像如图所示,则下列结论正确的是( )A.0a >B. 0c <C.240b ac -<D.0a b c ++>第(1)题 第(3)题 2.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:( )①240b ac ->;②0abc >;③80a c +>;④930a b c ++<.3. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )A. 2个 B. 3个 C. 4个 D. 5个考点㈡二次函数图像平移例2. 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( )A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 变式训练1.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式 ( )2.若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则 E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?3.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( )A .-3B .1C .5D .8第(2)题 yxO yB A1· O y x 1考点㈢确定二次函数解析式例3如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. (1)求点B 的坐标;(2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△. 变式训练1.二次函数23y x mx =-+的图象与x 轴的交点如图所示,根据图息可得到m 的值是 .第2题图2.已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y = . 3.如图,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点。
(1)求这个二次函数的解析式(2)设该二次函数的对称轴与x 轴交于点C ,连结BA 、BC ,求△ABC 的面积。
第1题图 yxCAO B第3题A B CDyPxO(第4题图)4.如图,已知抛物线y =x 2+bx +c 经过矩形ABCD 的两个顶点A 、B ,AB 平行于x 轴,对角线BD 与抛物线交于点P ,点A 的坐标为(0,2),AB =4. (1)求抛物线的解析式;(2)若S △APO =23,求矩形ABCD 的面积. 5.将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0). (1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当△APE 的面积最大时,求点P 的坐标;(3)在第一象限的该抛物线上是否存在点G ,使△AGC 的面积与(2)中△APE 的最大面积相等?若存在,请求出点G 的坐标;若不存在,请说明理由.考点⑷确定二次函数与方程、不等式、一次函数、反比例函数例1. 抛物线c bx ax y ++=2图像如图所示,则一次函数24b ac bx y +--=与反比例函数a b c y x ++=在同一坐标系的图像大致为( )第15题图变式训练1.若正比例函数2y kx =与反比例函数()0ky k x=≠的图象交于点()1A m ,,则k 的值是( ).yxCBO A 第5题xxxxxA BxOy考点5二次函数与几何的综合题例5.如图,抛物线y =ax 2+bx +c 经过点A (4,0)、B (2,2),连结OB 、AB . (1)求该抛物线的解析式;(2)求证:△OAB 是等腰直角三角形; (3)将△OAB 绕点O 按顺时针方向旋转135° 得到△OA ′B ′,写出A ′B ′的中点P 的坐标, 试判断点P 是否在此抛物线上,并说明理由.变式训练1.在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.(1)求抛物线的解析式;(2)若点M 为第三象限抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.MC BA Oxy第1题第2题 2.在平面直角坐标系中,已知A 、B 、C 三点的坐标分别为A (-2,0),B (6,0),C (0,3).(1)求经过A 、B 、C 三点的抛物线的解析式;(2)过C点作CD 平行于x 轴交抛物线于点D ,写出D 点的坐标,并求AD 、BC 的交点E 的坐标;(3)若抛物线的顶点为P,连结PC 、PD ,判断四边形CEDP 的形状,并说明理由.PACDEBoy1-11第3题【思维能力提升训练】1.方程x 2+2x -1=0的根可看成函数y =x +2与函数的图象交点的横坐标,用此方法可推断方程x 3+x -1=0的实根x 所在围为( ) A . B . C . D . 2.已知实数的最大值为3.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (—1,0)、B(0,—3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式; (2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.4.已知平面直角坐标系xOy ,抛物线y =-x 2+bx +c 过点A(4,0)、B(1,3) . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值. 5.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积.家庭作业1. 若二次函数52++=bxxy配方后为kxy+-=2)2(则b、k的值分别为()2.在直角坐标系中,若解析式为5422+-=xxy的图像沿着x轴向左平移两个单位,再沿着y轴向下平移一个单位,此时图像的解析式为()3.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=ax与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是()A.B.C.D.4.如图,两条抛物线12121+-=xy、12122--=xy与分别经过点()0,2-,()0,2且平行于y 轴的两条平行线围成的阴影部分的面积为()A.8B.6 C.10D.45. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.第7题6.图为二次函数的图象,给出下列说法:①;②方程的根为;③;④当时,y随x值的增大而增大;⑤当时,.其中,正确的说法有.(请写出所有正确说法的序号)7.已知点A(1,1)在二次函数图像上。